Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = starvation chemotherapy efficacy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 7405 KB  
Review
Anti-Tumor Strategies of Photothermal Therapy Combined with Other Therapies Using Nanoplatforms
by Rubing Xu, Shengmei Wang, Qiuyan Guo, Ruqian Zhong, Xi Chen and Xinhua Xia
Pharmaceutics 2025, 17(3), 306; https://doi.org/10.3390/pharmaceutics17030306 - 26 Feb 2025
Cited by 16 | Viewed by 2806
Abstract
Conventional cancer treatments often have complications and serious side effects, with limited improvements in 5-year survival and quality of life. Photothermal therapy (PTT) employs materials that convert light to heat when exposed to near-infrared light to raise the temperature of the tumor site [...] Read more.
Conventional cancer treatments often have complications and serious side effects, with limited improvements in 5-year survival and quality of life. Photothermal therapy (PTT) employs materials that convert light to heat when exposed to near-infrared light to raise the temperature of the tumor site to directly ablate tumor cells, induce immunogenic cell death, and improve the tumor microenvironment. This therapy has several benefits, including minimal invasiveness, high efficacy, reduced side effects, and robust targeting capabilities. Beyond just photothermal conversion materials, nanoplatforms significantly contribute to PTT by supplying effective photothermal conversion materials and bolstering tumor targeting to amplify anti-tumor effects. However, the anti-tumor effects of PTT alone are ultimately limited and often need to be combined with other therapies. This narrative review describes the recent progress of PTT combined with chemotherapy, radiotherapy, photodynamic therapy, immunotherapy, gene therapy, gas therapy, chemodynamic therapy, photoacoustic imaging, starvation therapy, and multimodal therapy. Studies have shown that combining PTT with other treatments can improve efficacy, reduce side effects, and overcome drug resistance. Despite the encouraging results, challenges such as optimizing treatment protocols, addressing tumor heterogeneity, and overcoming biological barriers remain. This paper highlights the potential for personalized, multimodal approaches to improve cancer treatment outcomes. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

30 pages, 3709 KB  
Review
Functionalized Nanomaterials for Inhibiting ATP-Dependent Heat Shock Proteins in Cancer Photothermal/Photodynamic Therapy and Combination Therapy
by Thejas P. Premji, Banendu Sunder Dash, Suprava Das and Jyh-Ping Chen
Nanomaterials 2024, 14(1), 112; https://doi.org/10.3390/nano14010112 - 2 Jan 2024
Cited by 23 | Viewed by 4502
Abstract
Phototherapies induced by photoactive nanomaterials have inspired and accentuated the importance of nanomedicine in cancer therapy in recent years. During these light-activated cancer therapies, a nanoagent can produce heat and cytotoxic reactive oxygen species by absorption of light energy for photothermal therapy (PTT) [...] Read more.
Phototherapies induced by photoactive nanomaterials have inspired and accentuated the importance of nanomedicine in cancer therapy in recent years. During these light-activated cancer therapies, a nanoagent can produce heat and cytotoxic reactive oxygen species by absorption of light energy for photothermal therapy (PTT) and photodynamic therapy (PDT). However, PTT is limited by the self-protective nature of cells, with upregulated production of heat shock proteins (HSP) under mild hyperthermia, which also influences PDT. To reduce HSP production in cancer cells and to enhance PTT/PDT, small HSP inhibitors that can competitively bind at the ATP-binding site of an HSP could be employed. Alternatively, reducing intracellular glucose concentration can also decrease ATP production from the metabolic pathways and downregulate HSP production from glucose deprivation. Other than reversing the thermal resistance of cancer cells for mild-temperature PTT, an HSP inhibitor can also be integrated into functionalized nanomaterials to alleviate tumor hypoxia and enhance the efficacy of PDT. Furthermore, the co-delivery of a small-molecule drug for direct HSP inhibition and a chemotherapeutic drug can integrate enhanced PTT/PDT with chemotherapy (CT). On the other hand, delivering a glucose-deprivation agent like glucose oxidase (GOx) can indirectly inhibit HSP and boost the efficacy of PTT/PDT while combining these therapies with cancer starvation therapy (ST). In this review, we intend to discuss different nanomaterial-based approaches that can inhibit HSP production via ATP regulation and their uses in PTT/PDT and cancer combination therapy such as CT and ST. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Cancer Therapy)
Show Figures

Figure 1

13 pages, 5478 KB  
Article
Short-Term Starvation Weakens the Efficacy of Cell Cycle Specific Chemotherapy Drugs through G1 Arrest
by Munan Shi, Jiajia Hou, Shan Shao, Weichu Liang, Shiwei Wang, Yuzhou Yang, Zhigang Guo and Feiyan Pan
Int. J. Mol. Sci. 2023, 24(3), 2498; https://doi.org/10.3390/ijms24032498 - 28 Jan 2023
Cited by 2 | Viewed by 3668
Abstract
Short-term starvation (STS) during chemotherapy can block the nutrient supply to tumors and make tumor cells much more sensitive to chemotherapeutic drugs than normal cells. However, because of the diversity of starvation methods and the heterogeneity of tumors, this method’s specific effects and [...] Read more.
Short-term starvation (STS) during chemotherapy can block the nutrient supply to tumors and make tumor cells much more sensitive to chemotherapeutic drugs than normal cells. However, because of the diversity of starvation methods and the heterogeneity of tumors, this method’s specific effects and mechanisms for chemotherapy are still poorly understood. In this study, we used HeLa cells as a model for short-term starvation and etoposide (ETO) combined treatment, and we also mimicked the short-term starvation effect by knocking down the glycolytic enzyme GAPDH to explore the exact molecular mechanism. In addition, our study demonstrated that short-term starvation protects cancer cells against the chemotherapeutic agent ETO by reducing DNA damage and apoptosis due to the STS-induced cell cycle G1 phase block and S phase reduction, thereby diminishing the effect of ETO. Furthermore, these results suggest that starvation therapy in combination with cell cycle-specific chemotherapeutic agents must be carefully considered. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

33 pages, 1624 KB  
Review
How Far Are We from Prescribing Fasting as Anticancer Medicine?
by Maria V. Deligiorgi, Charis Liapi and Dimitrios T. Trafalis
Int. J. Mol. Sci. 2020, 21(23), 9175; https://doi.org/10.3390/ijms21239175 - 1 Dec 2020
Cited by 24 | Viewed by 12277
Abstract
(1) Background: the present review provides a comprehensive and up-to date overview of the potential exploitation of fasting as an anticancer strategy. The rationale for this concept is that fasting elicits a differential stress response in the setting of unfavorable conditions, empowering the [...] Read more.
(1) Background: the present review provides a comprehensive and up-to date overview of the potential exploitation of fasting as an anticancer strategy. The rationale for this concept is that fasting elicits a differential stress response in the setting of unfavorable conditions, empowering the survival of normal cells, while killing cancer cells. (2) Methods: the present narrative review presents the basic aspects of the hormonal, molecular, and cellular response to fasting, focusing on the interrelationship of fasting with oxidative stress. It also presents nonclinical and clinical evidence concerning the implementation of fasting as adjuvant to chemotherapy, highlighting current challenges and future perspectives. (3) Results: there is ample nonclinical evidence indicating that fasting can mitigate the toxicity of chemotherapy and/or increase the efficacy of chemotherapy. The relevant clinical research is encouraging, albeit still in its infancy. The path forward for implementing fasting in oncology is a personalized approach, entailing counteraction of current challenges, including: (i) patient selection; (ii) fasting patterns; (iii) timeline of fasting and refeeding; (iv) validation of biomarkers for assessment of fasting; and (v) establishment of protocols for patients’ monitoring. (4) Conclusion: prescribing fasting as anticancer medicine may not be far away if large randomized clinical trials consolidate its safety and efficacy. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

22 pages, 3520 KB  
Article
Starvation-Induced Differential Virotherapy Using an Oncolytic Measles Vaccine Virus
by Gabriel Scheubeck, Susanne Berchtold, Irina Smirnow, Andrea Schenk, Julia Beil and Ulrich M. Lauer
Viruses 2019, 11(7), 614; https://doi.org/10.3390/v11070614 - 5 Jul 2019
Cited by 13 | Viewed by 4215
Abstract
Starvation sensitizes tumor cells to chemotherapy while protecting normal cells at the same time, a phenomenon defined as differential stress resistance. In this study, we analyzed if starvation would also increase the oncolytic potential of an oncolytic measles vaccine virus (MeV-GFP) while protecting [...] Read more.
Starvation sensitizes tumor cells to chemotherapy while protecting normal cells at the same time, a phenomenon defined as differential stress resistance. In this study, we analyzed if starvation would also increase the oncolytic potential of an oncolytic measles vaccine virus (MeV-GFP) while protecting normal cells against off-target lysis. Human colorectal carcinoma (CRC) cell lines as well as human normal colon cell lines were subjected to various starvation regimes and infected with MeV-GFP. The applied fasting regimes were either short-term (24 h pre-infection) or long-term (24 h pre- plus 96 h post-infection). Cell-killing features of (i) virotherapy, (ii) starvation, as well as (iii) the combination of both were analyzed by cell viability assays and virus growth curves. Remarkably, while long-term low-serum, standard glucose starvation potentiated the efficacy of MeV-mediated cell killing in CRC cells, it was found to be decreased in normal colon cells. Interestingly, viral replication of MeV-GFP in CRC cells was decreased in long-term-starved cells and increased after short-term low-glucose, low-serum starvation. In conclusion, starvation-based virotherapy has the potential to differentially enhance MeV-mediated oncolysis in the context of CRC cancer patients while protecting normal colon cells from unwanted off-target effects. Full article
Show Figures

Figure 1

Back to TopTop