Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = starch-based polyurethane polymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2 pages, 6922 KB  
Correction
Correction: El-Hefnawy et al. Fabrication of Nanofibers Based on Hydroxypropyl Starch/Polyurethane Loaded with the Biosynthesized Silver Nanoparticles for the Treatment of Pathogenic Microbes in Wounds. Polymers 2022, 14, 318
by Mohamed E. El-Hefnawy, Sultan Alhayyani, Mohsen M. El-Sherbiny, Mohamed I. Sakran and Mohamed H. El-Newehy
Polymers 2024, 16(21), 3099; https://doi.org/10.3390/polym16213099 - 4 Nov 2024
Viewed by 1871
Abstract
There was an error in the original publication [...] Full article
Show Figures

Figure 2

26 pages, 3150 KB  
Review
Recent Advances in the Degradability and Applications of Tissue Adhesives Based on Biodegradable Polymers
by Shuzhuang Zhu, Wenguang Dou, Xiaojun Zeng, Xingchao Chen, Yonglin Gao, Hongliang Liu and Sidi Li
Int. J. Mol. Sci. 2024, 25(10), 5249; https://doi.org/10.3390/ijms25105249 - 11 May 2024
Cited by 16 | Viewed by 4267
Abstract
In clinical practice, tissue adhesives have emerged as an alternative tool for wound treatments due to their advantages in ease of use, rapid application, less pain, and minimal tissue damage. Since most tissue adhesives are designed for internal use or wound treatments, the [...] Read more.
In clinical practice, tissue adhesives have emerged as an alternative tool for wound treatments due to their advantages in ease of use, rapid application, less pain, and minimal tissue damage. Since most tissue adhesives are designed for internal use or wound treatments, the biodegradation of adhesives is important. To endow tissue adhesives with biodegradability, in the past few decades, various biodegradable polymers, either natural polymers (such as chitosan, hyaluronic acid, gelatin, chondroitin sulfate, starch, sodium alginate, glucans, pectin, functional proteins, and peptides) or synthetic polymers (such as poly(lactic acid), polyurethanes, polycaprolactone, and poly(lactic-co-glycolic acid)), have been utilized to develop novel biodegradable tissue adhesives. Incorporated biodegradable polymers are degraded in vivo with time under specific conditions, leading to the destruction of the structure and the further degradation of tissue adhesives. In this review, we first summarize the strategies of utilizing biodegradable polymers to develop tissue adhesives. Furthermore, we provide a symmetric overview of the biodegradable polymers used for tissue adhesives, with a specific focus on the degradability and applications of these tissue adhesives. Additionally, the challenges and perspectives of biodegradable polymer-based tissue adhesives are discussed. We expect that this review can provide new inspirations for the design of novel biodegradable tissue adhesives for biomedical applications. Full article
(This article belongs to the Special Issue Biodegradable Polymer: Structure, Properties and Applications)
Show Figures

Figure 1

29 pages, 2075 KB  
Review
Green Synthesis of Bioplastics from Microalgae: A State-of-the-Art Review
by Adegoke Isiaka Adetunji and Mariana Erasmus
Polymers 2024, 16(10), 1322; https://doi.org/10.3390/polym16101322 - 8 May 2024
Cited by 22 | Viewed by 14593
Abstract
The synthesis of conventional plastics has increased tremendously in the last decades due to rapid industrialization, population growth, and advancement in the use of modern technologies. However, overuse of these fossil fuel-based plastics has resulted in serious environmental and health hazards by causing [...] Read more.
The synthesis of conventional plastics has increased tremendously in the last decades due to rapid industrialization, population growth, and advancement in the use of modern technologies. However, overuse of these fossil fuel-based plastics has resulted in serious environmental and health hazards by causing pollution, global warming, etc. Therefore, the use of microalgae as a feedstock is a promising, green, and sustainable approach for the production of biobased plastics. Various biopolymers, such as polyhydroxybutyrate, polyurethane, polylactic acid, cellulose-based polymers, starch-based polymers, and protein-based polymers, can be produced from different strains of microalgae under varying culture conditions. Different techniques, including genetic engineering, metabolic engineering, the use of photobioreactors, response surface methodology, and artificial intelligence, are used to alter and improve microalgae stocks for the commercial synthesis of bioplastics at lower costs. In comparison to conventional plastics, these biobased plastics are biodegradable, biocompatible, recyclable, non-toxic, eco-friendly, and sustainable, with robust mechanical and thermoplastic properties. In addition, the bioplastics are suitable for a plethora of applications in the agriculture, construction, healthcare, electrical and electronics, and packaging industries. Thus, this review focuses on techniques for the production of biopolymers and bioplastics from microalgae. In addition, it discusses innovative and efficient strategies for large-scale bioplastic production while also providing insights into the life cycle assessment, end-of-life, and applications of bioplastics. Furthermore, some challenges affecting industrial scale bioplastics production and recommendations for future research are provided. Full article
(This article belongs to the Special Issue Biodegradable Polymers: Synthesis, Characterization and Applications)
Show Figures

Figure 1

14 pages, 2794 KB  
Article
Development of a Solid-Phase Extraction Method Based on Biocompatible Starch Polyurethane Polymers for GC-MS Analysis of Polybrominated Diphenyl Ethers in Ambient Water Samples
by Qian Zhang and Chukwunonso P. Okoli
Molecules 2022, 27(10), 3253; https://doi.org/10.3390/molecules27103253 - 19 May 2022
Cited by 5 | Viewed by 2567
Abstract
A new solid-phase extraction (SPE) method for the extraction, enrichment, and analysis of eight polybrominated diphenyl ethers (PBDEs) in water was developed. The current approach involves using a cross-linked starch-based polymer as an extraction adsorbent and determining the PBDE analytes of interest using [...] Read more.
A new solid-phase extraction (SPE) method for the extraction, enrichment, and analysis of eight polybrominated diphenyl ethers (PBDEs) in water was developed. The current approach involves using a cross-linked starch-based polymer as an extraction adsorbent and determining the PBDE analytes of interest using gas chromatography-mass spectrometry in negative chemical ionization mode (GC-NCI-MS). The starch-based polymer was synthesized by the reaction of soluble starch with 4,4′-methylene-bis-phenyldiisocyanate as a cross-linking agent in dry dimethylformamide. Various parameters impacting extraction efficiencies, such as adsorbent quantity, sample volumes, elution solvents and volumes, and methanol content, were carefully optimized. The 500 mg of starch-based polymer as an adsorbent used to extract 1000 mL of spiked water, presented high extraction recoveries of eight PBDEs. The linearity of the extraction process was investigated in the range of 1–200 ng L−1 for BDE-28, 47, 99, 100, and 5–200 ng L−1 for BDE-153, 154, 183, and 209, with coefficients of determination (r2) exceeding 0.990 for all PBDEs. The limits of detection (LODs) ranged from 0.06 to 1.42 ng L−1 (S/N = 3) and the relative standard deviation values (RSD) were between 3.6 and 9.5 percent (n = 5) under optimum conditions. The method was successfully used to analyze river and lake water samples, where it exhibited acceptable recovery values of 71.3 to 104.2%. Considering the excellent analytical performance and comparative cost advantage, we recommend the developed starch-based SPE method for routine extraction and analysis of PBDEs in water media. Full article
Show Figures

Graphical abstract

24 pages, 12961 KB  
Article
Fabrication of Nanofibers Based on Hydroxypropyl Starch/Polyurethane Loaded with the Biosynthesized Silver Nanoparticles for the Treatment of Pathogenic Microbes in Wounds
by Mohamed E. El-Hefnawy, Sultan Alhayyani, Mohsen M. El-Sherbiny, Mohamed I. Sakran and Mohamed H. El-Newehy
Polymers 2022, 14(2), 318; https://doi.org/10.3390/polym14020318 - 13 Jan 2022
Cited by 21 | Viewed by 3454 | Correction
Abstract
Fabrication of electrospun nanofibers based on the blending of modified natural polymer, hydroxyl propyl starch (HPS) as one of the most renewable resources, with synthetic polymers, such as polyurethane (PU) is of great potential for biomedical applications. The as-prepared nanofibers were used as [...] Read more.
Fabrication of electrospun nanofibers based on the blending of modified natural polymer, hydroxyl propyl starch (HPS) as one of the most renewable resources, with synthetic polymers, such as polyurethane (PU) is of great potential for biomedical applications. The as-prepared nanofibers were used as antimicrobial sheets via blending with biosynthesized silver nanoparticles (AgNPs), which were prepared in a safe way with low cost using the extract of Nerium oleander leaves, which acted as a reducing and stabilizing agent as well. The biosynthesized AgNPs were fully characterized by various techniques (UV-vis, TEM, DLS, zeta potential and XRD). The obtained results from UV-vis depicted that the AgNPs appeared at a wavelength equal to 404 nm affirming the preparation of AgNPs when compared with the wavelength of extract (there are no observable peaks). The average particle size of the fabricated AgNPs that mediated with HPS exhibited a very small size (less than 5 nm) with excellent stability (more than −30 mv). In addition, the fabricated nanofibers were also fully characterized and the obtained data proved that the diameter of nanofibers was enlarged with increasing the concentration of AgNPs. Additionally, the findings illustrated that the pore sizes of electrospun sheets were in the range of 75 to 350 nm. The obtained results proved that the presence of HPS displayed a vital role in decreasing the contact angle of PU nanofibers and thus, increased the hydrophilicity of the net nanofibers. It is worthy to mention that the prepared nanofibers incorporated with AgNPs exhibited incredible antimicrobial activity against pathogenic microbes that actually presented in human wounds. Moreover, P. aeruginosa was the most sensitive species to the fabricated nanofibers compared to other tested ones. The minimal inhibitory concentrations (MICs) values of AgNPs-3@NFs against P. aeruginosa, and E. faecalis, were 250 and 500 mg/L within 15 min, respectively. Full article
Show Figures

Figure 1

20 pages, 7952 KB  
Article
Degradability of Polyurethanes and Their Blends with Polylactide, Chitosan and Starch
by Joanna Brzeska, Agnieszka Tercjak, Wanda Sikorska, Barbara Mendrek, Marek Kowalczuk and Maria Rutkowska
Polymers 2021, 13(8), 1202; https://doi.org/10.3390/polym13081202 - 8 Apr 2021
Cited by 16 | Viewed by 2962
Abstract
One of the methods of making traditional polymers more environmentally friendly is to modify them with natural materials or their biodegradable, synthetic equivalents. It was assumed that blends with polylactide (PLA), polysaccharides: chitosan (Ch) and starch (St) of branched polyurethane (PUR) based on [...] Read more.
One of the methods of making traditional polymers more environmentally friendly is to modify them with natural materials or their biodegradable, synthetic equivalents. It was assumed that blends with polylactide (PLA), polysaccharides: chitosan (Ch) and starch (St) of branched polyurethane (PUR) based on synthetic poly([R,S]-3-hydroxybutyrate) (R,S-PHB) would degrade faster in the processes of hydrolysis and oxidation than pure PUR. For the sake of simplicity in the publication, all three modifiers: commercial PLA, Ch created by chemical modification of chitin and St are called bioadditives. The samples were incubated in a hydrolytic and oxidizing environment for 36 weeks and 11 weeks, respectively. The degradation process was assessed by observation of the chemical structure as well as the change in the mass of the samples, their molecular weight, surface morphology and thermal properties. It was found that the PUR samples with the highest amount of R,S-PHB and the lowest amount of polycaprolactone triol (PCLtriol) were degraded the most. Moreover, blending with St had the greatest impact on the susceptibility to degradation of PUR. However, the rate of weight loss of the samples was low, and after 36 weeks of incubation in the hydrolytic solution, it did not exceed 7% by weight. The weight loss of Ch and PLA blends was even smaller. However, a significant reduction in molecular weight, changes in morphology and changes in thermal properties indicated that the degradation of the samples should occur quickly after this time. Therefore, when using these polyurethanes and their blends, it should be taken into account that they should decompose slowly in their initial life. In summary, this process can be modified by changing the amount of R,S-PHB, the degree of cross-linking, and the type and amount of second blend component added (bioadditives). Full article
(This article belongs to the Special Issue Recent Developments in Biodegradable and Biobased Polymers)
Show Figures

Graphical abstract

9 pages, 624 KB  
Article
Direct Measurement of Temperature Diffusivity of Nanocellulose-Doped Biodegradable Composite Films
by Hiroki Fujisawa, Meguya Ryu, Stefan Lundgaard, Denver P. Linklater, Elena P. Ivanova, Yoshiaki Nishijima, Saulius Juodkazis and Junko Morikawa
Micromachines 2020, 11(8), 738; https://doi.org/10.3390/mi11080738 - 29 Jul 2020
Cited by 18 | Viewed by 4324
Abstract
The thermal properties of novel nanomaterials play a significant role in determining the performance of the material in technological applications. Herein, direct measurement of the temperature diffusivity of nanocellulose-doped starch–polyurethane nanocomposite films was carried out by the micro-contact method. Polymer films containing up [...] Read more.
The thermal properties of novel nanomaterials play a significant role in determining the performance of the material in technological applications. Herein, direct measurement of the temperature diffusivity of nanocellulose-doped starch–polyurethane nanocomposite films was carried out by the micro-contact method. Polymer films containing up to 2 wt%. of nanocellulose were synthesised by a simple chemical process and are biodegradable. Films of a high optical transmittance T80% (for a 200 μm thick film), which were up to 44% crystalline, were characterised. Two different modalities of temperature diffusivity based on (1) a resistance change and (2) micro-thermocouple detected voltage modulation caused by the heat wave, were used for the polymer films with cross sections of ∼100 μm thickness. Twice different in-plane α and out-of-plane α temperature diffusivities were directly determined with high fidelity: α=2.12×107 m2/s and α=1.13×107 m2/s. This work provides an example of a direct contact measurement of thermal properties of nanocellulose composite biodegradable polymer films. The thermal diffusivity, which is usually high in strongly interconnected networks and crystals, was investigated for the first time in this polymer nanocomposite. Full article
(This article belongs to the Special Issue Micro/Nano-surfaces: Fabrication and Applications)
Show Figures

Figure 1

Back to TopTop