Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (112)

Search Parameters:
Keywords = staple fibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2895 KiB  
Article
Comparing a Whole Grain Blend with Polished White Rice for Starch Digestibility and Gut Microbiota Fermentation in Diabetic Patients: An In Vitro Study
by Qian Du, Ruisheng Fu, Ming Zhao and Meihong Xu
Foods 2025, 14(15), 2557; https://doi.org/10.3390/foods14152557 - 22 Jul 2025
Viewed by 347
Abstract
The high glycemic index (GI) of polished white rice (WR) presents challenges for blood glucose control in diabetes. This study investigated the in vitro digestibility of a whole grain blend (WGB, composed of black, red, and brown rice) and its effects on the [...] Read more.
The high glycemic index (GI) of polished white rice (WR) presents challenges for blood glucose control in diabetes. This study investigated the in vitro digestibility of a whole grain blend (WGB, composed of black, red, and brown rice) and its effects on the gut microbiota in elderly diabetic individuals. WGB exhibited lower starch digestibility (69.76 ± 5.71% vs. 73.02 ± 6.16%) and a reduced estimated glycemic index (eGI, 73.43 ± 4.49 vs. 77.55 ± 2.64) than WR, likely due to its higher amylose content. WGB fermentation increased Bifidobacterium and Lactobacillaceae, reduced pro-inflammatory Bacteroides fragilis and Enterocloster bolteae, and released more arabinose and xylose. Additionally, WGB yielded higher isobutyrate, while WR contained more glucose and fructose in its structure, leading to increased acetate production and a more acidic environment. Functional analysis revealed that WGB upregulated pathways related to fatty acid elongation and fiber fermentation. These findings suggest WGB as a viable staple food alternative for diabetic patients, offering dual benefits in glycemic control and gut microbiota. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

29 pages, 1880 KiB  
Review
Bioactive Metabolites of Dioscorea Species and Their Potential Applications in Functional Food Development
by Pengcheng Wang, Yashi Wang, Shiqi Liu, Kai Wang, Yuxuan Yao, Weizhen Liu, Donghui Li, Wei Wang, Bin Li and Yupei Yang
Foods 2025, 14(14), 2537; https://doi.org/10.3390/foods14142537 - 20 Jul 2025
Viewed by 636
Abstract
Dioscorea species, known as “Yams”, belong to the Dioscoreaceae family. Members of the Dioscoreaceae family are widely distributed across subtropical and tropical regions. They are notable for their high content of starch, dietary fiber, and various bioactive compounds. In addition to serving as [...] Read more.
Dioscorea species, known as “Yams”, belong to the Dioscoreaceae family. Members of the Dioscoreaceae family are widely distributed across subtropical and tropical regions. They are notable for their high content of starch, dietary fiber, and various bioactive compounds. In addition to serving as a staple food source, these tubers possess significant medicinal value in traditional medicine, particularly for treating diabetes, diarrhea, and various inflammatory diseases. This study aimed to comprehensively summarize the active components and food development potential of Dioscorea species from research over the past decade by searching commonly used databases such as PubMed, Web of Science, Scopus, and Google Scholar. This review highlights the classification of bioactive compounds in Dioscorea spp. using the NPClassifier tool. We discuss 60 representative bioactive metabolites, including terpenoids, phenylpropanoids, carbohydrates, fatty acids, alkaloids, and amino acids. Additionally, we discuss the functional food applications and regulations of Dioscorea spp., which possess antioxidant, anti-inflammatory, anti-diabetic, and anticancer properties. This review is expected to provide scientific ideas for future research related to prioritizing the optimization of extraction technologies, the execution of rigorous clinical trials to confirm therapeutic effects, and the exploration of novel applications of Dioscorea spp. bioactives to fully harness their potential in improving human health. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

29 pages, 1867 KiB  
Review
Should Grain-Based Staple Foods Be Included in Admonitions to “Avoid Processed and Ultra-Processed Food”?
by Julie Miller Jones
Nutrients 2025, 17(13), 2188; https://doi.org/10.3390/nu17132188 - 30 Jun 2025
Viewed by 631
Abstract
Background/Objectives: The nutritional importance of grain-based foods (GBFs) and whole grains (WGs) is underscored by their central position in dietary guidance worldwide. Many jurisdictions recommend consumers increase WG intake because they are associated with multiple health benefits, with evidence quality rated as moderate [...] Read more.
Background/Objectives: The nutritional importance of grain-based foods (GBFs) and whole grains (WGs) is underscored by their central position in dietary guidance worldwide. Many jurisdictions recommend consumers increase WG intake because they are associated with multiple health benefits, with evidence quality rated as moderate to high. High intakes of ultra-processed foods (UPFs), as defined by NOVA that classifies food by level of processing, are associated with numerous negative health outcomes, with evidence less convincing than for WGs. Yet, some dietary guidance recommends consumers to avoid UPFs. This creates two divergent guidelines since NOVA designates most commonly eaten grain-based foods (GBFs) as UPFs. These contradictory guidelines fail to comply with recommended principles of dietary guidance and generate questions about underlying assumptions and definitions that classify WG staples and colas together. Methods: Definitions and assumptions for systems ostensibly categorizing foods by level of processing were evaluated for validity by various methods. Special attention was paid to the ability of different classifications to differentiate between WGs, RGs staples, and indulgent GBFs. Findings from meta-analyses associating high intakes of WGs with numerous health benefits were compared with those associating high intakes of UPFs. Menus and modeling studies were assessed for ability to meet recommendations for WGs and the grain food group with customary GBFs while avoiding UPFs. Advice to “avoid UPFs” was tested against principles for effective dietary guidance. Results: Definitions and categorizations of foods by levels of processing vary markedly. Assumptions for NOVA and other systems are questionable. While meta-analyses consistently show high intakes of UPFs are associated with adverse health outcomes, high intake of WG foods, nearly all designated as UPFs, are associated with better health outcomes, although evidence quality for the latter is rated stronger. These findings add to the body of evidence suggesting flawed assumptions behind categorizing WG staples in terms of level of processing. Conclusions: NOVA deems 90% of WGs as UPFs. Adding statements to dietary guidance to “Avoid UPFs”, while asking consumers to increase WG intakes, confuses. Further, it jeopardizes efforts to increase intake of fiber and WG foods because it excludes top sources of fiber and WG-based breads, rolls, tortillas, or cold cereals in Western diets. NOVA advice to avoid UPFs challenges principles for usable dietary guidance and the construction of culturally appropriate, healthy dietary patterns containing WG staples from all levels of processing. Full article
(This article belongs to the Special Issue Effects of Dietary Grains on Human Health)
Show Figures

Figure 1

16 pages, 317 KiB  
Article
Defining Multi-Trait Breeding Objectives and Selection Indexes to Develop More Efficient Breeding Programs for Superfine Wool Sheep
by Tingting Guo, Wenhui Li, Chao Yuan, Xijun Wang, Jianbin Liu and Bin Liang
Animals 2025, 15(13), 1873; https://doi.org/10.3390/ani15131873 - 24 Jun 2025
Viewed by 380
Abstract
This study aimed to develop an optimized breeding program for the Alpine Merino sheep superfine strain by defining breeding objectives and establishing a multi-trait selection index. Using phenotypic and genetic (co)variance components of wool and growth traits, we identified six key breeding objectives: [...] Read more.
This study aimed to develop an optimized breeding program for the Alpine Merino sheep superfine strain by defining breeding objectives and establishing a multi-trait selection index. Using phenotypic and genetic (co)variance components of wool and growth traits, we identified six key breeding objectives: average fiber diameter (AFD), clean fleece weight (CFW), staple strength (SS), staple length (YSL), yearling weight (YWT), and weaning weight (WWT), with economic weights of 48, 48.5, 2, 12, 2.85, and 25, respectively. Through eco-bio modeling comparing three index sets with different trait combinations and information sources, we determined the optimal index comprising the AFD, CFW, fiber diameter coefficient of variation (FDcv), YSL, YWT, and WWT using data from individual phenotypes and 10 half-sibs. Recommended ram and ewe utilization periods were 3 and 5 years, respectively. Projected 10-year genetic gains showed improvements of −2 μm (AFD), 0.57 kg (CFW), 20 N/ktex (SS), 0.6 cm (YSL), 4.73 kg (YWT), and 0.38 kg (WWT). The developed program enhances both superfine wool characteristics and overall wool quality while improving the selection accuracy. Additionally, we propose alternative indices for varying measurement contexts and discuss strategies to accelerate genetic gains, including optimizing ewe reproduction rates and ram selection precision, and incorporating progeny information. Full article
(This article belongs to the Section Animal Genetics and Genomics)
20 pages, 2208 KiB  
Article
Physical Characteristics of Durum Wheat Dough and Pasta with Different Carrot Pomace Varieties
by Marian Ilie Luca, Mădălina Ungureanu-Iuga, Ana Batariuc and Silvia Mironeasa
Gels 2025, 11(7), 481; https://doi.org/10.3390/gels11070481 - 22 Jun 2025
Viewed by 382
Abstract
Carrot pomace is a valuable, underutilized by-product suitable for obtaining novel foods. The durum wheat dough and pasta network structure is affected by fiber-rich ingredients like carrot pomace, leading to changes in rheological and texture parameters. In this context, this paper aimed to [...] Read more.
Carrot pomace is a valuable, underutilized by-product suitable for obtaining novel foods. The durum wheat dough and pasta network structure is affected by fiber-rich ingredients like carrot pomace, leading to changes in rheological and texture parameters. In this context, this paper aimed to evaluate the rheological, textural, and color properties of durum wheat dough and pasta as affected by different varieties and addition levels of carrot pomace. For this purpose, oscillatory dynamic rheological tests, compression mechanical texture evaluation, cooking behavior observation, and reflectance color measurements were made. The results indicated that carrot pomace has a strengthening effect on the durum wheat dough protein–starch matrix, while the maximum creep compliance decreased with the addition level increase. A delay in starch gelatinization was suggested by the evolution of visco-elastic moduli during heating. Dough hardness and gumminess increased (from 2849.74 for the control to 5080.67 g for 12% Baltimore, and from 1073.73 for the control to 1863.02 g for 12% Niagara, respectively), while springiness and resilience exhibited a reduction trend (from 100.11% for the control to 99.50% for 12% Sirkana, and from 1.23 for the 3% Niagara to 0.87 for 12% Belgrado respectively) as the amount of carrot pomace raised. An increasing tendency of pasta solids loss during cooking and fracturability was observed with carrot pomace addition level increase. Color properties changed significantly depending on carrot pomace variety and addition level, indicating a reduction in lightness from 71.71 for the control to 63.12 for 12% Niagara and intensification of red nuance (0.05 for the control vs. 2.85 for 12% Sirkana). Cooked pasta elasticity, chewiness, gumminess, hardness, and resilience increased, while adhesiveness and stickiness decreased as the level of carrot pomace was higher. These results can represent a starting point for further industrial development of pasta enriched with fiber-rich ingredients like carrot pomace. The study highlights the possibility of using a fiber-rich waste stream (carrot pomace) in a staple product like pasta, providing a basis for clean-label pasta formulations. In addition, the novelty of the study consists in highlighting how compositional differences of different carrot pomace varieties lead to distinct effects on dough rheology, texture, color, and cooking behavior. Full article
(This article belongs to the Special Issue Food Gels: Structures, Properties and Applications)
Show Figures

Figure 1

18 pages, 1905 KiB  
Article
From Molecular to Macroscopic: Dual-Pathway Regulation of Carrot Whole Flour on the Gluten-Starch System
by Han Wang, Xiaoxuan Tian, Ruoyu Zhang and Huijing Li
Foods 2025, 14(11), 1964; https://doi.org/10.3390/foods14111964 - 31 May 2025
Viewed by 442
Abstract
Carrots are gaining attention due to their health effects, high yield, low cost, and bright color in food processing. This study analyzed the impact of carrot whole flour (CWF) on steamed cake quality. The effects of CWF and its active ingredients, carrot dietary [...] Read more.
Carrots are gaining attention due to their health effects, high yield, low cost, and bright color in food processing. This study analyzed the impact of carrot whole flour (CWF) on steamed cake quality. The effects of CWF and its active ingredients, carrot dietary fiber (CDF) and carrot polyphenols (CPs), on gluten and starch properties were studied. Results showed that steamed cake quality was better at a 12% additional dose. CPs caused gluten to form more hydrogen bonds, increasing the specific volume. CDF weakened the gluten structure by reducing disulfide bonds, decreasing the hardness. Both CDF and CPs disrupted the starch structure by decreasing the short-range order, causing a reduction in springiness and cohesiveness. CDF and CPs increased starch crystallinity, which also contributed to decreasing springiness. This study systematically evaluated the effect of CWF on the steamed cake from the microstructure level to macroscopic quality. Wheat-vegetable blend flour is a key path for nutritional upgrading of traditional staple foods and an essential direction for functional wheat products. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

21 pages, 1792 KiB  
Article
Fortification of Bread with Carob Extract: A Comprehensive Study on Dough Behavior and Product Quality
by Jana Zahorec, Dragana Šoronja-Simović, Jovana Petrović, Ivana Nikolić, Branimir Pavlić, Katarina Bijelić, Nemanja Bojanić and Aleksandar Fišteš
Foods 2025, 14(10), 1821; https://doi.org/10.3390/foods14101821 - 20 May 2025
Viewed by 526
Abstract
The integration of functional ingredients into staple foods like bread offers a promising strategy for improving public health. Carob (Ceratonia siliqua L.) flour, rich in bioactive compounds, has potential as a functional additive. However, its incorporation into bread negatively affects dough behavior [...] Read more.
The integration of functional ingredients into staple foods like bread offers a promising strategy for improving public health. Carob (Ceratonia siliqua L.) flour, rich in bioactive compounds, has potential as a functional additive. However, its incorporation into bread negatively affects dough behavior and product quality due to high levels of insoluble dietary fibers. This study investigates the use of carob extract (PCE) as a functional additive to enhance the nutritional and bioactive profile of bread while preserving its rheological behavior and sensory quality. PCE was obtained via microwave-assisted extraction and spray drying, and incorporated into bread formulations at 1%, 3%, and 5%. The addition of PCE reduced water absorption by 1.5% and increased dough stability three times. Dough resistance increased by 15%, while extensibility decreased by 5%. The viscoelastic properties of dough were preserved, as the storage modulus increased and Tan δ values remained stable. Changes in specific volume, crumb texture, crumb porosity, and bread color of produced bread with PCE were minimal; however, aroma, taste, and overall sensory quality were improved. Additionally, the incorporation of PCE resulted in a significant increase in total phenolic content and antioxidant activity, indicating an enhancement of the bread’s functional properties. These improvements were achieved without negatively affecting the dough rheology or bread quality parameters. Overall, the findings suggest that PCE can be a promising functional ingredient in bread formulations, contributing to both nutritional value and technological performance. Full article
(This article belongs to the Special Issue Encapsulation-Based Technologies for Bioactive Compounds in Foods)
Show Figures

Figure 1

16 pages, 5598 KiB  
Article
Hybrid Fabrics for Ohmic Heating Applications
by Jiří Militký, Karel Kupka, Veronika Tunáková and Mohanapriya Venkataraman
Polymers 2025, 17(10), 1339; https://doi.org/10.3390/polym17101339 - 14 May 2025
Viewed by 371
Abstract
Textile structures with ohmic (Joule) heating capability are frequently used for personal thermal management by tuning fluctuations in human body temperature that arise due to climatic changes or for medical applications as electrotherapy. They are constructed from electrically conductive textile structures prepared in [...] Read more.
Textile structures with ohmic (Joule) heating capability are frequently used for personal thermal management by tuning fluctuations in human body temperature that arise due to climatic changes or for medical applications as electrotherapy. They are constructed from electrically conductive textile structures prepared in different ways, e.g., from metallic yarns, conductive polymers, conductive coatings, etc. In comparison with other types of flexible ohmic heaters, these structures should be corrosion resistant, air permeable, and comfortable. They should not loose ohmic heating efficiency due to frequent intensive washing and maintenance. In this study, the basic electrical properties of a conductive fabric composed of a polyester/cotton fiber mixture and a small amount of fine stainless-steel staple fibers (SS) were evaluated and predicted. Even though the basic conductive component of SS fibers is iron and its electrical characteristics obey Ohm’s law, the electrical behavior of the prepared fabric was highly nonlinear, resembling a more complex response than that of a classical conductor. The non-linear behavior was probably due to non-ideal, poorly defined random interfaces between individual short SS fibers. A significant time–dynamics relationship was also shown. Using the Stefan–Boltzmann law describing radiation power, we demonstrated that it is possible to predict surface temperature due to the ohmic heating of a fabric related to the input electrical power. Significant local temperature variations in the heated hybrid fabric in both main directions (warp and weft) were identified. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

26 pages, 8150 KiB  
Article
Coefficients of Thermal Expansion in Aligned Carbon Staple Fiber-Reinforced Polymers: Experimental Characterization with Numerical Investigation
by Julian Kupski, Lucian Zweifel, Miriam Preinfalck, Stephan Baz, Mohammad Hajikazemi and Christian Brauner
Polymers 2025, 17(8), 1088; https://doi.org/10.3390/polym17081088 - 17 Apr 2025
Viewed by 643
Abstract
Carbon staple fiber composites are materials reinforced with discrete-length carbon fibers processed using traditional textile technologies, offering moderate mechanical properties and flexibility in manufacturing. These composites can be produced from recycled carbon staple fibers, aligned into yarn and tape-like structures, providing a more [...] Read more.
Carbon staple fiber composites are materials reinforced with discrete-length carbon fibers processed using traditional textile technologies, offering moderate mechanical properties and flexibility in manufacturing. These composites can be produced from recycled carbon staple fibers, aligned into yarn and tape-like structures, providing a more sustainable alternative while balancing performance, cost-effectiveness, and environmental impact. Aligning staple fibers into tape-like structures enables similar applications to those of continuous-fiber-based products, while allowing control over fiber orientation distribution, fiber volume fraction, and length distribution, which are all critical factors influencing both mechanical and thermo-mechanical properties. This study focuses on the experimental characterization and numerical investigation of Coefficients of Thermal Expansion (CTEs) in aligned carbon staple fiber composites. The effects of fiber orientation and volume fraction on coefficients of thermal expansion under different fiber alignment parameters are analyzed, revealing distinct thermal expansion behavior compared to typical aligned unidirectional continuous carbon fiber composite laminates. Unlike continuous unidirectional laminates, which typically exhibit transversely isotropic behavior without tensile–shear coupling, staple fiber composites demonstrate different in-plane axial, transverse, and out-of-plane CTE characteristics. To explain these deviations, a modeling approach is introduced, incorporating detailed experimental information on fiber distributions and microstructural features rather than averaged fiber orientation values. This involves a multi-scale analysis based on a laminate analogy through which all composite thermo-elastic properties can be predicted, accounting for variations in fiber orientations, volume fractions, and tape thicknesses. It is shown that while the local variation of fiber volume fraction has a small effect on the homogenized value of the coefficients of thermal expansion, fiber misalignment, tape thickness, and asymmetry in fiber orientation distribution will significantly affect the measurements of CTEs. For the case of carbon staple fiber composites, the asymmetry in fiber orientation distribution significantly influences the measurements of axial CTE. Fiber orientation asymmetry causes tensile–shear coupling under mechanical and thermal loading, leading to an unbalanced laminate with in-plane shear–tensile deformation. This coupling disrupts uniform displacement, complicating strain measurements and the determination of composite properties. Full article
Show Figures

Figure 1

17 pages, 2060 KiB  
Article
Functionality of Alternative Flours as Additives Enriching Bread with Proteins
by Jacek Lewandowicz, Joanna Le Thanh-Blicharz, Patrycja Jankowska and Grażyna Lewandowicz
Agriculture 2025, 15(8), 851; https://doi.org/10.3390/agriculture15080851 - 15 Apr 2025
Viewed by 681
Abstract
Legume cultivation is important for a wide array of reasons, including its positive effects on the environment, the economy, and human health. Legumes have different amino acid profiles that complement those of the three globally most important staple foods (rice, corn, and wheat). [...] Read more.
Legume cultivation is important for a wide array of reasons, including its positive effects on the environment, the economy, and human health. Legumes have different amino acid profiles that complement those of the three globally most important staple foods (rice, corn, and wheat). Therefore, the aim of this work was to assess the functionality of legume flours (as well as hemp as an emerging hemp protein source) as enriching supplements in breadmaking. The research focused on both the nutritional and sensory evaluation of flour with the assistance of novel research techniques such as diffusing wave spectroscopy and static multiple light scattering. The nutritional value of yellow and green peas as well as chickpeas was comparable, with the most noticeable difference being total fiber content, that ranged between 6.8 and 9.7 g/100 g of flour. Hemp flour outclassed all legume flours both in terms of protein content as well as fiber, which was over quadrupled. However, it was associated with the cost of worse technological properties. Addition of all investigated flours increased the dough stability, which was proved by static multiple light scattering and a reduction in the Turbiscan Stability Index. Microrheology of the dough was improved only by the addition of yellow pea flour, which was manifested by an increase in the macroscopic viscosity index and decrease in the fluidity index. This flour had also the most beneficial properties for the bread quality, including texture and sensory perception, including appearance, taste, and overall acceptance. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

17 pages, 14026 KiB  
Article
Analysis of the Deformation Mechanisms of Fabrics Based on rCF Staple Fiber Yarns for Thermoset Composite Applications
by Tobias Georg Lang, Mir Mohammad Badrul Hasan, Anwar Abdkader, Chokri Cherif and Thomas Gereke
J. Compos. Sci. 2025, 9(4), 173; https://doi.org/10.3390/jcs9040173 - 2 Apr 2025
Viewed by 703
Abstract
The draping of textile semi-finished products for complex geometries is still prone to errors, e.g., wrinkles, gaps, and fiber undulations, leading to reduced mechanical properties of the composite. Reinforcing textiles made from carbon fiber (CF) rovings (i.e., endless continuous fibers) can be draped [...] Read more.
The draping of textile semi-finished products for complex geometries is still prone to errors, e.g., wrinkles, gaps, and fiber undulations, leading to reduced mechanical properties of the composite. Reinforcing textiles made from carbon fiber (CF) rovings (i.e., endless continuous fibers) can be draped mainly based on their ability to deform under in-plane shearing. However, CF rovings are hardly stretchable in the fiber direction. These limited degrees of freedom make the production of complex shell-shaped geometries from standard CF-roving fabrics challenging. Contrary to continuous rovings, this paper investigates the processing of spun yarns made of recycled carbon fibers (rCFs), which are discontinuous staple fibers with defined lengths. rCFs are obtained from end-of-life composites or production waste, making them a sustainable alternative to virgin carbon fibers in the high-performance components of, e.g., automobiles, boats, or sporting goods. These staple fiber-spun yarns are considerably more stretchable, which is due to the ability of the individual fibers to slide against each other when deformed, resulting in improved formability of fabrics made from rCF yarns, enabling the draping of much more complex structures. This study aims to develop and characterize woven fabrics based on previous studies of rCF yarns for thermoset composites. In order to investigate staple fiber-spun yarns, a previous micro-scale modeling approach is extended. The formability of fabrics made from those rCF yarns is investigated through experimental forming tests and meso-scale simulations. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

20 pages, 6578 KiB  
Article
Hydrotalcite Supported on Polycaprolactone:Poly(methyl methacrylate) Fiber Membranes for Chlorogenic Acid Removal
by Andressa Cristina de Almeida Nascimento, João Otávio Donizette Malafatti, Maria Luiza Lopes Sierra e Silva, Ailton José Moreira, Adriana Coatrini Thomazi, Simone Quaranta and Elaine Cristina Paris
Water 2025, 17(7), 931; https://doi.org/10.3390/w17070931 - 22 Mar 2025
Viewed by 579
Abstract
Polyphenols are organic molecules extracted from various fruits, such as coffee and citrus, that possess biological activity and antioxidant properties. However, the presence of polyphenols in the environment is hazardous to water quality and living health. Among a variety of water remediation methods, [...] Read more.
Polyphenols are organic molecules extracted from various fruits, such as coffee and citrus, that possess biological activity and antioxidant properties. However, the presence of polyphenols in the environment is hazardous to water quality and living health. Among a variety of water remediation methods, adsorption remains a staple in the field. Therefore, this work aims to develop porous polycaprolactone: poly(methyl methacrylate) (PCL:PMMA) membranes as a support for hydrotalcite immobilization for the removal of chlorogenic acid polyphenol (CGA) from aqueous solutions. Due to the hydrophilic nature of hydrotalcite, the adsorbent was functionalized with hexadecyltrimethylammonium bromide (CTAB) to increase its affinity for CGA, resulting in a removal efficiency of approximately 96%. Composite fiber membranes were prepared by solution-blowing spinning with specific amounts of hydrotalcite added (i.e., 1 to 60 wt%). A 3:1 PCL:PMMA blend resulted in superior mechanical traction (0.8 MPa) and stress deformation (70%) compared to pure PCL (0.7 MPa and 37%) and PMMA (0.1 MPa and 5%) fibers. PCL:PMMA membranes with 60% LDH-CTAB exhibited CGA removal rates equal to 55% in the first cycle while maintaining the capacity to remove 30% of the polyphenol after five consecutive reuses. Removal rates up to 90% could also be achieved with an appropriate adsorbent dose (2 g L−1). Adsorption was found to follow pseudo-second-order kinetics and was adequately described by the Langmuir model, saturating LDH-CTAB active sites in four hours. PCL:PMMA:LDH-CTAB composites can be considered a potential alternative to support adsorbents for water remediation. Full article
Show Figures

Graphical abstract

21 pages, 3335 KiB  
Article
Enhancement of the Seed Color, Antioxidant Properties, and Agronomic Traits of Colored Wheat via Gamma Radiation Mutagenesis
by Min Jeong Hong, Chan Seop Ko, Jin-Baek Kim and Dae Yeon Kim
Foods 2025, 14(3), 487; https://doi.org/10.3390/foods14030487 - 3 Feb 2025
Cited by 1 | Viewed by 1125
Abstract
Wheat, a staple crop cultivated for over 8000 years, sustains more than 2.5 billion people globally, as a major source of carbohydrate, protein, fiber, and essential nutrients. Colored wheat, enriched with dietary fiber and antioxidants, offers valuable genetic resources for developing functional wheat [...] Read more.
Wheat, a staple crop cultivated for over 8000 years, sustains more than 2.5 billion people globally, as a major source of carbohydrate, protein, fiber, and essential nutrients. Colored wheat, enriched with dietary fiber and antioxidants, offers valuable genetic resources for developing functional wheat varieties. Herein, a mutant pool of 1069 colored wheat lines was developed through gamma-ray irradiation to enhance genetic diversity. Mutant lines were classified into 10 groups based on seed color parameters (L*, a*, and b*), which were measured using the Hunter Lab system. K-means clustering categorized the mutant lines, and four representative lines from each group were analyzed for agronomic traits (plant height, spike length, thousand-seed weight, and kernels per spike) and antioxidant properties (radical-scavenging activity, ferric reducing antioxidant power, and total antioxidant capacity). Principal-component analysis revealed distinct clustering patterns, indicating associations between seed color, agronomic traits, and antioxidant activity. Darker seed color groups exhibited 3–16% higher levels of bioactive compounds and 10–18% higher antioxidant activities, whereas lighter groups showed 8–42% lower functional potential compared to the control wheat. These findings highlight the potential of mutation breeding in generating phenotypic diversity and developing wheat varieties with improved functional traits and bioactive compound content. Full article
(This article belongs to the Special Issue Advances on Functional Foods with Antioxidant Bioactivity)
Show Figures

Figure 1

12 pages, 430 KiB  
Article
The Influence of Rice Types and Boiling Time on Glycemic Index: An In Vivo Evaluation Using the ISO 2010 Method
by Anna Vîrlan, Lidia Coșciug, Dinu Țurcanu and Rodica Siminiuc
Foods 2025, 14(1), 12; https://doi.org/10.3390/foods14010012 - 25 Dec 2024
Cited by 1 | Viewed by 1911
Abstract
Effective blood glucose management is essential for individuals with type 1 diabetes, particularly when dietary adjustments involve staple foods like rice. As a primary carbohydrate worldwide, rice significantly influences the glycemic index (GI) based on its type and cooking method. This study investigated [...] Read more.
Effective blood glucose management is essential for individuals with type 1 diabetes, particularly when dietary adjustments involve staple foods like rice. As a primary carbohydrate worldwide, rice significantly influences the glycemic index (GI) based on its type and cooking method. This study investigated the impact of rice type and boiling duration on the GI in healthy adults using an in vivo approach aligned with ISO 2010 standards. The glycemic response to four rice types (white round-grain, parboiled medium-grain, white long-grain, and whole-grain long-grain) was measured through postprandial blood glucose levels under both standard and extended boiling conditions to assess their implications for dietary glycemic control. Ten healthy participants (mean age 25 years, body mass index (BMI) 23.0 ± 1.6 kg/m2) consumed rice samples containing 50 g of available carbohydrates, prepared under controlled boiling conditions. Postprandial glycemic response was measured at regular intervals over 2 h following ingestion, with glucose solution as a reference food. The GI was calculated based on the incremental area under the glycemic response curve for each rice sample. Extended boiling significantly increased the GI across all rice types. White round-grain rice exhibited the highest relative increase (+15.8%) in the GI, while whole-grain long-grain rice, despite showing a greater percentage increase (+25.4%), maintained the lowest overall GI due to its high amylose and fiber content. Rice types with higher amylopectin content demonstrated faster glycemic responses and higher GI compared to high-amylose types. This study highlights rice type and cooking time as critical factors influencing postprandial glycemic response. Shorter boiling durations may benefit individuals requiring strict glycemic control, particularly those with diabetes, underscoring the importance of personalized dietary guidance for managing glycemic outcomes effectively. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

21 pages, 1296 KiB  
Article
Screening of Nutritionally Important Components in Standard and Ancient Cereals
by Vesna Dragičević, Milena Simić, Vesna Kandić Raftery, Jelena Vukadinović, Margarita Dodevska, Sanja Đurović and Milan Brankov
Foods 2024, 13(24), 4116; https://doi.org/10.3390/foods13244116 - 19 Dec 2024
Cited by 2 | Viewed by 1097
Abstract
Sustainable nutrition and food production involve dietary habits and farming systems which are eco-friendly, created to provide highly nutritious staple crops which could serve as a functional food at the same time. This research sought to provide a comprehensive analysis of whole-grain cereals, [...] Read more.
Sustainable nutrition and food production involve dietary habits and farming systems which are eco-friendly, created to provide highly nutritious staple crops which could serve as a functional food at the same time. This research sought to provide a comprehensive analysis of whole-grain cereals, and some ancient grains toward important macro- (protein), micro-nutrients (mineral elements), and bioactive compounds, such as dietary fiber (arabinoxylan and β-glucan) and antioxidants (phytic acid, total glutathione, yellow pigment, and phenolic compounds) to provide functionality in a sustainable diet. Genotypes, such as durum wheat, triticale, spelt, emmer wheat, and barley, could be considered important and sustainable sources of protein (ranging 11.10–15.00%), as well as prebiotic fiber (β-glucan and arabinoxylan, ranging 0.11–4.59% and 0.51–6.47%, respectively), essential elements, and various antioxidants. Ancient grains can be considered as a source of highly available essential elements. Special attention should be given to the Cimmyt spelt 1, which is high in yellow pigment (5.01 μg·g−1) and has a capacity to reduce DPPH radicals (186.2 µmol TE·g−1), particularly Zn (70.25 mg·kg−1). The presence of phenolics, dihydro-p-coumaric acid, naringin, quercetin, epicatechin in grains of oats (Sopot), as well as catechin in barley grains (Apolon and Osvit) underline their unique chemical profile, making them a desirable genetic pool for breeding genotypes. This research provides a comprehensive assessment of different nutritional aspects of various cereals (some of which are commonly used, while the others are rarely used in diet), indicating their importance as nutraceuticals. It also provides a genetic background that could be translated the genotypes with even more profound effects on human health. Full article
Show Figures

Figure 1

Back to TopTop