Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (509)

Search Parameters:
Keywords = stacked convolutions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3381 KB  
Article
Aero-Engine Ablation Defect Detection with Improved CLR-YOLOv11 Algorithm
by Yi Liu, Jiatian Liu, Yaxi Xu, Qiang Fu, Jide Qian and Xin Wang
Sensors 2025, 25(21), 6574; https://doi.org/10.3390/s25216574 - 25 Oct 2025
Viewed by 510
Abstract
Aero-engine ablation detection is a critical task in aircraft health management, yet existing rotation-based object detection methods often face challenges of high computational complexity and insufficient local feature extraction. This paper proposes an improved YOLOv11 algorithm incorporating Context-guided Large-kernel attention and Rotated detection [...] Read more.
Aero-engine ablation detection is a critical task in aircraft health management, yet existing rotation-based object detection methods often face challenges of high computational complexity and insufficient local feature extraction. This paper proposes an improved YOLOv11 algorithm incorporating Context-guided Large-kernel attention and Rotated detection head, called CLR-YOLOv11. The model achieves synergistic improvement in both detection efficiency and accuracy through dual structural optimization, with its innovations primarily embodied in the following three tightly coupled strategies: (1) Targeted Data Preprocessing Pipeline Design: To address challenges such as limited sample size, low overall image brightness, and noise interference, we designed an ordered data augmentation and normalization pipeline. This pipeline is not a mere stacking of techniques but strategically enhances sample diversity through geometric transformations (random flipping, rotation), hybrid augmentations (Mixup, Mosaic), and pixel-value transformations (histogram equalization, Gaussian filtering). All processed images subsequently undergo Z-Score normalization. This order-aware pipeline design effectively improves the quality, diversity, and consistency of the input data. (2) Context-Guided Feature Fusion Mechanism: To overcome the limitations of traditional Convolutional Neural Networks in modeling long-range contextual dependencies between ablation areas and surrounding structures, we replaced the original C3k2 layer with the C3K2CG module. This module adaptively fuses local textural details with global semantic information through a context-guided mechanism, enabling the model to more accurately understand the gradual boundaries and spatial context of ablation regions. (3) Efficiency-Oriented Large-Kernel Attention Optimization: To expand the receptive field while strictly controlling the additional computational overhead introduced by rotated detection, we replaced the C2PSA module with the C2PSLA module. By employing large-kernel decomposition and a spatial selective focusing strategy, this module significantly reduces computational load while maintaining multi-scale feature perception capability, ensuring the model meets the demands of high real-time applications. Experiments on a self-built aero-engine ablation dataset demonstrate that the improved model achieves 78.5% mAP@0.5:0.95, representing a 4.2% improvement over the YOLOv11-obb which model without the specialized data augmentation. This study provides an effective solution for high-precision real-time aviation inspection tasks. Full article
(This article belongs to the Special Issue Advanced Neural Architectures for Anomaly Detection in Sensory Data)
Show Figures

Figure 1

19 pages, 6255 KB  
Article
Double-Layer Simplified Complex Interval Neural Network Stacking for Blood Glucose Prediction of Continuous Glucose Monitoring System
by Shaowei Kong, Yusheng Fu, Jingshan Duan and Jian Yan
Biosensors 2025, 15(11), 707; https://doi.org/10.3390/bios15110707 - 22 Oct 2025
Viewed by 395
Abstract
Diabetes is a metabolic disorder characterized by persistent hyperglycemia, with its incidence steadily rising worldwide. Blood glucose monitoring is a core measure in diabetes management, and continuous glucose monitoring provides more comprehensive and accurate glucose data compared to traditional fingerstick testing. To collect [...] Read more.
Diabetes is a metabolic disorder characterized by persistent hyperglycemia, with its incidence steadily rising worldwide. Blood glucose monitoring is a core measure in diabetes management, and continuous glucose monitoring provides more comprehensive and accurate glucose data compared to traditional fingerstick testing. To collect continuous glucose data from patients, precise glucose prediction algorithms can help them better control their blood glucose fluctuations. Therefore, by addressing the issues of low prediction accuracy, complex input features, and poor generalization performance in existing glucose prediction methods, this paper proposes a glucose prediction model based on a double-layer SCINet stack using time-series analysis methods. SCINet effectively captures multi-scale dynamic features in time-series data through recursive down-sampling and convolution operations, making it suitable for glucose prediction tasks. Experimental data were sourced from real-world continuous glucose monitoring records of patients at Yixing People’s Hospital. Model input features were optimized through variable selection and data preprocessing, with predictive performance validated on a test dataset. The results demonstrate that the proposed model outperforms existing time-series prediction models across varying prediction horizons and patient datasets, exhibiting high predictive accuracy and stability. Full article
(This article belongs to the Special Issue AI-Driven Biosensing)
Show Figures

Figure 1

20 pages, 20080 KB  
Article
Symmetric Combined Convolution with Convolutional Long Short-Term Memory for Monaural Speech Enhancement
by Yang Xian, Yujin Fu, Peixu Xing, Hongwei Tao and Yang Sun
Symmetry 2025, 17(10), 1768; https://doi.org/10.3390/sym17101768 - 20 Oct 2025
Viewed by 264
Abstract
Deep neural network-based approaches have obtained remarkable progress in monaural speech enhancement. Nevertheless, current cutting-edge approaches remain vulnerable to complex acoustic scenarios. We propose a Symmetric Combined Convolution Network with ConvLSTM (SCCN) for monaural speech enhancement. Specifically, the Combined Convolution Block utilizes parallel [...] Read more.
Deep neural network-based approaches have obtained remarkable progress in monaural speech enhancement. Nevertheless, current cutting-edge approaches remain vulnerable to complex acoustic scenarios. We propose a Symmetric Combined Convolution Network with ConvLSTM (SCCN) for monaural speech enhancement. Specifically, the Combined Convolution Block utilizes parallel convolution branches, including standard convolution and two different depthwise separable convolutions, to reinforce feature extraction in depthwise and channelwise. Similarly, Combined Deconvolution Blocks are stacked to construct the convolutional decoder. Moreover, we introduce the exponentially increasing dilation between convolutional kernel elements in the encoder and decoder, which expands receptive fields. Meanwhile, the grouped ConvLSTM layers are exploited to extract the interdependency of spatial and temporal information. The experimental results demonstrate that the proposed SCCN method obtains on average 86.00% in STOI and 2.43 in PESQ, which outperforms the state-of-the-art baseline methods, confirming the effectiveness in enhancing speech quality. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

21 pages, 4789 KB  
Article
AI-Driven Ensemble Learning for Spatio-Temporal Rainfall Prediction in the Bengawan Solo River Watershed, Indonesia
by Jumadi Jumadi, Danardono Danardono, Efri Roziaty, Agus Ulinuha, Supari Supari, Lam Kuok Choy, Farha Sattar and Muhammad Nawaz
Sustainability 2025, 17(20), 9281; https://doi.org/10.3390/su17209281 - 19 Oct 2025
Viewed by 713
Abstract
Reliable spatio-temporal rainfall prediction is a key element in disaster mitigation and water resource management in dynamic tropical regions such as the Bengawan Solo River Watershed. However, high climate variability and data limitations often pose significant challenges to the accuracy of conventional prediction [...] Read more.
Reliable spatio-temporal rainfall prediction is a key element in disaster mitigation and water resource management in dynamic tropical regions such as the Bengawan Solo River Watershed. However, high climate variability and data limitations often pose significant challenges to the accuracy of conventional prediction models. This study introduces an innovative approach by applying ensemble stacking, which combines machine learning models such as Random Forest (RF), Extreme Gradient Boosting (XGB), Support Vector Regression (SVR), Multi-Layer Perceptron (MLP), Light Gradient-Boosting Machine (LGBM) and deep learning models like Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Temporal Convolutional Networks (TCN), Convolutional Neural Network (CNN), and Transformer architecture based on monthly Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) data (1981–2024). The novelty of this research lies in the systematic exploration of various model combination scenarios—both classical and deep learning and the evaluation of their performance in projecting rainfall for 2025–2030. All base models were trained on the 1981–2019 period and validated with data from the 2020–2024 period, while ensemble stacking was developed using a linear regression meta-learner. The results show that the optimal ensemble scenario reduces the MAE to 53.735 mm, the RMSE to 69.242 mm, and increases the R2 to 0.795826—better than all individual models. Spatial and temporal analyses also indicate consistent model performance at most locations and times. Annual rainfall projections for 2025–2030 were then interpolated using IDW to generate a spatio-temporal rainfall distribution map. The improved accuracy provides a strong scientific basis for disaster preparedness, flood and drought management, and sustainable water planning in the Bengawan Solo River Watershed. Beyond this case, the approach demonstrates significant transferability to other climate-sensitive and data-scarce regions. Full article
Show Figures

Figure 1

16 pages, 10962 KB  
Article
Exploratory Proof-of-Concept: Predicting the Outcome of Tennis Serves Using Motion Capture and Deep Learning
by Gustav Durlind, Uriel Martinez-Hernandez and Tareq Assaf
Mach. Learn. Knowl. Extr. 2025, 7(4), 118; https://doi.org/10.3390/make7040118 - 14 Oct 2025
Viewed by 541
Abstract
Tennis serves heavily impact match outcomes, yet analysis by coaches is limited by human vision. The design of an automated tennis serve analysis system could facilitate enhanced performance analysis. As serve location and serve success are directly correlated, predicting the outcome of a [...] Read more.
Tennis serves heavily impact match outcomes, yet analysis by coaches is limited by human vision. The design of an automated tennis serve analysis system could facilitate enhanced performance analysis. As serve location and serve success are directly correlated, predicting the outcome of a serve could provide vital information for performance analysis. This article proposes a tennis serve analysis system powered by Machine Learning, which classifies the outcome of serves as “in”, “out” or “net”, and predicts the coordinate outcome of successful serves. Additionally, this work details the collection of three-dimensional spatio-temporal data on tennis serves, using marker-based optoelectronic motion capture. The classification uses a Stacked Bidirectional Long Short-Term Memory architecture, whilst a 3D Convolutional Neural Network architecture is harnessed for serve coordinate prediction. The proposed method achieves 89% accuracy for tennis serve classification, outperforming the current state-of-the-art whilst performing finer-grain classification. The results achieve an accuracy of 63% in predicting the serve coordinates, with a mean absolute error of 0.59 and a root mean squared error of 0.68, exceeding the current state-of-the-art with a new method. The system contributes towards the long-term goal of designing a non-invasive tennis serve analysis system that functions in training and match conditions. Full article
Show Figures

Figure 1

31 pages, 3644 KB  
Article
Machine Learning for Basketball Game Outcomes: NBA and WNBA Leagues
by João M. Alves and Ramiro S. Barbosa
Computation 2025, 13(10), 230; https://doi.org/10.3390/computation13100230 - 1 Oct 2025
Cited by 1 | Viewed by 831
Abstract
Artificial intelligence has become crucial in sports, leveraging its analytical capabilities to enhance the understanding and prediction of complex events. Machine learning algorithms in sports, especially basketball, are transforming performance analysis by identifying patterns and trends invisible to traditional methods. This technology provides [...] Read more.
Artificial intelligence has become crucial in sports, leveraging its analytical capabilities to enhance the understanding and prediction of complex events. Machine learning algorithms in sports, especially basketball, are transforming performance analysis by identifying patterns and trends invisible to traditional methods. This technology provides in-depth insights into individual and team performance, enabling precise evaluation of strategies and tactics. Consequently, the detailed analysis of every aspect of a team’s routine can significantly elevate the level of competition in the sport. This study investigates a range of machine learning models, including Logistic Regression (LR), Ridge Regression Classifier (RR), Random Forest (RF), Naive Bayes (NB), K-Nearest Neighbors (KNNs), Support Vector Machine (SVM), Stacking Classifier (STACK), Bagging Classifier (BAG), Multi-Layer Perceptron (MLP), AdaBoost (AB), and XGBoost (XGB), as well as deep learning architectures such as Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs), to compare their effectiveness in predicting game outcomes in the NBA and WNBA leagues. The results show highly acceptable prediction accuracies of 65.50% for the NBA and 67.48% for the WNBA. This study allows us to understand the impact that artificial intelligence can have on the world of basketball and its current state in relation to previous studies. It can provide valuable insights for coaches, performance analysts, team managers, and sports strategists by using machine learning and deep learning models to predict NBA and WNBA outcomes, enabling informed decisions and enhancing competitive performance. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

19 pages, 819 KB  
Article
Efficient CNN Accelerator Based on Low-End FPGA with Optimized Depthwise Separable Convolutions and Squeeze-and-Excite Modules
by Jiahe Shen, Xiyuan Cheng, Xinyu Yang, Lei Zhang, Wenbin Cheng and Yiting Lin
AI 2025, 6(10), 244; https://doi.org/10.3390/ai6100244 - 1 Oct 2025
Cited by 1 | Viewed by 805
Abstract
With the rapid development of artificial intelligence technology in the field of intelligent manufacturing, convolutional neural networks (CNNs) have shown excellent performance and generalization capabilities in industrial applications. However, the huge computational and resource requirements of CNNs have brought great obstacles to their [...] Read more.
With the rapid development of artificial intelligence technology in the field of intelligent manufacturing, convolutional neural networks (CNNs) have shown excellent performance and generalization capabilities in industrial applications. However, the huge computational and resource requirements of CNNs have brought great obstacles to their deployment on low-end hardware platforms. To address this issue, this paper proposes a scalable CNN accelerator that can operate on low-performance Field-Programmable Gate Arrays (FPGAs), which is aimed at tackling the challenge of efficiently running complex neural network models on resource-constrained hardware platforms. This study specifically optimizes depthwise separable convolution and the squeeze-and-excite module to improve their computational efficiency. The proposed accelerator allows for the flexible adjustment of hardware resource consumption and computational speed through configurable parameters, making it adaptable to FPGAs with varying performance and different application requirements. By fully exploiting the characteristics of depthwise separable convolution, the accelerator optimizes the convolution computation process, enabling flexible and independent module stackings at different stages of computation. This results in an optimized balance between hardware resource consumption and computation time. Compared to ARM CPUs, the proposed approach yields at least a 1.47× performance improvement, and compared to other FPGA solutions, it saves over 90% of Digital Signal Processors (DSPs). Additionally, the optimized computational flow significantly reduces the accelerator’s reliance on internal caches, minimizing data latency and further improving overall processing efficiency. Full article
Show Figures

Figure 1

27 pages, 3355 KB  
Article
ECO-HYBRID: Sustainable Waste Classification Using Transfer Learning with Hybrid and Enhanced CNN Models
by Sharanya Shetty, Saanvi Kallianpur, Roshan Fernandes, Anisha P. Rodrigues and Vijaya Padmanabha
Sustainability 2025, 17(19), 8761; https://doi.org/10.3390/su17198761 - 29 Sep 2025
Viewed by 768
Abstract
Effective waste management is important for reducing environmental harm, improving recycling operations, and building urban sustainability. However, accurate waste classification remains a critical challenge, as many deep learning models struggle with diverse waste types. In this study, classification accuracy is enhanced using transfer [...] Read more.
Effective waste management is important for reducing environmental harm, improving recycling operations, and building urban sustainability. However, accurate waste classification remains a critical challenge, as many deep learning models struggle with diverse waste types. In this study, classification accuracy is enhanced using transfer learning, ensemble techniques, and custom architectures. Eleven pre-trained convolutional neural networks, including ResNet-50, EfficientNet variants, and DenseNet-201, were fine-tuned to extract meaningful patterns from waste images. To further improve model performance, ensemble strategies such as weighted averaging, soft voting, and stacking were implemented, resulting in a hybrid model combining ResNet-50, EfficientNetV2-M, and DenseNet-201, which outperformed individual models. In the proposed system, two specialized architectures were developed: EcoMobileNet, an optimized MobileNetV3 Large-based model incorporating Squeeze-and-Excitation blocks for efficient mobile deployment, and EcoDenseNet, a DenseNet-201 variant enhanced with Mish activation for improved feature extraction. The evaluation was conducted on a dataset comprising 4691 images across 10 waste categories, sourced from publicly available repositories. The implementation of EcoMobileNet achieved a test accuracy of 98.08%, while EcoDenseNet reached an accuracy of 97.86%. The hybrid model also attained 98.08% accuracy. Furthermore, the ensemble stacking approach yielded the highest test accuracy of 98.29%, demonstrating its effectiveness in classifying heterogeneous waste types. By leveraging deep learning, the proposed system contributes to the development of scalable, sustainable, and automated waste-sorting solutions, thereby optimizing recycling processes and minimizing environmental impact. Full article
(This article belongs to the Special Issue Smart Cities with Innovative Solutions in Sustainable Urban Future)
Show Figures

Figure 1

22 pages, 1797 KB  
Article
A Novel Hybrid Deep Learning–Probabilistic Framework for Real-Time Crash Detection from Monocular Traffic Video
by Reşat Buğra Erkartal and Atınç Yılmaz
Appl. Sci. 2025, 15(19), 10523; https://doi.org/10.3390/app151910523 - 29 Sep 2025
Viewed by 535
Abstract
The rapid evolution of autonomous vehicle technologies has amplified the need for crash detection that operates robustly under complex traffic conditions with minimal latency. We propose a hybrid temporal hierarchy that augments a Region-based Convolutional Neural Network (R-CNN) with an adaptive time-variant Kalman [...] Read more.
The rapid evolution of autonomous vehicle technologies has amplified the need for crash detection that operates robustly under complex traffic conditions with minimal latency. We propose a hybrid temporal hierarchy that augments a Region-based Convolutional Neural Network (R-CNN) with an adaptive time-variant Kalman filter (with total-variation prior), a Hidden Markov Model (HMM) for state stabilization, and a lightweight Artificial Neural Network (ANN) for learned temporal refinement, enabling real-time crash detection from monocular video. Evaluated on simulated traffic in CARLA and real-world driving in Istanbul, the full temporal stack achieves the best precision–recall balance, yielding 83.47% F1 offline and 82.57% in real time (corresponding to 94.5% and 91.2% detection accuracy, respectively). Ablations are consistent and interpretable: removing the HMM reduces F1 by 1.85–2.16 percentage points (pp), whereas removing the ANN has a larger impact of 2.94–4.58 pp, indicating that the ANN provides the largest marginal gains—especially under real-time constraints. The transition from offline to real time incurs a modest overall loss (−0.90 pp F1), driven more by recall than precision. Compared to strong single-frame baselines, YOLOv10 attains 82.16% F1 and a real-time Transformer detector reaches 82.41% F1, while our full temporal stack remains slightly ahead in real time and offers a more favorable precision–recall trade-off. Notably, integrating the ANN into the HMM-based pipeline improves accuracy by 2.2%, while the time-variant Kalman configuration reduces detection lag by approximately 0.5 s—an improvement that directly addresses the human reaction time gap. Under identical conditions, the best RCNN-based configuration yields AP@0.50 ≈ 0.79 with an end-to-end latency of 119 ± 21 ms per frame (~8–9 FPS). Overall, coupling deep learning with probabilistic reasoning yields additive temporal benefits and advances deployable, camera-only crash detection that is cost-efficient and scalable for intelligent transportation systems. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

29 pages, 3761 KB  
Article
An Adaptive Transfer Learning Framework for Multimodal Autism Spectrum Disorder Diagnosis
by Wajeeha Malik, Muhammad Abuzar Fahiem, Jawad Khan, Younhyun Jung and Fahad Alturise
Life 2025, 15(10), 1524; https://doi.org/10.3390/life15101524 - 26 Sep 2025
Viewed by 675
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition with diverse behavioral, genetic, and structural characteristics. Due to its heterogeneous nature, early diagnosis of ASD is challenging, and conventional unimodal approaches often fail to capture cross-modal dependencies. To address this, this study introduces [...] Read more.
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition with diverse behavioral, genetic, and structural characteristics. Due to its heterogeneous nature, early diagnosis of ASD is challenging, and conventional unimodal approaches often fail to capture cross-modal dependencies. To address this, this study introduces an adaptive multimodal fusion framework that integrates behavioral, genetic, and structural MRI (sMRI) data, addressing the limitations of unimodal approaches. Each modality undergoes a dedicated preprocessing and feature optimization phase. For behavioral data, an ensemble of classifiers using a stacking technique and attention mechanism is applied for feature extraction, achieving an accuracy of 95.5%. The genetic data is analyzed using Gradient Boosting, which attained a classification accuracy of 86.6%. For the sMRI data, a Hybrid Convolutional Neural Network–Graph Neural Network (Hybrid-CNN-GNN) architecture is proposed, demonstrating a strong performance with an accuracy of 96.32%, surpassing existing methods. To unify these modalities, fused using an adaptive late fusion strategy implemented with a Multilayer Perceptron (MLP), where adaptive weighting adjusts each modality’s contribution based on validation performance. The integrated framework addresses the limitations of unimodal approaches by creating a unified diagnostic model. The transfer learning framework achieves superior diagnostic accuracy (98.7%) compared to unimodal baselines, demonstrating strong generalization across heterogeneous datasets and offering a promising step toward reliable, multimodal ASD diagnosis. Full article
(This article belongs to the Special Issue Advanced Machine Learning for Disease Prediction and Prevention)
Show Figures

Figure 1

22 pages, 1250 KB  
Article
Entity Span Suffix Classification for Nested Chinese Named Entity Recognition
by Jianfeng Deng, Ruitong Zhao, Wei Ye and Suhong Zheng
Information 2025, 16(10), 822; https://doi.org/10.3390/info16100822 - 23 Sep 2025
Viewed by 370
Abstract
Named entity recognition (NER) is one of the fundamental tasks in building knowledge graphs. For some domain-specific corpora, the text descriptions exhibit limited standardization, and some entity structures have entity nesting. The existing entity recognition methods have problems such as word matching noise [...] Read more.
Named entity recognition (NER) is one of the fundamental tasks in building knowledge graphs. For some domain-specific corpora, the text descriptions exhibit limited standardization, and some entity structures have entity nesting. The existing entity recognition methods have problems such as word matching noise interference and difficulty in distinguishing different entity labels for the same character in sequence label prediction. This paper proposes a span-based feature reuse stacked bidirectional long short term memory network (BiLSTM) nested named entity recognition (SFRSN) model, which transforms the entity recognition of sequence prediction into the problem of entity span suffix category classification. Firstly, character feature embedding is generated through bidirectional encoder representation of transformers (BERT). Secondly, a feature reuse stacked BiLSTM is proposed to obtain deep context features while alleviating the problem of deep network degradation. Thirdly, the span feature is obtained through the dilated convolution neural network (DCNN), and at the same time, a single-tail selection function is introduced to obtain the classification feature of the entity span suffix, with the aim of reducing the training parameters. Fourthly, a global feature gated attention mechanism is proposed, integrating span features and span suffix classification features to achieve span suffix classification. The experimental results on four Chinese-specific domain datasets demonstrate the effectiveness of our approach: SFRSN achieves micro-F1 scores of 83.34% on ontonotes, 73.27% on weibo, 96.90% on resume, and 86.77% on the supply chain management dataset. This represents a maximum improvement of 1.55%, 4.94%, 2.48%, and 3.47% over state-of-the-art baselines, respectively. The experimental results demonstrate the effectiveness of the model in addressing nested entities and entity label ambiguity issues. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Graphical abstract

26 pages, 1078 KB  
Review
Recent Trends in Machine Learning, Deep Learning, Ensemble Learning, and Explainable Artificial Intelligence Techniques for Evaluating Crop Yields Under Abnormal Climate Conditions
by Ji Won Choi, Mohamad Soleh Hidayat, Soo Been Cho, Woon-Ha Hwang, Hoonsoo Lee, Byoung-Kwan Cho, Moon S. Kim, Insuck Baek and Geonwoo Kim
Plants 2025, 14(18), 2841; https://doi.org/10.3390/plants14182841 - 11 Sep 2025
Viewed by 1594
Abstract
Crop yield prediction (CYP) has become increasingly critical in addressing the adverse effects of abnormal climate and enhancing agricultural productivity. This review investigates the application of advanced Artificial Intelligence (AI) techniques including Machine Learning (ML), Deep Learning (DL), Ensemble Learning, and Explainable AI [...] Read more.
Crop yield prediction (CYP) has become increasingly critical in addressing the adverse effects of abnormal climate and enhancing agricultural productivity. This review investigates the application of advanced Artificial Intelligence (AI) techniques including Machine Learning (ML), Deep Learning (DL), Ensemble Learning, and Explainable AI (XAI) to CYP. It also explores the use of remote sensing and imaging technologies, identifies key environmental factors, and analyzes the primary causes of yield reduction. A wide diversity of input features was observed across studies, largely influenced by data availability and specific research goals. Stepwise feature selection was found to be more effective than increasing feature volume in improving model accuracy. Frequently used algorithms include Random Forest (RF) and Support Vector Machines (SVM) for ML, Artificial Neural Networks (ANNs) and Convolutional Neural Networks (CNNs) for DL, as well as stacking-based ensemble methods. Although XAI remains in the early stages of adoption, it shows strong potential for interpreting complex, multi-dimensional CYP models. Hyperspectral imaging (HSI) and multispectral imaging (MSI), often collected via drones, were the most commonly used sensing techniques. Major factors contributing to yield reduction included atmospheric and soil-related conditions under abnormal climate, as well as pest outbreaks, declining soil fertility, and economic constraints. Providing a comprehensive overview of AI-driven CYP frameworks, this review offers insights that support the advancement of precision agriculture and the development of data-informed agricultural policies. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

25 pages, 7057 KB  
Article
CSTC: Visual Transformer Network with Multimodal Dual Fusion for Hyperspectral and LiDAR Image Classification
by Yong Mei, Jinlong Fan, Xiangsuo Fan and Qi Li
Remote Sens. 2025, 17(18), 3158; https://doi.org/10.3390/rs17183158 - 11 Sep 2025
Viewed by 599
Abstract
Convolutional neural networks have made significant progress in multimodal remote sensing image classification, but traditional convolutional neural networks are limited by fixed-size convolutional kernels, which are unable to effectively model and adequately extract contextual information; hyperspectral imagery and LiDAR data have comparatively large [...] Read more.
Convolutional neural networks have made significant progress in multimodal remote sensing image classification, but traditional convolutional neural networks are limited by fixed-size convolutional kernels, which are unable to effectively model and adequately extract contextual information; hyperspectral imagery and LiDAR data have comparatively large information differences, which do not allow for effective information interaction and fusion. Based on this, this paper proposes a multimodal dual fusion network (CSTC) based on the Vision Transformer for the collaborative classification of HSI and LiDAR data. The model is designed through a two-branch architecture: the HSI branch extracts spectral–spatial features by dimensionality reduction using principal component analysis and inputs them into the cross-connectivity feature fusion module; the LiDAR branch mines spatial elevation features through the stacked MobileNetV2 module. The features of the two branches are encoded by a Transformer, and the modal interaction fusion is realized by the cross-attention module for the first time. Then, the features are spliced and input into the secondary Transformer for deep cross-modal fusion, and finally, the classification is completed by the multilayer perceptron. Experiments show that the CSTC model achieves overall classification accuracies of 92.32%, 99.81%, 97.90%, and 99.37% on the publicly available MUUFL dataset, Trento dataset, Augsburg dataset, and Houston2013 dataset, respectively, which is superior to the latest HSI–LiDAR separate classification algorithms. The ablation experiments and model performance evaluation experiments further show that the proposed CSTC model achieves excellent results in terms of robustness, adaptability, and parameter scale. Full article
Show Figures

Figure 1

29 pages, 1421 KB  
Article
Queue-Theoretic Priors Meet Explainable Graph Convolutional Learning: A Risk-Aware Scheduling Framework for Flexible Manufacturing Systems
by Raul Ionuț Riti, Călin Ciprian Oțel and Laura Bacali
Machines 2025, 13(9), 796; https://doi.org/10.3390/machines13090796 - 2 Sep 2025
Viewed by 527
Abstract
For the first time, this study presents a cyber–physical framework that reconciles the long-standing conflict between transparent queue analytics and adaptive machine learning in flexible manufacturing systems. Deterministic indicators, utilization, expected queue length, waiting time, and idle probability, are fused with topological embeddings [...] Read more.
For the first time, this study presents a cyber–physical framework that reconciles the long-standing conflict between transparent queue analytics and adaptive machine learning in flexible manufacturing systems. Deterministic indicators, utilization, expected queue length, waiting time, and idle probability, are fused with topological embeddings of the routing graph and ingested by a graph convolutional network that predicts station congestion with calibrated confidence intervals. Shapley additive explanations decompose every forecast into causal contributions, and these vectors, together with a percentile-based risk metric, steer a mixed-integer genetic optimizer toward schedules that lift throughput without breaching statistical congestion limits. A cloud dashboard streams forecasts, risk bands, and color-coded explanations, allowing supervisors to accept or modify suggestions; each manual correction is logged and injected into nightly retraining, closing a socio-technical feedback loop. Experiments on an 8704-cycle production census demonstrate a 38 percent reduction in average queue length and a 12 percent rise in throughput while preserving full audit traceability, enabling one-minute rescheduling on volatile shop floors. The results confirm that transparency and adaptivity can coexist when analytical priors, explainable learning, and risk-aware search are unified in a single containerized control stack. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

29 pages, 38860 KB  
Article
Explainable Deep Ensemble Meta-Learning Framework for Brain Tumor Classification Using MRI Images
by Shawon Chakrabarty Kakon, Zawad Al Sazid, Ismat Ara Begum, Md Abdus Samad and A. S. M. Sanwar Hosen
Cancers 2025, 17(17), 2853; https://doi.org/10.3390/cancers17172853 - 30 Aug 2025
Viewed by 1094
Abstract
Background: Brain tumors can severely impair neurological function, leading to symptoms such as headaches, memory loss, motor coordination deficits, and visual disturbances. In severe cases, they may cause permanent cognitive damage or become life-threatening without early detection. Methods: To address this, we propose [...] Read more.
Background: Brain tumors can severely impair neurological function, leading to symptoms such as headaches, memory loss, motor coordination deficits, and visual disturbances. In severe cases, they may cause permanent cognitive damage or become life-threatening without early detection. Methods: To address this, we propose an interpretable deep ensemble model for tumor detection in Magnetic Resonance Imaging (MRI) by integrating pre-trained Convolutional Neural Networks—EfficientNetB7, InceptionV3, and Xception—using a soft voting ensemble to improve classification accuracy. The framework is further enhanced with a Light Gradient Boosting Machine as a meta-learner to increase prediction accuracy and robustness within a stacking architecture. Hyperparameter tuning is conducted using Optuna, and overfitting is mitigated through batch normalization, L2 weight decay, dropout, early stopping, and extensive data augmentation. Results: These regularization strategies significantly enhance the model’s generalization ability within the BR35H dataset. The framework achieves a classification accuracy of 99.83 on the MRI dataset of 3060 images. Conclusions: To improve interpretability and build clinical trust, Explainable Artificial Intelligence methods Grad-CAM++, LIME, and SHAP are employed to visualize the factors influencing model predictions, effectively highlighting tumor regions within MRI scans. This establishes a strong foundation for further advancements in radiology decision support systems. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

Back to TopTop