Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (620)

Search Parameters:
Keywords = stability proof

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1289 KB  
Article
Taste-Masked Diclofenac Sodium Microparticles Prepared by Polyelectrolyte Complexation: Formulation Using Different Fatty Acids and Taste Evaluation by Human Panel
by Okhee Yoo, Sharmin Sultana, Britta S. von Ungern-Sternberg and Lee Yong Lim
Pharmaceutics 2025, 17(11), 1411; https://doi.org/10.3390/pharmaceutics17111411 - 30 Oct 2025
Viewed by 186
Abstract
Background/Objectives: Paediatric patients continue to lack access to age-appropriate oral medicines for their treatment and have to depend on the off-label use of medicines approved for adults, which compromises dosing accuracy and exposes children to unpleasant bitterness. Building on previous proof-of-concept work [...] Read more.
Background/Objectives: Paediatric patients continue to lack access to age-appropriate oral medicines for their treatment and have to depend on the off-label use of medicines approved for adults, which compromises dosing accuracy and exposes children to unpleasant bitterness. Building on previous proof-of-concept work with flucloxacillin sodium, this study investigated the effects of fatty-acid chain length on the formation, stability, dissolution, and sensory acceptability of diclofenac sodium (DS)–Eudragit® EPO (EE)–fatty acid (FA) polyelectrolyte complexes (PECs). Four saturated fatty acids, lauric (C12), myristic (C14), palmitic (C16), and stearic acid (C18), were evaluated at stoichiometric equimolar DS:EE:FA ratio (1:1:1). Methods: PEC microparticles were prepared by solvent evaporation. A stability-indicating RP-HPLC assay was developed and validated according to ICH guidelines to quantify DS content. Drug content and stability were monitored over 3 months at ambient storage. In vitro dissolution was performed in pH 5.5 medium at 37 °C. Taste acceptability and willingness to take again was assessed with 25 healthy adult volunteers using 11-point scale. Results: All PECs retained >90% of expected drug content after 3 months. Compared with neat DS, PECs markedly suppressed early drug release (32–39% vs. 94% at 2 min) but achieved >87% cumulative drug release in 60 min. Sensory evaluation showed significant differences across samples (p < 0.001): neat DS was least acceptable (20.8% willing to take again), while DS-EE-PA was most acceptable (92%), followed by DS-EE-SA and DS-EE-MA. DS-EE-LA was least favoured among PECs. Conclusions: Fatty-acid chain length influenced PEC formation and taste acceptability, but not the PEC stability and drug dissolution profile. Palmitic acid (DS-EE-PA) offered the best overall profile and represents a promising candidate for further development of paediatric-appropriate diclofenac formulations. Full article
Show Figures

Figure 1

32 pages, 2334 KB  
Review
Recent Advances in SERS-Based Detection of Organophosphorus Pesticides in Food: A Critical and Comprehensive Review
by Kaiyi Zheng, Xianwen Shang, Zhou Qin, Yang Zhang, Jiyong Shi, Xiaobo Zou and Meng Zhang
Foods 2025, 14(21), 3683; https://doi.org/10.3390/foods14213683 - 29 Oct 2025
Viewed by 336
Abstract
Surface-enhanced Raman spectroscopy (SERS) has rapidly emerged as a powerful analytical technique for the sensitive and selective detection of organophosphorus pesticides (OPPs) in complex food matrices. This review summarizes recent advances in substrate engineering, emphasizing structure–performance relationships between nanomaterial design and molecular enhancement [...] Read more.
Surface-enhanced Raman spectroscopy (SERS) has rapidly emerged as a powerful analytical technique for the sensitive and selective detection of organophosphorus pesticides (OPPs) in complex food matrices. This review summarizes recent advances in substrate engineering, emphasizing structure–performance relationships between nanomaterial design and molecular enhancement mechanisms. Functional groups such as P=O, P=S, and aromatic rings are highlighted as key determinants of Raman activity through combined chemical and electromagnetic effects. State-of-the-art substrates, including noble metals, carbon-based materials, bimetallic hybrids, MOF-derived systems, and emerging liquid metals, are critically evaluated with respect to sensitivity, stability, and applicability in typical matrices such as fruit and vegetable surfaces, juices, grains, and agricultural waters. Reported performance commonly achieves sub-μg L−1 to low μg L−1 detection limits in liquids and 10−3 to 10 μg cm−2 on surfaces, with reproducibility often in the 5–15% RSD range under optimized conditions. Persistent challenges are also emphasized, including substrate variability, quantitative accuracy under matrix interference, and limited portability for real-world applications. Structure–response correlation models and data-driven strategies are discussed as tools to improve substrate predictability. Although AI and machine learning show promise for automated spectral interpretation and high-throughput screening, current applications remain primarily proof-of-concept rather than routine workflows. Future priorities include standardized fabrication protocols, portable detection systems, and computation-guided multidimensional designs to accelerate translation from laboratory research to practical deployment in food safety and environmental surveillance. Full article
(This article belongs to the Special Issue Non-Destructive Analysis for the Detection of Contaminants in Food)
Show Figures

Graphical abstract

9 pages, 1014 KB  
Proceeding Paper
Adaptive Observer-Based Robust Control of Mismatched Buck DC–DC Converters for Renewable Energy Applications
by Haris Sheh Zad, Abasin Ulasyar, Adil Zohaib and Sohail Khalid
Eng. Proc. 2025, 111(1), 22; https://doi.org/10.3390/engproc2025111022 - 27 Oct 2025
Viewed by 174
Abstract
This paper presents a new robust control strategy for buck DC–DC converters that achieve fast and robust voltage regulation in the presence of load disturbances and model uncertainties. First, an adaptive state observer is designed to estimate the inductor current and capacitor voltage [...] Read more.
This paper presents a new robust control strategy for buck DC–DC converters that achieve fast and robust voltage regulation in the presence of load disturbances and model uncertainties. First, an adaptive state observer is designed to estimate the inductor current and capacitor voltage by utilizing the output measurement. The observer gains are tuned online via a Lyapunov-based adaptation law, ensuring that the estimation error remains uniformly bounded, even when the disturbances act on the system. Based on the state estimates, an integral sliding-mode controller is designed in order to eliminate the steady state error and ensure the finite time sliding. The detailed stability proofs for both the observer and the sliding-mode controller are derived showing the finite-time reaching of the sliding surface and exponential convergence of the voltage error. Simulation results under varying load profiles confirm that the proposed scheme outperforms traditional sliding-mode designs in terms of disturbance rejection and settling time, while avoiding excessive chattering. Full article
Show Figures

Figure 1

25 pages, 1868 KB  
Article
AI-Powered Digital Twin Co-Simulation Framework for Climate-Adaptive Renewable Energy Grids
by Kwabena Addo, Musasa Kabeya and Evans Eshiemogie Ojo
Energies 2025, 18(21), 5593; https://doi.org/10.3390/en18215593 - 24 Oct 2025
Viewed by 559
Abstract
Climate change is accelerating the frequency and intensity of extreme weather events, posing a critical threat to the stability, efficiency, and resilience of modern renewable energy grids. In this study, we propose a modular, AI-integrated digital twin co-simulation framework that enables climate adaptive [...] Read more.
Climate change is accelerating the frequency and intensity of extreme weather events, posing a critical threat to the stability, efficiency, and resilience of modern renewable energy grids. In this study, we propose a modular, AI-integrated digital twin co-simulation framework that enables climate adaptive control of distributed energy resources (DERs) and storage assets in distribution networks. The framework leverages deep reinforcement learning (DDPG) agents trained within a high-fidelity co-simulation environment that couples physical grid dynamics, weather disturbances, and cyber-physical control loops using HELICS middleware. Through real-time coordination of photovoltaic systems, wind turbines, battery storage, and demand side flexibility, the trained agent autonomously learns to minimize power losses, voltage violations, and load shedding under stochastic climate perturbations. Simulation results on the IEEE 33-bus radial test system augmented with ERA5 climate reanalysis data demonstrate improvements in voltage regulation, energy efficiency, and resilience metrics. The framework also exhibits strong generalization across unseen weather scenarios and outperforms baseline rule based controls by reducing energy loss by 14.6% and improving recovery time by 19.5%. These findings position AI-integrated digital twins as a promising paradigm for future-proof, climate-resilient smart grids. Full article
Show Figures

Figure 1

23 pages, 3611 KB  
Article
Microstructural Evolution of Antarctic Ice with the Rising Atmospheric CO2: A Longitudinal Meta-Analysis
by Vuk Uskoković
Quaternary 2025, 8(4), 57; https://doi.org/10.3390/quat8040057 - 21 Oct 2025
Viewed by 279
Abstract
Antarctica, largely free from geopolitical borders, serves as a critical site for scientific research, environmental monitoring and climate studies. The continent’s ice cap holds over 60% of the Earth’s freshwater and provides a stable climatological record spanning 800,000 years. In this study, the [...] Read more.
Antarctica, largely free from geopolitical borders, serves as a critical site for scientific research, environmental monitoring and climate studies. The continent’s ice cap holds over 60% of the Earth’s freshwater and provides a stable climatological record spanning 800,000 years. In this study, the relationship between changes in atmospheric CO2 levels over the past century and the microstructural characteristics of Antarctic ice was investigated. While it is well-documented that CO2 fluctuations have driven the periodic expansion and retreat of ice sheets, no research to this day has explored how variations in CO2 concentrations influence the physical integrity of ice at the microscopic scale. To address this, grain size, anisotropy, irregularity, and solidity of surface and near-surface ice samples collected over the past 70 years were analyzed. These microstructural features were compared against historical atmospheric greenhouse gas data from multiple Antarctic research stations, including records from the Scripps Institution of Oceanography, the Japanese Antarctic Research Expedition, and the NOAA Global Monitoring Laboratory. Results reveal a correlation between rising CO2 levels and changes in ice microstructure, particularly an increase in the grain size as well as the reduction in the grain aspect ratio and in the morphological solidity. The study remains limited by significant sources of variability, including differences in sampling depths, geographical locations, seasonal effects, and inconsistencies in analytical tools and methodologies reported across the literature. Despite these limitations, this proof-of-concept study elicits the need for continued meta-analyses of existing climate datasets. Such efforts could provide deeper insights into the role of greenhouse gas concentrations in defining the microstructural stability of Antarctic ice, which is critical for predicting ice sheet integrity and its contribution to sea level rise. Full article
Show Figures

Figure 1

15 pages, 1168 KB  
Article
Stability of the DuFort–Frankel Scheme on Unstructured Grids
by Nikolay Yavich, Evgeny Burnaev and Vladimir Vanovskiy
Computation 2025, 13(10), 246; https://doi.org/10.3390/computation13100246 - 20 Oct 2025
Viewed by 197
Abstract
The DuFort–Frankel scheme was introduced in the 1950s to solve parabolic equations, and has been widely used ever since due to its stability and explicit nature. However, for over seven decades, its application has been limited to Cartesian grids. In this work, we [...] Read more.
The DuFort–Frankel scheme was introduced in the 1950s to solve parabolic equations, and has been widely used ever since due to its stability and explicit nature. However, for over seven decades, its application has been limited to Cartesian grids. In this work, we propose a generalization of the DuFort–Frankel scheme that could be applied to arbitrary unstructured grids. Specifically, we focus on Voronoi grids in both 2D and 3D, and use the finite volume method for spatial discretization. Additionally, we present a proof of its stability based on the analysis of the spectrum of the amplification matrix, along with numerical examples. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Fluid Flow)
Show Figures

Figure 1

11 pages, 649 KB  
Review
A Narrative Review of Photon-Counting CT and Radiomics in Cardiothoracic Imaging: A Promising Match?
by Salvatore Claudio Fanni, Ilaria Ambrosini, Francesca Pia Caputo, Maria Emanuela Cuibari, Domitilla Deri, Alessio Guarracino, Camilla Guidi, Vincenzo Uggenti, Giancarlo Varanini, Emanuele Neri, Dania Cioni, Mariano Scaglione and Salvatore Masala
Diagnostics 2025, 15(20), 2631; https://doi.org/10.3390/diagnostics15202631 - 18 Oct 2025
Viewed by 415
Abstract
Photon-counting computed tomography (PCCT) represents a major technological innovation compared to conventional CT, offering improved spatial resolution, reduced electronic noise, and intrinsic spectral capabilities. These advances open new perspectives for synergy with radiomics, a field that extracts quantitative features from medical images. The [...] Read more.
Photon-counting computed tomography (PCCT) represents a major technological innovation compared to conventional CT, offering improved spatial resolution, reduced electronic noise, and intrinsic spectral capabilities. These advances open new perspectives for synergy with radiomics, a field that extracts quantitative features from medical images. The ability of PCCT to generate multiple types of datasets, including high-resolution conventional images, iodine maps, and virtual monoenergetic reconstructions, increases the richness of extractable features and potentially enhances radiomics performance. This narrative review investigates the current evidence on the interplay between PCCT and radiomics in cardiothoracic imaging. Phantom studies demonstrate reduced reproducibility between PCCT and conventional CT systems, while intra-scanner repeatability remains high. Nonetheless, PCCT introduces additional complexity, as reconstruction parameters and acquisition settings significantly may affect feature stability. In chest imaging, early studies suggest that PCCT-derived features may improve nodule characterization, but existing machine learning models, such as those applied to interstitial lung disease, may require recalibration to accommodate the new imaging paradigm. In cardiac imaging, PCCT has shown particular promise: radiomic features extracted from myocardial and epicardial tissues can provide additional diagnostic insights, while spectral reconstructions improve plaque characterization. Proof-of-concept studies already suggest that PCCT radiomics can capture myocardial aging patterns and discriminate high-risk coronary plaques. In conclusion, evidence supports a growing synergy between PCCT and radiomics, with applications already emerging in both lung and cardiac imaging. By enhancing the reproducibility and richness of quantitative features, PCCT may significantly broaden the clinical potential of radiomics in computed tomography. Full article
Show Figures

Figure 1

15 pages, 3319 KB  
Article
Next-Generation Airborne Pathogen Detection: Flashing Ratchet Potential in Action
by Yazan Al-Zain, Mohammad Bqoor, Maha Albqoor and Lujain Ismail
Chemosensors 2025, 13(10), 371; https://doi.org/10.3390/chemosensors13100371 - 16 Oct 2025
Viewed by 507
Abstract
A novel airborne pathogen detection method, based on Flashing Ratchet Potential (FRP) and Electric Current Spectroscopy (ECS), is presented. The system employs a precisely engineered asymmetric electrode array to generate controlled directional transport of oxygen ions (O2•), produced via thermionic [...] Read more.
A novel airborne pathogen detection method, based on Flashing Ratchet Potential (FRP) and Electric Current Spectroscopy (ECS), is presented. The system employs a precisely engineered asymmetric electrode array to generate controlled directional transport of oxygen ions (O2•), produced via thermionic emission and three-body electron attachment. As these ions interact with airborne particles in the detection zone, measurable perturbations in the ECS profile emerge, yielding distinct spectral signatures that indicate particle presence. Proof-of-concept experiments, using standardized talcum powder aerosols as surrogates for viral-scale particles, established optimal operating parameters of 6 V potential and 600 kHz modulation frequency, with reproducible detection signals showing a relative shift of 4.5–13.4% compared to filtered-air controls. The system’s design concept incorporates humidity-resilient features, intended to maintain stability under varying environmental conditions. Together with the proposed size selectivity (50–150 nm), this highlights its potential robustness for real-world applications. To the best of our knowledge, this is the first demonstration of an open-air electro-ratchet transport system coupled with electric current spectroscopy for bioaerosol monitoring, distinct from prior optical or electrochemical airborne biosensors, highlighting its promise as a tool for continuous environmental surveillance in high-risk settings such as hospitals, airports, and public transit systems. Full article
(This article belongs to the Section (Bio)chemical Sensing)
Show Figures

Graphical abstract

21 pages, 24473 KB  
Article
Effectiveness of Curcumin on Oxidative Stress in Goat Semen: Explorations Regarding Semen Quality, Sperm Apoptosis, Ultrastructure, and Markers of Oxidative Stress
by Zhaoxiang An, Wenjuan Xun, Hanlin Zhou, Guanyu Hou and Liguang Shi
Antioxidants 2025, 14(10), 1242; https://doi.org/10.3390/antiox14101242 - 16 Oct 2025
Viewed by 527
Abstract
Oxidative stress induces reactive oxygen species (ROS) accumulation, which compromises sperm DNA integrity, cellular homeostasis, and semen quality in Hainan black goats. This study aimed to mitigate ROS-mediated sperm damage by examining the protective effects of curcumin on metabolic regulation and sperm structural [...] Read more.
Oxidative stress induces reactive oxygen species (ROS) accumulation, which compromises sperm DNA integrity, cellular homeostasis, and semen quality in Hainan black goats. This study aimed to mitigate ROS-mediated sperm damage by examining the protective effects of curcumin on metabolic regulation and sperm structural integrity. Semen samples were treated in vitro with varying concentrations of curcumin (5, 25, 50 μmol/L) under oxidative stress conditions. The intermediate concentration (25 μmol/L) was most effective at enhancing sperm quality. Following treatment, sperm motility, membrane integrity, and acrosome stability were significantly improved (p < 0.05), while ROS levels and apoptosis rates decreased. Antioxidant enzyme activities—glutathione peroxidase (GPX, p < 0.05), catalase (CAT, p < 0.05), and superoxide dismutase (SOD, p < 0.05)—were markedly elevated. Metabolomic analysis identified 48 differential metabolites (p < 0.05), including gluconic acid, 3-hydroxybutyric acid, and argininosuccinic acid, which were mainly involved in antioxidant defense, energy metabolism (e.g., the citrate cycle), and osmoregulatory pathways. Lipidomics revealed reduced lipid peroxidation and increased polyunsaturated fatty acid content, correlating with enhanced membrane stability. Transmission and scanning electron microscopy revealed preservation of sperm ultrastructure, with reduced mitochondrial and chromatin damage. Quantitative PCR further indicated curcumin-mediated downregulation of pro-apoptotic genes (BAX, Caspase3, and FAS) and upregulation of the anti-apoptotic gene BCL2 (p < 0.05). These findings demonstrate that Curcumin at 25 μM mitigated menadione-induced oxidative stress in goat sperm in vitro, improving antioxidant status, mitochondrial function and membrane integrity while reducing apoptosis. Multi-omic profiling supported redox and lipid homeostasis restoration. These findings establish proof-of-principle in an acute oxidative model. Full article
Show Figures

Figure 1

16 pages, 1660 KB  
Article
Microfluidic Isolation of Aptamers for Intracellular Measurement of Radio-Responsive Proteins
by Xin Meng, Leah Nemzow, Yaru Han, Kechun Wen, Sally A. Amundson, Helen C. Turner and Qiao Lin
Radiation 2025, 5(4), 30; https://doi.org/10.3390/radiation5040030 - 14 Oct 2025
Viewed by 298
Abstract
In large-scale radiological events, there is a need to triage affected individuals based on their biological absorbed dose. Biodosimetry measures biological responses in relation to the received dose. Radiation-responsive protein biomarkers in peripheral blood lymphocytes, especially intracellular proteins, have been validated for biodosimetry [...] Read more.
In large-scale radiological events, there is a need to triage affected individuals based on their biological absorbed dose. Biodosimetry measures biological responses in relation to the received dose. Radiation-responsive protein biomarkers in peripheral blood lymphocytes, especially intracellular proteins, have been validated for biodosimetry with immunochemical-based measurement methods. However, these antibody-based assays can suffer from stability and batch-to-batch variations. Aptamers are single-stranded oligonucleotide alternatives to antibodies that are stable and much smaller in size, making them ideal probes for intracellular targets. However, few aptamers have been developed against intracellular targets, and these efforts are especially hampered due to the time-consuming nature of the conventional aptamer selection method. An efficient method for isolating aptamers against intracellular radiation-responsive proteins is not available yet. Herein, we used a microfluidic aptamer isolation method to develop an aptamer against the intracellular radiation biomarker BAX in blood lymphocytes. The isolated aptamer has a dissociation constant of 6.95 nM against human BAX protein and a bright detail similarity score of 1.9 when colocalizing with anti-BAX aptamer intracellularly. The in situ labeling of the intracellular BAX protein also shows the aptamer can be used to differentiate 2.5 Gy or 3 Gy of radiation in ex vivo human and in vivo mouse peripheral blood samples exposed to X-rays. In conclusion, this proof-of-concept study indicates that the microfluidic-enabled aptamer isolation method could be used for the development of a panel of targeted intracellular proteins for radiation biodosimetry applications. Full article
Show Figures

Figure 1

37 pages, 5667 KB  
Article
Depth Control of Variable Buoyancy Systems: A Low Energy Approach Using a VSC with a Variable-Amplitude Law
by João Bravo Pinto, João Falcão Carneiro, Fernando Gomes de Almeida and Nuno A. Cruz
Actuators 2025, 14(10), 491; https://doi.org/10.3390/act14100491 - 11 Oct 2025
Viewed by 259
Abstract
Underwater exploration relies heavily on autonomous underwater vehicles and sensor platforms for sustained monitoring of marine environments, yet their operational duration is limited by energy constraints. To enhance energy efficiency, various control strategies have been proposed, including robust, optimal, and disturbance-aware approaches. Recent [...] Read more.
Underwater exploration relies heavily on autonomous underwater vehicles and sensor platforms for sustained monitoring of marine environments, yet their operational duration is limited by energy constraints. To enhance energy efficiency, various control strategies have been proposed, including robust, optimal, and disturbance-aware approaches. Recent work introduced a variable structure controller (VSC) with a constant-amplitude control action for depth control of a platform equipped with a variable buoyancy module, achieving an average 22% reduction in energy use in comparison with conventional PID-based controllers. In a separate paper, the conditions for its closed-loop stability were proven. This study extends these works by proposing a controller with a variable-amplitude control action designed to minimize energy consumption. A formal proof of stability is provided to guarantee safe operation even under conservative assumptions. The controller is applied to a previously developed depth-regulated sensor platform using a validated physical model. Additionally, this study analyzes how the controller parameters and mission requirements affect stability regions, offering practical guidelines for parameter tuning. A method to estimate oscillation amplitude during hovering tasks is also introduced. Simulation trials validate the proposed approach, showing energy savings of up to 16% when compared to the controller using a constant-amplitude control action. Full article
(This article belongs to the Special Issue Advanced Underwater Robotics)
Show Figures

Figure 1

13 pages, 2885 KB  
Article
Isopropanol Electro-Oxidation on PtCu Alloys for Aqueous Organic Redox Chemistry Toward Energy Storage
by Jinyao Tang, Xiaochen Shen, Laura Newsom, Rongxuan Xie, Parsa Pishva, Yanlin Zhu, Bin Liu and Zhenmeng Peng
Molecules 2025, 30(19), 4027; https://doi.org/10.3390/molecules30194027 - 9 Oct 2025
Viewed by 340
Abstract
Integration of renewable energy into modern power grids remains limited by intermittency and the need for reliable energy storage. Redox flow batteries (RFBs) are promising for large-scale energy storage, yet their widespread adoption is hindered by the high cost. In this study, we [...] Read more.
Integration of renewable energy into modern power grids remains limited by intermittency and the need for reliable energy storage. Redox flow batteries (RFBs) are promising for large-scale energy storage, yet their widespread adoption is hindered by the high cost. In this study, we investigate isopropanol as a redox-active species with Pt-Cu alloy electrocatalysts for aqueous-organic RFBs. A series of PtxCu catalysts with varying Pt:Cu ratios were synthesized and studied for isopropanol electro-oxidation reaction (IPAOR) performance. Among them, PtCu demonstrated the best performance, achieving a low activation energy of 14.4 kJ/mol at 0.45 V vs. RHE and excellent stability at 1 M isopropanol (IPA) concentration. Kinetic analysis and in situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy revealed significantly reduced acetone accumulation on PtCu compared to pure Pt, indicating enhanced resistance to catalyst poisoning. Density functional theory (DFT) calculations further identified the first proton-coupled electron transfer (PCET) as the rate-determining step (RDS) with C-H bond scission as the preferred pathway on PtCu. A proof-of-concept PtCu-catalyzed H-cell demonstrated stable cycling over 200 cycles, validating the feasibility of IPA as a low-cost, regenerable redox couple. These findings highlight PtCu-catalyzed IPA/acetone(ACE) chemistry as a promising platform for next-generation aqueous-organic RFBs. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Graphical abstract

23 pages, 1775 KB  
Article
Design of Terminal Guidance Law for Cooperative Multiple Vehicles Based on Prescribed Performance Control
by Fuqi Yang, Jikun Ye, Xirui Xue, Ruining Luo and Lei Shao
Aerospace 2025, 12(10), 898; https://doi.org/10.3390/aerospace12100898 - 5 Oct 2025
Viewed by 286
Abstract
To address the issue of jitter and oscillation of guidance command during multi-vehicle cooperative engagement with maneuvering platforms, this paper proposes a novel terminal guidance law with prescribed performance constraints for multiple cooperative vehicles, which explicitly considers both transient and steady-state performance. Firstly, [...] Read more.
To address the issue of jitter and oscillation of guidance command during multi-vehicle cooperative engagement with maneuvering platforms, this paper proposes a novel terminal guidance law with prescribed performance constraints for multiple cooperative vehicles, which explicitly considers both transient and steady-state performance. Firstly, based on the vehicle-target relative kinematics, with time and space as the main constraint indicators, a multi-vehicle cooperative guidance model is established in the inertial coordinate system. Secondly, combined with the sliding mode control theory, cooperative guidance laws are designed for both the line-of-sight (LOS) direction and the LOS normal direction, respectively, and the Lyapunov stability proof is given. Furthermore, to counteract the impact of target maneuvers on guidance performance, a non-homogeneous disturbance observer is designed to estimate target maneuver information that is difficult to obtain directly, which ensures that performance constraints are still satisfied under strong target maneuvering conditions. Simulation results demonstrate that the proposed guidance law enables multiple coordinated vehicles to successfully engage the target under different maneuvering modes, while satisfying the terminal time-space constraints. Compared with conventional sliding mode control methods exhibiting inherent chattering, the proposed approach employs a novel PPC-SMC hybrid structure to quantitatively constrain the transient convergence of cooperative errors. This structure enhances the multi-vehicle cooperative guidance performance by effectively eliminating chattering and oscillations in the guidance commands, thereby significantly improving the system’s transient behavior. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 3115 KB  
Article
Leakage-Proof and High-Conductivity Composite Phase Change Material Using Low-Melting-Point-Alloy-Encapsulated Copper Foam/Paraffin for Superior Thermal Homogeneity in Lithium-Ion Battery Modules
by Shengzhi He, Jiajun Zhao, Dongxu Ouyang and Mingyi Chen
Materials 2025, 18(19), 4604; https://doi.org/10.3390/ma18194604 - 4 Oct 2025
Viewed by 624
Abstract
Ensuring thermal stability is a major concern in lithium-ion battery systems. Although phase change materials (PCMs) provide a passive approach for temperature regulation, they are limited by poor heat conduction and potential leakage during phase transitions. This study develops a novel composite PCM [...] Read more.
Ensuring thermal stability is a major concern in lithium-ion battery systems. Although phase change materials (PCMs) provide a passive approach for temperature regulation, they are limited by poor heat conduction and potential leakage during phase transitions. This study develops a novel composite PCM (CPCM) using paraffin (PA) as the matrix, copper foam (CF) as a conductive skeleton (10–30 pores per inch, PPI), and a low-melting-point alloy (LMA) as an encapsulant to prevent leakage. The effects of CF pore size on thermal conductivity, impregnation ratio, and leakage resistance were systematically investigated. Results show that CPCM with 10 PPI CF achieved the highest thermal conductivity (4.42 W·m−1·K−1), while LMA encapsulation effectively eliminated leakage. The thermal management performance was evaluated on both a single 18,650 LIB cell and a 2S2P module during rate discharging at 1C, 2C, and 3C. For the module at 3C, the 10 PPI CPCM significantly lowered the maximum temperature from 75.9 °C to 44.6 °C and critically reduced the maximum temperature difference between cells from 10.2 °C to a safe level of 1.2 °C, significantly improving temperature uniformity. This work provides a high-conductivity and leakage-proof CPCM solution based on LMA-encapsulated CF/PA for enhanced thermal safety and uniformity in LIB modules. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

27 pages, 27373 KB  
Article
Computational Analysis of a Towed Jumper During Static Line Airborne Operations: A Parametric Study Using Various Airdrop Configurations
by Usbaldo Fraire, Mehdi Ghoreyshi, Adam Jirasek, Keith Bergeron and Jürgen Seidel
Aerospace 2025, 12(10), 897; https://doi.org/10.3390/aerospace12100897 - 3 Oct 2025
Viewed by 345
Abstract
This study uses the CREATETM-AV/Kestrel simulation software to model a towed jumper scenario using standard aircraft settings to quantify paratrooper stability and risk of contact during static line airborne operations. The focus areas of this study include a review of the [...] Read more.
This study uses the CREATETM-AV/Kestrel simulation software to model a towed jumper scenario using standard aircraft settings to quantify paratrooper stability and risk of contact during static line airborne operations. The focus areas of this study include a review of the technical build-up, which includes aircraft, paratrooper and static line modeling, plus preliminary functional checkouts executed to verify simulation performance. This research and simulation development effort is driven by the need to meet the analysis demands required to support the US Army Personnel Airdrop with static line length studies and the North Atlantic Treaty Organization (NATO) Joint Airdrop Capability Syndicate (JACS) with airdrop interoperability assessments. Each project requires the use of various aircraft types, static line lengths and exit procedures. To help meet this need and establish a baseline proof of concept (POC) simulation, simulation setups were developed for a towed jumper from both the C-130J and C-17 using a 20-ft static line to support US Army Personnel Airdrop efforts. Concurrently, the JACS is requesting analysis to support interoperability testing to help qualify the T-11 parachute from an Airbus A400M Atlas aircraft, operated by NATO nations. Due to the lack of an available A400M geometry, the C-17 was used to demonstrate the POC, and plans to substitute the geometry are in order when it becomes available. The results of a nominal Computational Fluid Dynamics (CFD) simulation run using a C-17 and C-130J will be reviewed with a sample of the output to help characterize performance differences for the aircraft settings selected. The US Army Combat Capabilities Development Command Soldier Center (DEVCOM-SC) Aerial Delivery Division (ADD) has partnered with the US Air Force Academy (USAFA) High Performance Computing Research Center (HPCRC) to enable Modeling and Simulation (M&S) capabilities that support the Warfighter and NATO airdrop interoperability efforts. Full article
(This article belongs to the Special Issue Advancing Fluid Dynamics in Aerospace Applications)
Show Figures

Figure 1

Back to TopTop