Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = spider silk fibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5434 KiB  
Article
High Absorption and Elasticity of a Novel Transgenic Silk with Egg Case Silk Protein from Nephila clavata
by Yichen Wang, Yuhang Lin, Yongkang Luo, Di Zeng, Haibo He and Tianfu Zhao
Int. J. Mol. Sci. 2024, 25(23), 12793; https://doi.org/10.3390/ijms252312793 - 28 Nov 2024
Viewed by 903
Abstract
Spider silk is part of a special class of natural protein fibers that have high strength and toughness: these materials have excellent comprehensive properties that are not found in other natural fibers (including silk) or most synthetic fibers. Spider egg case filaments have [...] Read more.
Spider silk is part of a special class of natural protein fibers that have high strength and toughness: these materials have excellent comprehensive properties that are not found in other natural fibers (including silk) or most synthetic fibers. Spider egg case filaments have good hardness, can resist water, can protect spider eggs from external threats, have a significantly high initial modulus and high moisture absorption rate, and are expected to be used as a new generation of environmentally friendly natural polymer fibers and biomaterials. However, spiders are predatory and difficult to rear in large numbers, and it is also difficult to obtain spider egg case filaments in large quantities. Silkworms and spiders have a similar spinning system, and the use of transgenic technology in silkworms can obtain stable and high-yield exogenous gene proteins for a long time, representing an ideal bioreactor for the production of spider silk. In this study, the eukaryotic bioreactor and piggyBac transposon system were employed to recombinantly introduce the egg case silk protein of Nephila clavata (Nc-CYSP1) into the silkworm in the silkworm heavy-chain expression system. The results revealed that the silk glands produced a new type of transgenic silk with a significantly high initial modulus and high moisture absorption. In summary, this study provides an experimental reference for future research on the large-scale production and application of spider egg case filamentous protein, with great application prospects in the development of new environmentally friendly materials. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 3589 KiB  
Review
Regenerated Fiber’s Ideal Target: Comparable to Natural Fiber
by Guohongfang Tan, Tianshuo Jia, Zhenzhen Qi and Shenzhou Lu
Materials 2024, 17(8), 1834; https://doi.org/10.3390/ma17081834 - 16 Apr 2024
Cited by 4 | Viewed by 1977
Abstract
The toughness of silk naturally obtained from spiders and silkworms exceeds that of all other natural and man-made fibers. These insects transform aqueous protein feedstocks into mechanically specialized materials, which represents an engineering phenomenon that has developed over millions of years of natural [...] Read more.
The toughness of silk naturally obtained from spiders and silkworms exceeds that of all other natural and man-made fibers. These insects transform aqueous protein feedstocks into mechanically specialized materials, which represents an engineering phenomenon that has developed over millions of years of natural evolution. Silkworms have become a new research hotspot due to the difficulties in collecting spider silk and other challenges. According to continuous research on the natural spinning process of the silkworm, it is possible to divide the main aspects of bionic spinning into two main segments: the solvent and behavior. This work focuses on the various methods currently used for the spinning of artificial silk fibers to replicate natural silk fibers, providing new insights based on changes in the fiber properties and production processes over time. Full article
(This article belongs to the Special Issue Properties and Applications of Advanced Textile Materials)
Show Figures

Figure 1

16 pages, 1568 KiB  
Article
Quantitative Shotgun Proteomic Analysis of Bacteria after Overexpression of Recombinant Spider Miniature Spidroin, MaSp1
by Kathryn Randene, J Alexander Hoang Mendoza, Michael Ysit and Craig Vierra
Int. J. Mol. Sci. 2024, 25(6), 3556; https://doi.org/10.3390/ijms25063556 - 21 Mar 2024
Cited by 2 | Viewed by 2520
Abstract
Spider silk has extraordinary mechanical properties, displaying high tensile strength, elasticity, and toughness. Given the high performance of natural fibers, one of the long-term goals of the silk community is to manufacture large-scale synthetic spider silk. This process requires vast quantities of recombinant [...] Read more.
Spider silk has extraordinary mechanical properties, displaying high tensile strength, elasticity, and toughness. Given the high performance of natural fibers, one of the long-term goals of the silk community is to manufacture large-scale synthetic spider silk. This process requires vast quantities of recombinant proteins for wet-spinning applications. Attempts to synthesize large amounts of native size recombinant spidroins in diverse cell types have been unsuccessful. In these studies, we design and express recombinant miniature black widow MaSp1 spidroins in bacteria that incorporate the N-terminal and C-terminal domain (NTD and CTD), along with varying numbers of codon-optimized internal block repeats. Following spidroin overexpression, we perform quantitative analysis of the bacterial proteome to identify proteins associated with spidroin synthesis. Liquid chromatography with tandem mass spectrometry (LC MS/MS) reveals a list of molecular targets that are differentially expressed after enforced mini-spidroin production. This list included proteins involved in energy management, proteostasis, translation, cell wall biosynthesis, and oxidative stress. Taken together, the purpose of this study was to identify genes within the genome of Escherichia coli for molecular targeting to overcome bottlenecks that throttle spidroin overexpression in microorganisms. Full article
Show Figures

Figure 1

25 pages, 4114 KiB  
Review
Review of Spider Silk Applications in Biomedical and Tissue Engineering
by Marija Branković, Fatima Zivic, Nenad Grujovic, Ivan Stojadinovic, Strahinja Milenkovic and Nikola Kotorcevic
Biomimetics 2024, 9(3), 169; https://doi.org/10.3390/biomimetics9030169 - 11 Mar 2024
Cited by 15 | Viewed by 11788
Abstract
This review will present the latest research related to the production and application of spider silk and silk-based materials in reconstructive and regenerative medicine and tissue engineering, with a focus on musculoskeletal tissues, and including skin regeneration and tissue repair of bone and [...] Read more.
This review will present the latest research related to the production and application of spider silk and silk-based materials in reconstructive and regenerative medicine and tissue engineering, with a focus on musculoskeletal tissues, and including skin regeneration and tissue repair of bone and cartilage, ligaments, muscle tissue, peripheral nerves, and artificial blood vessels. Natural spider silk synthesis is reviewed, and the further recombinant production of spider silk proteins. Research insights into possible spider silk structures, like fibers (1D), coatings (2D), and 3D constructs, including porous structures, hydrogels, and organ-on-chip designs, have been reviewed considering a design of bioactive materials for smart medical implants and drug delivery systems. Silk is one of the toughest natural materials, with high strain at failure and mechanical strength. Novel biomaterials with silk fibroin can mimic the tissue structure and promote regeneration and new tissue growth. Silk proteins are important in designing tissue-on-chip or organ-on-chip technologies and micro devices for the precise engineering of artificial tissues and organs, disease modeling, and the further selection of adequate medical treatments. Recent research indicates that silk (films, hydrogels, capsules, or liposomes coated with silk proteins) has the potential to provide controlled drug release at the target destination. However, even with clear advantages, there are still challenges that need further research, including clinical trials. Full article
(This article belongs to the Special Issue Biomimetic Scaffolds for Hard Tissue Surgery)
Show Figures

Figure 1

23 pages, 16336 KiB  
Article
Structure and Optical Anisotropy of Spider Scales and Silk: The Use of Chromaticity and Azimuth Colors to Optically Characterize Complex Biological Structures
by Denver Linklater, Arturas Vailionis, Meguya Ryu, Shuji Kamegaki, Junko Morikawa, Haoran Mu, Daniel Smith, Pegah Maasoumi, Rohan Ford, Tomas Katkus, Sean Blamires, Toshiaki Kondo, Yoshiaki Nishijima, Daniel Moraru, Michael Shribak, Andrea O’Connor, Elena P. Ivanova, Soon Hock Ng, Hideki Masuda and Saulius Juodkazis
Nanomaterials 2023, 13(12), 1894; https://doi.org/10.3390/nano13121894 - 20 Jun 2023
Cited by 5 | Viewed by 4406
Abstract
Herein, we give an overview of several less explored structural and optical characterization techniques useful for biomaterials. New insights into the structure of natural fibers such as spider silk can be gained with minimal sample preparation. Electromagnetic radiation (EMR) over a broad range [...] Read more.
Herein, we give an overview of several less explored structural and optical characterization techniques useful for biomaterials. New insights into the structure of natural fibers such as spider silk can be gained with minimal sample preparation. Electromagnetic radiation (EMR) over a broad range of wavelengths (from X-ray to THz) provides information of the structure of the material at correspondingly different length scales (nm-to-mm). When the sample features, such as the alignment of certain fibers, cannot be characterized optically, polarization analysis of the optical images can provide further information on feature alignment. The 3D complexity of biological samples necessitates that there be feature measurements and characterization over a large range of length scales. We discuss the issue of characterizing complex shapes by analysis of the link between the color and structure of spider scales and silk. For example, it is shown that the green-blue color of a spider scale is dominated by the chitin slab’s Fabry–Pérot-type reflectivity rather than the surface nanostructure. The use of a chromaticity plot simplifies complex spectra and enables quantification of the apparent colors. All the experimental data presented herein are used to support the discussion on the structure–color link in the characterization of materials. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

15 pages, 2137 KiB  
Article
Variation in the Elastic Modulus and Increased Energy Dissipation Induced by Cyclic Straining of Argiope bruennichi Major Ampullate Gland Silk
by Ping Jiang, Lihua Wu, Menglei Hu, Sisi Tang, Zhimin Qiu, Taiyong Lv, Manuel Elices, Gustavo V. Guinea and José Pérez-Rigueiro
Biomimetics 2023, 8(2), 164; https://doi.org/10.3390/biomimetics8020164 - 18 Apr 2023
Cited by 1 | Viewed by 2029
Abstract
The trends exhibited by the parameters that describe the mechanical behaviour of major ampullate gland silk fibers spun by Argiope bruennichi spiders is explored by performing a series of loading-unloading tests at increasing values of strain, and by the subsequent analysis of the [...] Read more.
The trends exhibited by the parameters that describe the mechanical behaviour of major ampullate gland silk fibers spun by Argiope bruennichi spiders is explored by performing a series of loading-unloading tests at increasing values of strain, and by the subsequent analysis of the true stress-true strain curves obtained from these cycles. The elastic modulus, yields stress, energy absorbed, and energy dissipated in each cycle are computed in order to evaluate the evolution of these mechanical parameters with this cyclic straining. The elastic modulus is observed to increase steadily under these loading conditions, while only a moderate variation is found in the yield stress. It is also observed that a significant proportion of the energy initially absorbed in each cycle is not only dissipated, but that the material may recover partially from the associated irreversible deformation. This variation in the mechanical performance of spider silk is accounted for through a combination of irreversible and reversible deformation micromechanisms in which the viscoelasticity of the material plays a leading role. Full article
(This article belongs to the Special Issue Bioinspiration in Silk Biomaterial Designing)
Show Figures

Graphical abstract

16 pages, 2803 KiB  
Article
Biocompatible Optical Fibers Made of Regenerated Cellulose and Recombinant Cellulose-Binding Spider Silk
by Martin Reimer, Kai Mayer, Daniel Van Opdenbosch, Thomas Scheibel and Cordt Zollfrank
Biomimetics 2023, 8(1), 37; https://doi.org/10.3390/biomimetics8010037 - 15 Jan 2023
Cited by 5 | Viewed by 3809
Abstract
The fabrication of green optical waveguides based on cellulose and spider silk might allow the processing of novel biocompatible materials. Regenerated cellulose fibers are used as the core and recombinantly produced spider silk proteins eADF4(C16) as the cladding material. A detected delamination between [...] Read more.
The fabrication of green optical waveguides based on cellulose and spider silk might allow the processing of novel biocompatible materials. Regenerated cellulose fibers are used as the core and recombinantly produced spider silk proteins eADF4(C16) as the cladding material. A detected delamination between core and cladding could be circumvented by using a modified spider silk protein with a cellulose-binding domain-enduring permanent adhesion between the cellulose core and the spider silk cladding. The applied spider silk materials were characterized optically, and the theoretical maximum data rate was determined. The results show optical waveguide structures promising for medical applications, for example, in the future. Full article
(This article belongs to the Special Issue Biomimetic Design Method for Innovation and Sustainability)
Show Figures

Figure 1

18 pages, 5682 KiB  
Article
Recombinant Spider Silk Fiber with High Dimensional Stability in Water and Its NMR Characterization
by Tetsuo Asakura, Hironori Matsuda, Akira Naito, Hideyasu Okamura, Yu Suzuki and Yunosuke Abe
Molecules 2022, 27(23), 8479; https://doi.org/10.3390/molecules27238479 - 2 Dec 2022
Cited by 3 | Viewed by 2549
Abstract
Spider dragline silk has unique characteristics of strength and extensibility, including supercontraction. When we use it as a biomaterial or material for textiles, it is important to suppress the effect of water on the fiber by as much as possible in order to [...] Read more.
Spider dragline silk has unique characteristics of strength and extensibility, including supercontraction. When we use it as a biomaterial or material for textiles, it is important to suppress the effect of water on the fiber by as much as possible in order to maintain dimensional stability. In order to produce spider silk with a highly hydrophobic character, based on the sequence of ADF-3 silk, we produced recombinant silk (RSSP(VLI)) where all QQ sequences were replaced by VL, while single Q was replaced by I. The artificial RSSP(VLI) fiber was prepared using formic acid as the spinning solvent and methanol as the coagulant solvent. The dimensional stability and water absorption experiments of the fiber were performed for eight kinds of silk fiber. RSSP(VLI) fiber showed high dimensional stability, which is suitable for textiles. A remarkable decrease in the motion of the fiber in water was made evident by 13C solid-state NMR. This study using 13C solid-state NMR is the first trial to put spider silk to practical use and provide information regarding the molecular design of new recombinant spider silk materials with high dimensional stability in water, allowing recombinant spider silk proteins to be used in next-generation biomaterials and materials for textiles. Full article
(This article belongs to the Special Issue The Chemical Properties of Silk Raw Materials)
Show Figures

Graphical abstract

13 pages, 1219 KiB  
Article
Differences in the Elastomeric Behavior of Polyglycine-Rich Regions of Spidroin 1 and 2 Proteins
by Luis F. Pacios, Joseph Arguelles, Cheryl Y. Hayashi, Gustavo V. Guinea, Manuel Elices and Jose Perez-Rigueiro
Polymers 2022, 14(23), 5263; https://doi.org/10.3390/polym14235263 - 2 Dec 2022
Cited by 6 | Viewed by 1890
Abstract
Two different polyglycine-rich fragments were selected as representatives of major ampullate gland spidroins (MaSp) 1 and 2 types, and their behavior in a water-saturated environment was simulated within the framework of molecular dynamics (MD). The selected fragments are found in the sequences of [...] Read more.
Two different polyglycine-rich fragments were selected as representatives of major ampullate gland spidroins (MaSp) 1 and 2 types, and their behavior in a water-saturated environment was simulated within the framework of molecular dynamics (MD). The selected fragments are found in the sequences of the proteins MaSp1a and MaSp2.2a of Argiope aurantia with respective lengths of 36 amino acids (MaSp1a) and 50 amino acids (MaSp2.2s). The simulation took the fully extended β-pleated conformation as reference, and MD was used to determine the equilibrium configuration in the absence of external forces. Subsequently, MD were employed to calculate the variation in the distance between the ends of the fragments when subjected to an increasing force. Both fragments show an elastomeric behavior that can be modeled as a freely jointed chain with links of comparable length, and a larger number of links in the spidroin 2 fragment. It is found, however, that the maximum recovery force recorded from the spidroin 2 peptide (Fmax ≈ 400 pN) is found to be significantly larger than that of the spidroin 1 (Fmax ≈ 250 pN). The increase in the recovery force of the spidroin 2 polyglycine-rich fragment may be correlated with the larger values observed in the strain at breaking of major ampullate silk fibers spun by Araneoidea species, which contain spidroin 2 proteins, compared to the material produced by spider species that lack these spidroins (RTA-clade). Full article
(This article belongs to the Special Issue Polymers Composed of Natural Molecules in Drug Delivery Systems)
Show Figures

Figure 1

18 pages, 4895 KiB  
Article
Bio-Inspired 4D Printing of Dynamic Spider Silks
by Guiwei Li, Qi Tian, Wenzheng Wu, Shida Yang, Qian Wu, Yihang Zhao, Jiaqing Wang, Xueli Zhou, Kunyang Wang, Luquan Ren, Ji Zhao and Qingping Liu
Polymers 2022, 14(10), 2069; https://doi.org/10.3390/polym14102069 - 19 May 2022
Cited by 13 | Viewed by 3349
Abstract
Spider silks exhibit excellent mechanical properties and have promising application prospects in engineering fields. Because natural spider silk fibers cannot be manufactured on a large scale, researchers have attempted to fabricate bio-inspired spider silks. However, the fabrication of bio-inspired spider silks with dynamically [...] Read more.
Spider silks exhibit excellent mechanical properties and have promising application prospects in engineering fields. Because natural spider silk fibers cannot be manufactured on a large scale, researchers have attempted to fabricate bio-inspired spider silks. However, the fabrication of bio-inspired spider silks with dynamically tunable mechanical properties and stimulation–response characteristics remains a challenge. Herein, the 4D printing of shape memory polyurethane is employed to produce dynamic bio-inspired spider silks. The bio-inspired spider silks have two types of energy-absorbing units that can be adjusted, one by means of 4D printing with predefined nodes, and the other through different stimulation methods to make the bio-inspired spider silks contract and undergo spiral deformation. The shape morphing behaviors of bio-inspired spider silks are programmed via pre-stress assemblies enabled by 4D printing. The energy-absorbing units of bio-inspired spider silks can be dynamically adjusted owing to stress release generated with the stimuli of temperature or humidity. Therefore, the mechanical properties of bio-inspired spider silks can be controlled to change dynamically. This can further help in developing applications of bio-inspired spider silks in engineering fields with dynamic changes of environment. Full article
(This article belongs to the Special Issue Advanced Materials in 3D/4D Printing Technology)
Show Figures

Figure 1

11 pages, 1273 KiB  
Article
Mechanical Properties of Dragline Silk Fiber Using a Bottom-Up Approach
by Sandeep P. Patil, Ambarish Kulkarni and Bernd Markert
J. Compos. Sci. 2022, 6(3), 95; https://doi.org/10.3390/jcs6030095 - 17 Mar 2022
Cited by 4 | Viewed by 4176
Abstract
We propose a molecular-based three-dimensional (3D) continuum model of dragline silk of Araneus diadematus, which takes into account the plasticity of the β-sheet crystals, the rate-dependent behavior of the amorphous matrix, and the viscous interface friction between them. For the proposed [...] Read more.
We propose a molecular-based three-dimensional (3D) continuum model of dragline silk of Araneus diadematus, which takes into account the plasticity of the β-sheet crystals, the rate-dependent behavior of the amorphous matrix, and the viscous interface friction between them. For the proposed model, we computed the tensile properties, the effects of velocity on the mechanical properties, and hysteresis values, which are in good agreement with available experimental data. The silk fiber model’s yield point, breaking strength, post-yield stiffness, and toughness increased with increasing pulling velocity, while extensibility and the diameter of the silk fiber decreased. Our bottom-up approach has shed light on silk fiber mechanics, which can be used as an essential tool to design artificial composite materials. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2022)
Show Figures

Figure 1

13 pages, 4865 KiB  
Article
An Image-Analysis-Based Method for the Prediction of Recombinant Protein Fiber Tensile Strength
by Fredrik G. Bäcklund, Benjamin Schmuck, Gisele H. B. Miranda, Gabriele Greco, Nicola M. Pugno, Jesper Rydén and Anna Rising
Materials 2022, 15(3), 708; https://doi.org/10.3390/ma15030708 - 18 Jan 2022
Cited by 6 | Viewed by 3279
Abstract
Silk fibers derived from the cocoon of silk moths and the wide range of silks produced by spiders exhibit an array of features, such as extraordinary tensile strength, elasticity, and adhesive properties. The functional features and mechanical properties can be derived from the [...] Read more.
Silk fibers derived from the cocoon of silk moths and the wide range of silks produced by spiders exhibit an array of features, such as extraordinary tensile strength, elasticity, and adhesive properties. The functional features and mechanical properties can be derived from the structural composition and organization of the silk fibers. Artificial recombinant protein fibers based on engineered spider silk proteins have been successfully made previously and represent a promising way towards the large-scale production of fibers with predesigned features. However, for the production and use of protein fibers, there is a need for reliable objective quality control procedures that could be automated and that do not destroy the fibers in the process. Furthermore, there is still a lack of understanding the specifics of how the structural composition and organization relate to the ultimate function of silk-like fibers. In this study, we develop a new method for the categorization of protein fibers that enabled a highly accurate prediction of fiber tensile strength. Based on the use of a common light microscope equipped with polarizers together with image analysis for the precise determination of fiber morphology and optical properties, this represents an easy-to-use, objective non-destructive quality control process for protein fiber manufacturing and provides further insights into the link between the supramolecular organization and mechanical functionality of protein fibers. Full article
(This article belongs to the Special Issue Silk-Based Biomaterials)
Show Figures

Figure 1

14 pages, 2211 KiB  
Article
Presence of β-Turn Structure in Recombinant Spider Silk Dissolved in Formic Acid Revealed with NMR
by Yu Suzuki, Takanori Higashi, Takahiro Yamamoto, Hideyasu Okamura, Takehiro K. Sato and Tetsuo Asakura
Molecules 2022, 27(2), 511; https://doi.org/10.3390/molecules27020511 - 14 Jan 2022
Cited by 6 | Viewed by 3414
Abstract
Spider dragline silk is a biopolymer with excellent mechanical properties. The development of recombinant spider silk protein (RSP)-based materials with these properties is desirable. Formic acid (FA) is a spinning solvent for regenerated Bombyx mori silk fiber with excellent mechanical properties. To use [...] Read more.
Spider dragline silk is a biopolymer with excellent mechanical properties. The development of recombinant spider silk protein (RSP)-based materials with these properties is desirable. Formic acid (FA) is a spinning solvent for regenerated Bombyx mori silk fiber with excellent mechanical properties. To use FA as a spinning solvent for RSP with the sequence of major ampullate spider silk protein from Araneus diadematus, we determined the conformation of RSP in FA using solution NMR to determine the role of FA as a spinning solvent. We assigned 1H, 13C, and 15N chemical shifts to 32-residue repetitive sequences, including polyAla and Gly-rich regions of RSP. Chemical shift evaluation revealed that RSP is in mainly random coil conformation with partially type II β-turn structure in the Gly-Pro-Gly-X motifs of the Gly-rich region in FA, which was confirmed by the 15N NOE data. In addition, formylation at the Ser OH groups occurred in FA. Furthermore, we evaluated the conformation of the as-cast film of RSP dissolved in FA using solid-state NMR and found that β-sheet structure was predominantly formed. Full article
(This article belongs to the Special Issue Silk Fibroin Materials 2.0)
Show Figures

Graphical abstract

11 pages, 3178 KiB  
Article
Ambient Climate Influences Anti-Adhesion between Biomimetic Structured Foil and Nanofibers
by Marco Meyer, Gerda Buchberger, Johannes Heitz, Dariya Baiko and Anna-Christin Joel
Nanomaterials 2021, 11(12), 3222; https://doi.org/10.3390/nano11123222 - 27 Nov 2021
Cited by 8 | Viewed by 2463
Abstract
Due to their uniquely high surface-to-volume ratio, nanofibers are a desired material for various technical applications. However, this surface-to-volume ratio also makes processing difficult as van der Waals forces cause nanofibers to adhere to virtually any surface. The cribellate spider Uloborus plumipes represents [...] Read more.
Due to their uniquely high surface-to-volume ratio, nanofibers are a desired material for various technical applications. However, this surface-to-volume ratio also makes processing difficult as van der Waals forces cause nanofibers to adhere to virtually any surface. The cribellate spider Uloborus plumipes represents a biomimetic paragon for this problem: these spiders integrate thousands of nanofibers into their adhesive capture threads. A comb on their hindmost legs, termed calamistrum, enables the spiders to process the nanofibers without adhering to them. This anti-adhesion is due to a rippled nanotopography on the calamistrum. Via laser-induced periodic surface structures (LIPSS), these nanostructures can be recreated on artificial surfaces, mimicking the non-stickiness of the calamistrum. In order to advance the technical implementation of these biomimetic structured foils, we investigated how climatic conditions influence the anti-adhesive performance of our surfaces. Although anti-adhesion worked well at low and high humidity, technical implementations should nevertheless be air-conditioned to regulate temperature: we observed no pronounced anti-adhesive effect at temperatures above 30 °C. This alteration between anti-adhesion and adhesion could be deployed as a temperature-sensitive switch, allowing to swap between sticking and not sticking to nanofibers. This would make handling even easier. Full article
(This article belongs to the Special Issue Nanopatterning of Bionic Materials)
Show Figures

Figure 1

8 pages, 5276 KiB  
Communication
From Inner Topological Structure to Functional Nanofibers: Theoretical Analysis and Experimental Verification
by Dan Tian and Chunhui He
Membranes 2021, 11(11), 870; https://doi.org/10.3390/membranes11110870 - 12 Nov 2021
Cited by 6 | Viewed by 1904
Abstract
The mechanical strength of spider silk is the highest among all natural fibers, and its flexibility is also excellent; this phenomenon can be explained geometrically, due to its hierarchical structure, the last cascade of which beginning with well-ordered macromolecules. The inner topological structure [...] Read more.
The mechanical strength of spider silk is the highest among all natural fibers, and its flexibility is also excellent; this phenomenon can be explained geometrically, due to its hierarchical structure, the last cascade of which beginning with well-ordered macromolecules. The inner topological structure of a nanofiber plays an important role in controlling its functions, e.g., its mechanical, electrical and chemical properties. This paper shows that nanoparticles can be well-ordered in the electrospinning process as a result, the nanofibers’ properties can be adjusted. Some experiments are designed to verify our theoretical prediction. Full article
(This article belongs to the Collection Polymeric Membranes: Science, Materials and Applications)
Show Figures

Figure 1

Back to TopTop