Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = sound field reconstruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 991 KB  
Article
A Variational Optimization Method for Solving Two Dimensional Magnetotelluric Inverse Problems
by Aigerim M. Tleulesova, Nurlan M. Temirbekov, Moldir N. Dauletbay, Almas N. Temirbekov, Zhaniya G. Turlybek, Zhansaya S. Tugenbayeva and Syrym E. Kasenov
Mathematics 2025, 13(18), 2989; https://doi.org/10.3390/math13182989 - 16 Sep 2025
Viewed by 489
Abstract
This article addresses a two-dimensional inverse problem of magnetotelluric sounding under the assumption of E-polarized electromagnetic fields. The main focus is on the construction of a forward numerical model based on the Helmholtz equation with a complex coefficient, and the recovery of electrical [...] Read more.
This article addresses a two-dimensional inverse problem of magnetotelluric sounding under the assumption of E-polarized electromagnetic fields. The main focus is on the construction of a forward numerical model based on the Helmholtz equation with a complex coefficient, and the recovery of electrical conductivity from boundary measurements. The second-order finite difference method is employed for numerical simulation, providing stable approximations of both the direct and the conjugate problems. The inverse problem is formulated as a minimization of a data misfit functional, and solved using Nesterov’s accelerated gradient descent method, which ensures fast convergence and robustness to noise. Numerical experiments are presented for a synthetic model featuring a smooth background conductivity and a localized anomaly. Comparison between the exact and reconstructed solutions demonstrates the high accuracy and efficiency of the proposed algorithm. The developed approach can serve as a foundation for constructing practical inversion schemes in geophysical exploration problems. Full article
Show Figures

Figure 1

32 pages, 4416 KB  
Article
Effects of Irregular Bathymetry on Hologram Formation of Moving Source in Shallow Water
by Sergey Pereselkov, Venedikt Kuz’kin, Matthias Ehrhardt, Sergey Tkachenko, Alexey Pereselkov and Nikolay Ladykin
J. Mar. Sci. Eng. 2025, 13(9), 1775; https://doi.org/10.3390/jmse13091775 - 14 Sep 2025
Cited by 1 | Viewed by 451
Abstract
This paper examines the effect of irregular bathymetry on the holographic reconstruction of the sound field generated by a moving source in shallow water. In this scenario, acoustic waves propagate along the path between the source and receiver. Spatial inhomogeneities in the waveguide, [...] Read more.
This paper examines the effect of irregular bathymetry on the holographic reconstruction of the sound field generated by a moving source in shallow water. In this scenario, acoustic waves propagate along the path between the source and receiver. Spatial inhomogeneities in the waveguide, resulting from the complex bottom topography, cause the notable horizontal refraction of acoustic modes. The study focuses on how this horizontal refraction affects the structure of the interferogram and the hologram corresponding to the moving source. This investigation is carried out through numerical simulations that incorporate ray refraction due to irregularities in the waveguide. The interferogram, representing the received sound intensity in the frequency-time domain, and the hologram, obtained via a two-dimensional Fourier transform of the interferogram, are analyzed in the presence of spatial variability caused by non-uniform bathymetry. A key finding is that, despite these irregularities, the hologram retains sufficient structural information to extract and reconstruct source parameters (e.g., range, velocity). The paper also provides a quantitative estimate of the reconstruction error associated with this approach. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 3931 KB  
Article
Design and Fabrication of Air-Coupled CMUT for Non-Contact Temperature Measurement Applications
by Xiaobo Rui, Yongshuai Ma, Chenghao He, Chi Zhang, Zhuochen Wang and Hui Zhang
Micromachines 2025, 16(9), 1008; https://doi.org/10.3390/mi16091008 - 31 Aug 2025
Viewed by 788
Abstract
Compared with traditional piezoelectric transducers, Capacitive Micromachined Ultrasonic Transducers (CMUTs) have advantages such as better impedance matching with air, smaller size, lighter weight, higher sensitivity, and ease of array formation. Acoustic temperature measurement is a technology that utilizes the relationship between sound velocity [...] Read more.
Compared with traditional piezoelectric transducers, Capacitive Micromachined Ultrasonic Transducers (CMUTs) have advantages such as better impedance matching with air, smaller size, lighter weight, higher sensitivity, and ease of array formation. Acoustic temperature measurement is a technology that utilizes the relationship between sound velocity and temperature to achieve non-contact temperature detection, with advantages such as fast response and non-invasiveness. CMUT-based acoustic temperature field measurement can achieve temperature detection in situations with narrow spaces, portability, and high measurement accuracy. This paper investigates an air-coupled CMUT device for acoustic temperature measurement, featuring a resonant frequency of 220 kHz, and composed of 16 × 8 cells. The design and fabrication of the CMUT array were completed, and the device characteristics were tested and characterized. A temperature field measurement method using mechanical scanning was proposed. A temperature measurement experimental system based on CMUT devices was constructed, achieving preliminary measurement of acoustic transmission time in both uniform and non-uniform temperature fields. Using a temperature field reconstruction algorithm, the measurement and imaging of the temperature field above an electric heating wire were accomplished and compared with the thermocouple-based temperature measurement experiment. The experimental results verified the feasibility of CMUT devices for non-contact temperature field measurement. Full article
(This article belongs to the Special Issue MEMS Ultrasonic Transducers, 2nd Edition)
Show Figures

Figure 1

23 pages, 10266 KB  
Article
Application of Passive Serration Technologies for Aero-Engine Noise Control in Turbulent Inflow Environments
by Andrei-George Totu, Daniel-Eugeniu Crunțeanu, Marius Deaconu, Grigore Cican, Laurențiu Cristea and Constantin Levențiu
Technologies 2025, 13(8), 363; https://doi.org/10.3390/technologies13080363 - 15 Aug 2025
Viewed by 696
Abstract
This study explores the aeroacoustic influence of leading-edge serrations applied to stator blades subjected to turbulent inflow, which is representative of rotor–stator interaction in turbomachinery. A set of serrated geometries—75 mm span, with up to 9 teeth corresponding to 10% chord amplitude—was fabricated [...] Read more.
This study explores the aeroacoustic influence of leading-edge serrations applied to stator blades subjected to turbulent inflow, which is representative of rotor–stator interaction in turbomachinery. A set of serrated geometries—75 mm span, with up to 9 teeth corresponding to 10% chord amplitude—was fabricated via 3D printing and tested experimentally in a dedicated aeroacoustic facility at COMOTI. The turbulent inflow was generated using a passive grid, and far-field acoustic data were acquired using a semicircular microphone array placed in multiple inclined planes covering 15°–90° elevation and 0–180° azimuthal angles. The analysis combined power spectral density and autocorrelation techniques to extract turbulence-related quantities, such as integral length scale and velocity fluctuations. Beamforming methods were applied to reconstruct spatial distributions of sound pressure level (SPL), complemented by polar directivity curves to assess angular effects. Compared to the reference case, configurations with serrations demonstrated broadband noise reductions between 2 and 6 dB in the mid- and high-frequency range (1–4 kHz), with spatial consistency observed across measurement planes. The results extend the existing literature by linking turbulence properties to spatially resolved acoustic maps, offering new insights into the directional effects of serrated stator blades. Full article
(This article belongs to the Special Issue Aviation Science and Technology Applications)
Show Figures

Figure 1

21 pages, 9954 KB  
Article
Visual Heritage and Motion Design: The Graphic-Cultural Legacy of Saul Bass’s Title Sequences
by Vincenzo Maselli and Giulia Panadisi
Heritage 2025, 8(8), 329; https://doi.org/10.3390/heritage8080329 - 13 Aug 2025
Viewed by 2794
Abstract
Opening titles are more than introductory devices supporting the film they have been produced for; they are artistic and cultural artefacts with a powerful visual identity. Among the most emblematic figures in this design field, the graphic and motion designer Saul Bass (1920–1996) [...] Read more.
Opening titles are more than introductory devices supporting the film they have been produced for; they are artistic and cultural artefacts with a powerful visual identity. Among the most emblematic figures in this design field, the graphic and motion designer Saul Bass (1920–1996) pioneered an approach that redefined the identity, the design, and the experience of cinematic title sequences, opening a path of experimentation aimed at bridging visual communication, moving images, stylistic innovation, and aesthetic synaesthesia, through a combination of sound, movement, and image into a single expressive unit. This article investigates Bass’s contribution through a historical-critical and comparative lens, reconstructing the network of artistic and technological influences that shaped his design philosophy. It analyzes a selection of Bass’s title sequences, highlights his connection to European modernism, and identifies the seeds of postmodern culture in several aspects of Bass’s work such as the merging of principles coming from design and animation studies, the ambition for technological experimentation, and the openness towards a mass audience. By framing Bass’s creative legacy as a form of visual heritage, the article examines the ways in which his kinetic typography and moving compositions can be, therefore, recognized as resources for art historians, media scholars, designers, and visual communication theorists to track down the first and impactful aesthetic and narrative experiments conducted in the postmodern and contemporary motion graphic design field. Full article
(This article belongs to the Section Cultural Heritage)
Show Figures

Figure 1

25 pages, 2486 KB  
Article
Influence of Intense Internal Waves Traveling Along an Acoustic Path on Source Holographic Reconstruction in Shallow Water
by Sergey Pereselkov, Venedikt Kuz’kin, Matthias Ehrhardt, Sergey Tkachenko, Alexey Pereselkov and Nikolay Ladykin
J. Mar. Sci. Eng. 2025, 13(8), 1409; https://doi.org/10.3390/jmse13081409 - 24 Jul 2025
Cited by 3 | Viewed by 706
Abstract
This paper studies how intense internal waves (IIWs) affect the holographic reconstruction of the sound field generated by a moving source in a shallow-water environment. It is assumed that the IIWs propagate along the acoustic path between the source and the receiver. The [...] Read more.
This paper studies how intense internal waves (IIWs) affect the holographic reconstruction of the sound field generated by a moving source in a shallow-water environment. It is assumed that the IIWs propagate along the acoustic path between the source and the receiver. The presence of IIWs introduces inhomogeneities into the waveguide and causes significant mode coupling, which perturbs the received sound field. This paper proposes the use of holographic signal processing (HSP) to eliminate perturbations in the received signal caused by mode coupling due to IIWs. Within the HSP framework, we examine the interferogram (the received sound intensity distribution in the frequency–time domain) and the hologram (the two-dimensional Fourier transform of the interferogram) of a moving source in the presence of space–time inhomogeneities caused by IIWs. A key finding is that under the influence of IIWs, the hologram is divided into two regions that correspond to the unperturbed and perturbed components of the sound field. This hologram structure enables the extraction and reconstruction of the interferogram corresponding to the unperturbed field as it would appear in a shallow-water waveguide without IIWs. Numerical simulations of HSP application under the realistic conditions of the SWARM’95 experiment were carried out for stationary and moving sources. The results demonstrate the high efficiency of holographic reconstruction of the unperturbed sound field. Unlike matched field processing (MFP), HSP does not require prior knowledge of the propagation environment. These research results advance signal processing methods in underwater acoustics by introducing efficient HSP methods for environments with spatiotemporal inhomogeneities. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

16 pages, 8859 KB  
Article
Effect of Systematic Errors on Building Component Sound Insulation Measurements Using Near-Field Acoustic Holography
by Wei Xiong, Wuying Chen, Zhixin Li, Heyu Zhu and Xueqiang Wang
Buildings 2025, 15(15), 2619; https://doi.org/10.3390/buildings15152619 - 24 Jul 2025
Viewed by 577
Abstract
Near-field acoustic holography (NAH) provides an effective way to achieve wide-band, high-resolution visualization measurement of the sound insulation performance of building components. However, based on Green’s function, the microphone array’s inherent amplitude and phase mismatch errors will exponentially amplify the sound field inversion [...] Read more.
Near-field acoustic holography (NAH) provides an effective way to achieve wide-band, high-resolution visualization measurement of the sound insulation performance of building components. However, based on Green’s function, the microphone array’s inherent amplitude and phase mismatch errors will exponentially amplify the sound field inversion process, significantly reducing the measurement accuracy. To systematically evaluate this problem, this study combines numerical simulation with actual measurements in a soundproof room that complies with the ISO 10140 standard, quantitatively analyzes the influence of array system errors on NAH reconstructed sound insulation and acoustic images, and proposes an error correction strategy based on channel transfer function normalization. The research results show that when the array amplitude and phase mismatch mean values are controlled within 5% and 5°, respectively, the deviation of the weighted sound insulation measured by NAH can be controlled within 1 dB, and the error in the key frequency band of building sound insulation (200–1.6k Hz) does not exceed 1.5 dB; when the mismatch mean value increases to 10% and 10°, the deviation of the weighted sound insulation can reach 2 dB, and the error in the high-frequency band (≥1.6k Hz) significantly increases to more than 2.0 dB. The sound image shows noticeable spatial distortion in the frequency band above 250 Hz. After applying the proposed correction method, the NAH measurement results of the domestic microphone array are highly consistent with the weighted sound insulation measured by the standard method, and the measurement difference in the key frequency band is less than 1.0 dB, which significantly improves the reliability and applicability of low-cost equipment in engineering applications. In addition, the study reveals the inherent mechanism of differential amplification of system errors in the propagating wave and evanescent wave channels. It provides quantitative thresholds and operational guidance for instrument selection, array calibration, and error compensation of NAH technology in building sound insulation detection. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

16 pages, 3151 KB  
Article
Experimental Study on the Effects of Cockpit Noise on Physiological Indicators of Pilots
by Haiming Shen, Meiqing Hao, Jiawei Ren, Kun Chen and Yang Gao
Sensors 2025, 25(13), 4175; https://doi.org/10.3390/s25134175 - 4 Jul 2025
Viewed by 996
Abstract
Cockpit noise, as a critical environmental factor affecting flight safety, may impair pilots’ cognitive functions, leading to a decreased operational performance and decision-making errors, thereby posing potential threats to aviation safety. In order to reveal the relationship between the cockpit noise sound pressure [...] Read more.
Cockpit noise, as a critical environmental factor affecting flight safety, may impair pilots’ cognitive functions, leading to a decreased operational performance and decision-making errors, thereby posing potential threats to aviation safety. In order to reveal the relationship between the cockpit noise sound pressure level and pilot physiological indicators, and provide a scientific basis for cockpit noise airworthiness standards, this experiment takes pilot trainees as the research subject. Based on the principle of multimodal data synchronization, a sound field reconstruction system is used to reconstruct the cockpit sound field. Electroencephalogram (EEG), electrocardiogram (ECG), and electrodermal activity (EDA) measurements are carried out in different sound pressure level noise operating environments. The results show that with the increase in the sound pressure level, the significant suppression of α-wave activity in the occipital and parietal regions suggests that the cortical resting state is lifted and visual attention is enhanced; the enhancement of the β-wave in the frontal regions reflects the enhancement of alertness and prefrontal executive control, and the suppression of θ-wave activity in the frontal and temporal regions may indicate that cognitive tuning is suppressed, which reflects the brain’s rapid adaptive response to external noise stimuli in a high-noise environment; noise exposure triggers sustained sympathetic nerve hyperactivity, which is manifested by a significant acceleration of the heart rate and a significant increase in the mean value of skin conductance when the noise sound pressure level exceeds 70 dB(A). The correlation analysis between physiological indicators shows that cockpit noise has a multi-system synergistic effect on human physiological indicators. The experimental results indicate that noise has a significant impact on EEG, ECG, and EDA indicators. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

24 pages, 51676 KB  
Article
Acoustic Tomography of the Atmosphere: A Large-Eddy Simulation Sensitivity Study
by Emina Maric, Bumseok Lee, Regis Thedin, Eliot Quon and Nicholas Hamilton
Remote Sens. 2025, 17(11), 1892; https://doi.org/10.3390/rs17111892 - 29 May 2025
Viewed by 894
Abstract
Accurate measurement of atmospheric turbulent fluctuations is critical for understanding environmental dynamics and improving models in applications such as wind energy. Advanced remote sensing technologies are essential for capturing instantaneous velocity and temperature fluctuations. Acoustic tomography (AT) offers a promising approach that utilizes [...] Read more.
Accurate measurement of atmospheric turbulent fluctuations is critical for understanding environmental dynamics and improving models in applications such as wind energy. Advanced remote sensing technologies are essential for capturing instantaneous velocity and temperature fluctuations. Acoustic tomography (AT) offers a promising approach that utilizes sound travel times between an array of transducers to reconstruct turbulence fields. This study presents a systematic evaluation of the time-dependent stochastic inversion (TDSI) algorithm for AT using synthetic travel-time measurements derived from large-eddy simulation (LES) fields under both neutral and convective atmospheric boundary-layer conditions. Unlike prior work that relied on field observations or idealized fields, the LES framework provides a ground-truth atmospheric state, enabling quantitative assessment of TDSI retrieval reliability, sensitivity to travel-time measurement noise, and dependence on covariance model parameters and temporal data integration. A detailed sensitivity analysis was conducted to determine the best-fit model parameters, identify the tolerance thresholds for parameter mismatch, and establish a maximum spatial resolution. The TDSI algorithm successfully reconstructed large-scale velocity and temperature fluctuations with root mean square errors (RMSEs) below 0.35 m/s and 0.12 K, respectively. Spectral analysis established a maximum spatial resolution of approximately 1.4 m, and reconstructions remained robust for travel-time measurement uncertainties up to 0.002 s. These findings provide critical insights into the operational limits of TDSI and inform future applications of AT for atmospheric turbulence characterization and system design. Full article
(This article belongs to the Special Issue New Insights from Wind Remote Sensing)
Show Figures

Figure 1

24 pages, 5849 KB  
Article
Compressed Sensing of Vibration Signal for Fault Diagnosis of Bearings, Gears, and Propellers Under Speed Variation Conditions
by Yuki Kato and Masayoshi Otaka
Sensors 2025, 25(10), 3167; https://doi.org/10.3390/s25103167 - 17 May 2025
Cited by 6 | Viewed by 1362
Abstract
In the fields of fault diagnosis and structural health monitoring using sound and vibration, there is increasing interest in data compression techniques based on Compressed Sensing (CS). However, conventional CS approaches that use standard bases such as Fourier or wavelets are unable to [...] Read more.
In the fields of fault diagnosis and structural health monitoring using sound and vibration, there is increasing interest in data compression techniques based on Compressed Sensing (CS). However, conventional CS approaches that use standard bases such as Fourier or wavelets are unable to achieve sparse representations of operational vibrations in rotating machinery with speed variations, leading to significantly reduced compression performance. To overcome this limitation, this study introduces a CS approach that incorporates order analysis, a technique commonly used in the analysis of rotating machinery. The method constructs an order basis using randomly sampled rotational speed data, enabling sparse observation of operational vibrations through CS. This represents a novel approach for efficiently capturing the essential features of vibration signals under rotational speed variations. The proposed method was validated through numerical experiments. The results showed that for rotational vibrations with speed variations of approximately 10% of the average speed, the compression performance was 20 times higher than that of conventional methods using the Fourier basis. Furthermore, evaluations using simulated vibration signals from eccentric faulty gears, as well as experimental data from defective propellers and bearings with outer ring defects, demonstrated that the proposed method could successfully reconstruct signals even under conditions with substantial speed variation—conditions under which conventional Fourier-based methods fail. Due to its superior compression performance and its ability to handle unknown operational vibrations, the proposed method is highly suitable for applications in fault diagnosis, structural health monitoring, and vibration measurement. Full article
(This article belongs to the Special Issue Fault Diagnosis Based on Sensing and Control Systems)
Show Figures

Figure 1

18 pages, 5529 KB  
Article
Interactive Soundscape Mapping for 18th-Century Naples: A Historically Informed Approach
by Hasan Baran Firat, Massimiliano Masullo and Luigi Maffei
Acoustics 2025, 7(2), 28; https://doi.org/10.3390/acoustics7020028 - 15 May 2025
Viewed by 2696
Abstract
This paper explores the application of a specialized end-to-end framework, crafted to study historical soundscapes, with a specific focus on 18th-century Naples. The framework combines historical research, natural language processing, architectural acoustics, and virtual acoustic modelling to achieve historically accurate and physically based [...] Read more.
This paper explores the application of a specialized end-to-end framework, crafted to study historical soundscapes, with a specific focus on 18th-century Naples. The framework combines historical research, natural language processing, architectural acoustics, and virtual acoustic modelling to achieve historically accurate and physically based soundscape reconstructions. Central to this study is the development of a Historically Informed Soundscape (HIS) map, which concentrates on the urban spaces of Largo di Palazzo and Via Toledo in Naples. Using virtual and audio-augmented reality, the HIS map provides 3D spatialized audio, offering an immersive experience of the acoustic environment of 18th-century Naples. This interdisciplinary approach not only contributes to the field of sound studies but also represents a significant methodological innovation in the analysis and interpretation of historical urban soundscapes. By incorporating historical maps as interactive graphical user interfaces, the project fosters a dynamic, multisensory engagement with the past, offering a valuable tool for scholars, educators, and the public to explore and understand historical sensory environments. Full article
(This article belongs to the Special Issue The Past Has Ears: Archaeoacoustics and Acoustic Heritage)
Show Figures

Figure 1

17 pages, 4035 KB  
Article
A Novel Method for Inverting Deep-Sea Sound-Speed Profiles Based on Hybrid Data Fusion Combined with Surface Sound Speed
by Qiang Yuan, Weiming Xu, Shaohua Jin, Xiaohan Yu, Xiaodong Ma and Tong Sun
J. Mar. Sci. Eng. 2025, 13(4), 787; https://doi.org/10.3390/jmse13040787 - 15 Apr 2025
Cited by 2 | Viewed by 814
Abstract
Sound speed profiles (SSPs) must be detected simultaneously to perform a multibeam depth survey. Accurate real-time sound speed profile (SSP) acquisition remains a critical challenge in deep-sea multibeam bathymetry due to the limitations regarding direct measurements under harsh operational conditions. To address the [...] Read more.
Sound speed profiles (SSPs) must be detected simultaneously to perform a multibeam depth survey. Accurate real-time sound speed profile (SSP) acquisition remains a critical challenge in deep-sea multibeam bathymetry due to the limitations regarding direct measurements under harsh operational conditions. To address the issue, we propose a joint inversion framework integrating World Ocean Atlas 2023 (WOA23) temperature–salinity model data, historical in situ SSPs, and surface sound speed measurements. By constructing a high-resolution regional sound speed field through WOA23 and historical SSP fusion, this method effectively mitigates spatiotemporal heterogeneity and seasonal variability. The artificial lemming algorithm (ALA) is introduced to optimize the inversion of empirical orthogonal function (EOF) coefficients, enhancing global search efficiency while avoiding local optimization. An experimental validation in the northwest Pacific Ocean demonstrated that the proposed method has a better performance than that of conventional substitution, interpolation, and WOA23-only approaches. The results indicate that the mean absolute error (MAE), root mean square error (RMSE), and maximum error (ME) of SSP reconstruction are reduced by 41.5%, 46.0%, and 49.4%, respectively. When the reconstructed SSPs are applied to multibeam bathymetric correction, depth errors are further reduced to 0.193 m (MAE), 0.213 m (RMSE), and 0.394 m (ME), effectively suppressing the “smiley face” distortion caused by sound speed gradient anomalies. The dynamic selection of the first six EOF modes balances computational efficiency and reconstruction fidelity. This study provides a robust solution for real-time SSP estimation in data-scarce deep-sea environments, particularly for underwater autonomous vehicles. This method effectively mitigates the seabed distortion caused by missing real-time SSPs, significantly enhancing the accuracy and efficiency of deep-sea multibeam surveys. Full article
(This article belongs to the Special Issue Advanced Research in Marine Environmental and Fisheries Acoustics)
Show Figures

Figure 1

19 pages, 915 KB  
Article
The Inverse Scattering of Three-Dimensional Inhomogeneous Steady-State Sound Field Models
by Zhaoxi Sun, Wenbin Zhang and Meiling Zhao
Mathematics 2025, 13(7), 1187; https://doi.org/10.3390/math13071187 - 3 Apr 2025
Viewed by 643
Abstract
We propose a U-Net regression network model for sliced data to reconstruct a three-dimensional irregular steady-state sound field filling inhomogeneous anisotropic media. Through an innovative sliced data processing strategy, the 3D reconstruction problem is decomposed into a combination of 2D problems, thereby significantly [...] Read more.
We propose a U-Net regression network model for sliced data to reconstruct a three-dimensional irregular steady-state sound field filling inhomogeneous anisotropic media. Through an innovative sliced data processing strategy, the 3D reconstruction problem is decomposed into a combination of 2D problems, thereby significantly reducing the computational cost. The designed multi-channel U-Net fully utilizes the strengths of both the encoder and decoder, exhibiting strong feature extraction and spatial detail recovery capabilities. Numerical experiments show that the model can not only effectively reconstruct the complex sound field structure containing non-convex regions, but it can also synchronously restore the spatial distribution of the media and their parameter matrix, successfully achieving the dual reconstruction of the shape and physical parameters of the steady-state sound field. Full article
Show Figures

Figure 1

18 pages, 5851 KB  
Article
Noise Directivity Reconstruction Radiated from Unmanned Underwater Vehicle’s Propeller Using the Equivalent Source Method
by Shuai Jiang, Liwen Tan, Ruichong Gu and Zilong Peng
Sensors 2025, 25(5), 1466; https://doi.org/10.3390/s25051466 - 27 Feb 2025
Viewed by 1027
Abstract
Noise directivity reconstruction and prediction of noise levels at long ranges from such sources as unmanned underwater vehicles (UUVs) or aircraft are important practical problems. The equivalent source method can be used to reconstruct and predict the sound propagation of such directional complex [...] Read more.
Noise directivity reconstruction and prediction of noise levels at long ranges from such sources as unmanned underwater vehicles (UUVs) or aircraft are important practical problems. The equivalent source method can be used to reconstruct and predict the sound propagation of such directional complex volume sources in the far field. However, the selection of the elementary source configurations for the equivalent source method has a certain degree of blindness. In this paper, a method for selecting elementary source configurations was proposed, considering the correlation coefficients that exhibit a strong correlation with the directivity function. It is then applied to reconstruct the noise directivity pattern radiated from a real UUV. The results demonstrate that this method can achieve higher accuracy in reconstructing complex radiated sound sources using fewer elementary source configurations. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

17 pages, 8331 KB  
Article
A Novel Reconstruction Model for the Underwater Sound Speed Field Utilizing Ocean Remote Sensing Observations and Argo Profiles
by Yuhang Liu, Ming Li, Hongchen Li, Penghao Wang and Kefeng Liu
Water 2025, 17(4), 539; https://doi.org/10.3390/w17040539 - 13 Feb 2025
Cited by 3 | Viewed by 1271
Abstract
The sound speed in the ocean has a considerable impact on the characteristics of underwater acoustic propagation. The swift gathering of the underwater three-dimensional (3D) sound speed field is essential for target detection, underwater acoustic communication, and navigation. Currently, the reconstruction of the [...] Read more.
The sound speed in the ocean has a considerable impact on the characteristics of underwater acoustic propagation. The swift gathering of the underwater three-dimensional (3D) sound speed field is essential for target detection, underwater acoustic communication, and navigation. Currently, the reconstruction of the underwater sound speed utilizing satellite remote sensing data of the sea surface has emerged as a significant area of research. However, dynamic activities within the ocean result in varying degrees of perturbation in the sound speed structure. Relying solely on sea surface information will restrict the accuracy of sound speed reconstruction. In response to this issue, by utilizing multi-source satellite remote sensing data alongside Argo profiles, we first implemented the random forest (RF) algorithm to establish the statistical mapping relationship from the sea surface temperature (SST), sea level anomaly (SLA), and absolute dynamic topography (ADT) to the density, and thus, reconstructed a 3D density field. Subsequently, based on the sea surface environmental information, we introduced the underwater vertical density as a novel input for sound speed calculations and proposed a new model for 3D sound speed field reconstruction (RF-SDR). The experimental results indicate that utilizing both the sea surface environmental variables and underwater density as inputs yielded an average root-mean-square error (RMSE) of 1.51 m/s for the reconstructed sound speed, along with an average mean absolute error (MAE) of 0.85 m/s. Following the incorporation of density into the reconstruction inputs, the two error metrics exhibited reductions of 31% and 35%, respectively. And the proposed RF-SDR model demonstrated a reduction in the RMSE by 36% and in the MAE by 43% when compared with the commonly utilized single Empirical Orthogonal Function regression (sEOF-r) method. Furthermore, simulations of the sound propagation with both the reconstructed sound speed and Argo sound speed demonstrated a high degree of consistency in the computed acoustic propagation losses. The correlation coefficients consistently exceeded 0.7, thereby reinforcing the validity of the reconstructed sound speed. Full article
Show Figures

Figure 1

Back to TopTop