Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = sorghum hybrid breeding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1553 KiB  
Review
Perennial Grains in Russia: History, Status, and Perspectives
by Alexey Morgounov, Olga Shchuklina, Inna Pototskaya, Amanjol Aydarov and Vladimir Shamanin
Crops 2025, 5(4), 46; https://doi.org/10.3390/crops5040046 - 23 Jul 2025
Viewed by 290
Abstract
The review summarizes the historical and current research on perennial grain breeding in Russia within the context of growing global interest in perennial crops. N.V. Tsitsin’s pioneering work in the 1930s produced the first wheat–wheatgrass amphiploids, which demonstrated the capacity to regrow after [...] Read more.
The review summarizes the historical and current research on perennial grain breeding in Russia within the context of growing global interest in perennial crops. N.V. Tsitsin’s pioneering work in the 1930s produced the first wheat–wheatgrass amphiploids, which demonstrated the capacity to regrow after harvest and survive for 2–3 years. Subsequent research at the Main Botanical Garden in Moscow focused on characterizing Tsitsin’s material, selecting superior germplasm, and expanding genetic diversity through new cycles of hybridization and selection. This work led to the development of a new crop species, Trititrigia, and the release of cultivar ‘Pamyati Lyubimovoy’ in 2020, designed for dual-purpose production of high-quality grain and green biomass. Intermediate wheatgrass (Thinopyrum intermedium) is native to Russia, where several forage cultivars have been released and cultivated. Two large-grain cultivars (Sova and Filin) were developed from populations provided by the Land Institute and are now grown by farmers. Perennial rye was developed through interspecific crosses between Secale cereale and S. montanum, demonstrating persistence for 2–3 years with high biomass production and grain yields of 1.5–2.0 t/ha. Hybridization between Sorghum bicolor and S. halepense resulted in two released cultivars of perennial sorghum used primarily for forage production under arid conditions. Russia’s agroclimatic diversity in agricultural production systems provides significant opportunities for perennial crop development. The broader scientific and practical implications of perennial crops in Russia extend to climate-resilient, sustainable agriculture and international cooperation in this emerging field. Full article
Show Figures

Figure 1

18 pages, 1804 KiB  
Article
Potential for Enhancing Forage Sorghum Yield and Yield Components in a Changing Pannonian Climate
by Anja Dolapčev Rakić, Slaven Prodanović, Vladimir Sikora, Sanja Vasiljević, Vesna Župunski, Radivoje Jevtić and Ana Uhlarik
Agriculture 2025, 15(13), 1439; https://doi.org/10.3390/agriculture15131439 - 4 Jul 2025
Viewed by 402
Abstract
Climatic variability, particularly fluctuating precipitation and rising temperatures, poses a significant threat to crop productivity and stability. Forage sorghum hybrids are a promising alternative for fodder and bioenergy due to their high level of drought tolerance. This study evaluated genotypic variation and environmental [...] Read more.
Climatic variability, particularly fluctuating precipitation and rising temperatures, poses a significant threat to crop productivity and stability. Forage sorghum hybrids are a promising alternative for fodder and bioenergy due to their high level of drought tolerance. This study evaluated genotypic variation and environmental adaptability of 60 forage sorghum genotypes: 13 parental lines, their 40 crosses and seven commercial hybrids, to identify high-yielding, stable hybrids for biomass production under changing agroecological conditions. Field trials conducted over two contrasting years revealed significant genotype-by-environment interactions (p < 0.05), highlighting the need for multi-year evaluations. While favorable rainfall in 2020 enhanced vegetative traits (plant height, stem diameter, leaf area), biomass yield variability increased, emphasizing that favorable vegetative development does not necessarily correlate with yield stability. Principal component analysis indicated that plant height, stem diameter and leaf-related traits contributed most to genotypic differentiation. However, no single trait emerged as a reliable predictor of yield, suggesting complex trait interaction. These findings underscore the importance of integrative breeding strategies that combine phenotypic trait assessment with environmental adaptability to ensure sustainable biomass production. Sorghum’s drought tolerance and resilience make it a promising crop for future food and feed security in regions prone to climatic stress. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

16 pages, 1890 KiB  
Article
Evaluation of Hybrid Sorghum Parents for Morphological, Physiological and Agronomic Traits Under Post-Flowering Drought
by Kadiatou Touré, MacDonald Bright Jumbo, Sory Sissoko, Baloua Nebie, Hamidou Falalou, Madina Diancoumba, Harou Abdou, Joseph Sékou B. Dembele, Boubacar Gano and Bernard Sodio
Agronomy 2025, 15(6), 1399; https://doi.org/10.3390/agronomy15061399 - 6 Jun 2025
Viewed by 494
Abstract
Sorghum (Sorghum bicolor, (L.) Moench.), is one of the most important cereals in semi-arid and subtropical regions of Africa. However, in these regions, sorghum cultivation is often faced with several constraints. In Mali, terminal or post-flowering drought, caused by the early [...] Read more.
Sorghum (Sorghum bicolor, (L.) Moench.), is one of the most important cereals in semi-arid and subtropical regions of Africa. However, in these regions, sorghum cultivation is often faced with several constraints. In Mali, terminal or post-flowering drought, caused by the early cessation of rains towards the end of the rainy season, is one of the most common constraints. Sorghum is generally adapted to harsh conditions. However, drought combined to heat reduce its yield and production in tropical and subtropical regions. To identify parents of sorghum hybrids tolerant to post-flowering drought for commercial hybrids development and deployment, a total of 200 genotypes, including male and female parents of the hybrids, were evaluated in 2022 by lysimeters under two water regimes, well-irrigated and water-stressed, at ICRISAT in Niger. Agronomic traits such as phenological stages, physiological traits including transpiration efficiency, and morphological traits such as green leaf number were recorded. Genotype × environment (G × E) interaction was significant for harvest index (HI), green leaf number (GLN), and transpiration efficiency (TE), indicating different responses of genotypes under varying water conditions. Transpiration efficiency (TE) was significantly and positively correlated with total biomass (BT), harvest index (HI), and grain weight (GW) under both stress conditions. Genotypes ICSV216094, ICSB293, ICSV1049, ICSV1460016, and ICSV216074 performed better under optimal and stress conditions. The Principal Component Analysis (PCA) results led to the identification of three groups of genotypes. The Groups 1 and 3 are characterized by their yield stability and better performance under stress and optimal conditions. These two groups could be used by breeding programs to develop high yield and drought tolerant hybrids. Full article
Show Figures

Figure 1

15 pages, 508 KiB  
Article
Nutritional Composition, Fatty Acid Content, and Mineral Content of Nine Sorghum (Sorghum bicolor) Inbred Varieties
by Paola Pontieri, Jacopo Troisi, Matteo Calcagnile, Fadi Aramouni, Michael Tilley, Dmitriy Smolensky, Marco Guida, Fabio Del Giudice, Antonio Merciai, Iryna Samoylenko, Alberto L. Chessa, Mariarosaria Aletta, Pietro Alifano and Luigi Del Giudice
Foods 2024, 13(22), 3634; https://doi.org/10.3390/foods13223634 - 14 Nov 2024
Cited by 1 | Viewed by 1707
Abstract
Sorghum is a self-pollinating species belonging to the Poaceae family characterized by a resistance to drought higher than that of corn. Sorghum (Sorghum bicolor L. Moench) has been grown for centuries as a food crop in tropical areas where it has an [...] Read more.
Sorghum is a self-pollinating species belonging to the Poaceae family characterized by a resistance to drought higher than that of corn. Sorghum (Sorghum bicolor L. Moench) has been grown for centuries as a food crop in tropical areas where it has an increasing importance, particularly as a cereal option for people with celiac disease. Over the past fifty years, food-grade varieties and hybrid seeds with white pericarp have been developed, particularly in the United States, to maximize sorghum food quality. Nutrient composition, including moisture, protein, carbohydrates, dietary fiber, fat content, fatty acid composition, and mineral content, was determined for nine inbred varieties with a stabilized food-grade sorghum genotype selected in the USA and grown under typical Mediterranean conditions. Differences in these nutritional components were observed among the varieties considered. Notable differences were found for monounsaturated and polyunsaturated fats, while saturated fatty acids were similar in all varieties. Oleic, linoleic, and palmitic acids were the most abundant fatty acids in all nine lines. Differences were also noted in mineral content, particularly for K, Mg, Al, Mn, Fe, Cu, Zn, and Ba. Enzyme-linked immunosorbent assays (ELISAs) demonstrated the absence of gliadin-like peptides in all the sorghum varieties analyzed, confirming, thus, that these analyzed varieties are safe for consumption by celiac patients. Knowledge of the nutritional values of sorghum lines is relevant for breeding programs devoted to sorghum nutritional content and for beneficial properties to human health. Full article
Show Figures

Graphical abstract

12 pages, 2634 KiB  
Article
Novel Allelic Mutations in Dw3 Gene That Affect the Height of Sorghum Plants
by Ping Wang, Bingbing Liang, Zhengjun Li, Chunyu Wang, Lixia Zhang and Xiaochun Lu
Int. J. Mol. Sci. 2024, 25(22), 12000; https://doi.org/10.3390/ijms252212000 - 8 Nov 2024
Cited by 1 | Viewed by 1175
Abstract
Breeding for dwarfing traits in sorghum is crucial. However, only three genes (Dw1Dw3) that control plant height have been mapped. In this study, 634 sorghum cultivars were collected to investigate plant height and genotypes. Four were genotyped Dw1DW2Dw3 (wild [...] Read more.
Breeding for dwarfing traits in sorghum is crucial. However, only three genes (Dw1Dw3) that control plant height have been mapped. In this study, 634 sorghum cultivars were collected to investigate plant height and genotypes. Four were genotyped Dw1DW2Dw3 (wild type) but with different plant heights, and they were selected to construct two populations and map new dwarf genes. Bulked segregant analysis with whole-genome resequencing of the two populations identified the candidate gene in one same genomic region—on chromosome 7. Then, it was narrowed down to a region containing nine genes. Amino acid and DNA sequence analysis of the parent and offspring plants revealed that two novel allelic mutations in the Dw3 gene play a role in reducing the plant height—8R262 or 8R417, including 1 bp substitution and 2 bp deletions. Furthermore, we sequenced 19 cultivars that primarily exhibited a “one-dwarf” hybrid or wild-type and presumed another allelic mutation via the amino acid alignment of 8R019, 8R100, and 8R402, which was another one-base substitution. These results indicate that multiple types of allelic mutations in the Dw3 gene should be considered when identified or applied. Full article
(This article belongs to the Special Issue Research on Plant Genomics and Breeding: 2nd Edition)
Show Figures

Figure 1

13 pages, 3329 KiB  
Article
HybridQC: A SNP-Based Quality Control Application for Rapid Hybridity Verification in Diploid Plants
by Patrick Obia Ongom, Yakub Adebare Ajibade, Saba Baba Mohammed, Ibnou Dieng, Christian Fatokun and Ousmane Boukar
Genes 2024, 15(10), 1252; https://doi.org/10.3390/genes15101252 - 26 Sep 2024
Viewed by 1712
Abstract
Background/Objectives: Hybridity authentication is an important component of quality assurance and control (QA/QC) in breeding programs. Here, we introduce HybridQC v1.0, a QA/QC software program specially designed for parental purity and hybridity determination. HybridQC rapidly detects molecular marker polymorphism between parents of [...] Read more.
Background/Objectives: Hybridity authentication is an important component of quality assurance and control (QA/QC) in breeding programs. Here, we introduce HybridQC v1.0, a QA/QC software program specially designed for parental purity and hybridity determination. HybridQC rapidly detects molecular marker polymorphism between parents of a cross and utilizes only the informative markers for hybridity authentication. Methods: HybridQC is written in Python and designed with a graphical user interface (GUI) compatible with Windows operating systems. We demonstrated the QA/QC analysis workflow and functionality of HybridQC using Kompetitive allele-specific PCR (KASP) SNP genotype data for cowpea (Vigna unguiculata). Its performance was validated in other crop data, including sorghum (Sorghum bicolor) and maize (Zea mays). Results: The application efficiently analyzed low-density SNP data from multiple cowpea bi-parental crosses embedded in a single Microsoft Excel file. HybridQC is optimized for the auto-generation of key summary statistics and visualization patterns for marker polymorphism, parental heterozygosity, non-parental alleles, missing data, and F1 hybridity. An added graphical interface correctly depicted marker efficiency and the proportions of true F1 versus self-fertilized progenies in the data sets used. The output of HybridQC was consistent with the results of manual hybridity discernment in sorghum and maize data sets. Conclusions: This application uses QA/QC SNP markers to rapidly verify true F1 progeny. It eliminates the extensive time often required to manually curate and process QA/QC data. This tool will enhance the optimization efforts in breeding programs, contributing to increased genetic gain. Full article
(This article belongs to the Special Issue Feature Papers: Molecular Genetics and Genomics 2024)
Show Figures

Figure 1

15 pages, 1022 KiB  
Article
The Genetic Diversity of 69 Widely Used Chinese Sorghum Hybrids Released between the 1970s and 2010s
by Haisheng Yan, Na Lv, Feng Yin, Yubin Wang, Hao Niu, Xin Lv, Jianqiang Chu, Fangfang Fan, Lan Ju, Jizhen Yu, Fuyao Zhang and Junai Ping
Agronomy 2024, 14(10), 2180; https://doi.org/10.3390/agronomy14102180 - 24 Sep 2024
Viewed by 1274
Abstract
Sorghum has a long history of cultivation in China. In this study, we aimed to clarify the genetic relationships and genetic variation trends in widely used Chinese sorghum hybrids which were released from the 1970s to 2010s and attempted to analyze the changes [...] Read more.
Sorghum has a long history of cultivation in China. In this study, we aimed to clarify the genetic relationships and genetic variation trends in widely used Chinese sorghum hybrids which were released from the 1970s to 2010s and attempted to analyze the changes in sorghum breeding. A total of 257 alleles were detected by 51 polymorphic SSR markers among 69 widely used hybrids; an average of 5.04 alleles were detected by each marker. The average Shannon’s index and polymorphism information content (PIC) of markers were 1.39 and 0.70, respectively. Nei’s genetic diversity index continuously increased in four different breeding development stages (1973–1982, 1983–1992, 1993–2002, and 2003–2014). Genetic diversity gradually increased among the sorghum hybrids. Genetic similarity coefficients in the four breeding development stages first showed an increasing trend, and then a decreasing trend, finally stabilizing with an average value of 0.65. The genetic similarity changes in hybrids in early and late maturing areas were consistent at different breeding development stages. The genetic similarity coefficients in late maturing areas were constantly higher than those in the early maturing areas. This is related to China’s creative utilization of A2 cytoplasmic male sterile materials in the 1990s. A cluster analysis determined that 69 hybrids were divided into two groups, A and B. Group A could be further subdivided into four subgroups. These findings could provide a reference for parental selection and hybrid breeding in sorghum improvement programs. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

13 pages, 1622 KiB  
Article
Comparison of Mutations Induced by Different Doses of Fast-Neutron Irradiation in the M1 Generation of Sorghum (Sorghum bicolor)
by Na Yuan, Shuaiqiang Liang, Ling Zhou, Xingxing Yuan, Chunhong Li, Xin Chen and Han Zhao
Genes 2024, 15(8), 976; https://doi.org/10.3390/genes15080976 - 24 Jul 2024
Cited by 3 | Viewed by 1572
Abstract
Sorghum is an important C4 crop with various food and nonfood uses. Although improvements through hybridization and selection have been exploited, the introduction of genetic variation and the development of new genotypes in sorghum are still limited. Fast-neutron (FN) mutagenesis is a [...] Read more.
Sorghum is an important C4 crop with various food and nonfood uses. Although improvements through hybridization and selection have been exploited, the introduction of genetic variation and the development of new genotypes in sorghum are still limited. Fast-neutron (FN) mutagenesis is a very effective method for gene functional studies and to create genetic variability. However, the full spectrum of FN-induced mutations in sorghum is poorly understood. To address this, we generated an FN-induced mutant population from the inbred line ‘BTx623’ and sequenced 40 M1 seedlings to evaluate the mutagenic effects of FNs on sorghum. The results show that each line had an average of 43.7 single-base substitutions (SBSs), 3.7 InDels and 35.15 structural variations (SVs). SBSs accounted for approximately 90.0% of the total number of small mutations. Among the eight treatment groups, FN irradiation at a dose of 19 Gy generated the highest number of mutations. The ratio of transition/transversion ranged from 1.77 to 2.21, and the G/C to A/T transition was the most common substitution in all mutant lines. The distributions of the identified SBSs and InDels were similar and uneven across the genome. An average of 3.63 genes were mutated in each mutant line, indicating that FN irradiation resulted in a suitable density of mutated genes, which can be advantageous for improving elite material for one specific or a few traits. These results provide a basis for the selection of the suitable dose of mutagen and new genetic resources for sorghum breeding. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

22 pages, 3881 KiB  
Article
Unveiling the Antioxidant Arsenal of Colored Sorghum: A Path to Functional Food Development
by Kanti Meena, Dharmendra K. Meena, Jinu Jacob, Chandrasekhar Aruna and Kurella Bala Rama Saraswati Visarada
Agriculture 2024, 14(4), 566; https://doi.org/10.3390/agriculture14040566 - 2 Apr 2024
Cited by 3 | Viewed by 2546
Abstract
This study investigates the antioxidant potential of over 20 sorghum genotypes, spanning popular lines, inter-specific hybrids, and inter-generic crosses. Parameters such as free radical scavenging, flavonoid and phenolic content, and nitrous oxide (NO) neutralization were meticulously assessed. Leading the pack, ISC2020-C and SPV2612 [...] Read more.
This study investigates the antioxidant potential of over 20 sorghum genotypes, spanning popular lines, inter-specific hybrids, and inter-generic crosses. Parameters such as free radical scavenging, flavonoid and phenolic content, and nitrous oxide (NO) neutralization were meticulously assessed. Leading the pack, ISC2020-C and SPV2612 demonstrated exceptional DPPH and ABTS radical scavenging, highlighting their prowess against oxidative stress. ISC812-C stood out for its highest total phenolic content, linking phenolic abundance to overall antioxidant strength. Positive correlations between NO scavenging, DPPH, ABTS, and total phenolic content emphasized the synergistic role of bioactive components in colored sorghum grains. Principal Component Analysis (PCA) revealed distinct patterns, with ISC202-C, ISC812-W, 27B, and SPV2612 displaying potent antioxidant profiles. UPGMA analysis of solvent extracts unveiled clusters, hinting at untapped diversity in inter-specific and inter-generic crosses. ISC304-C shared similarities with SM2288-G, while ISC812-C formed a unique cluster, suggesting unexplored bioactive profiles. In conclusion, this exploration showcases colored sorghum grains as rich sources of bioactive antioxidants. Utilizing inter-specific and inter-generic hybridization strategies can enhance sorghum’s nutritional value, fostering the development of safe and functional food products. The research sets the stage for optimizing sorghum breeding and processing techniques, maximizing antioxidant potential for practical applications in human health and food security. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

13 pages, 1097 KiB  
Article
Evaluating and Predicting the Performance of Sorghum Lines in an Elite by Exotic Backcross-Nested Association Mapping Population
by Daniel Crozier, Noah D. Winans, Leo Hoffmann, Nikhil Y. Patil, Patricia E. Klein, Robert R. Klein and William L. Rooney
Plants 2024, 13(6), 879; https://doi.org/10.3390/plants13060879 - 19 Mar 2024
Cited by 2 | Viewed by 1710
Abstract
Maintaining or introducing genetic diversity into plant breeding programs is necessary for continual genetic gain; however, diversity at the cost of reduced performance is not something sought by breeders. To this end, backcross-nested association mapping (BC-NAM) populations, in which the recurrent parent is [...] Read more.
Maintaining or introducing genetic diversity into plant breeding programs is necessary for continual genetic gain; however, diversity at the cost of reduced performance is not something sought by breeders. To this end, backcross-nested association mapping (BC-NAM) populations, in which the recurrent parent is an elite line, can be employed as a strategy to introgress diversity from unadapted accessions while maintaining agronomic performance. This study evaluates (i) the hybrid performance of sorghum lines from 18 BC1-NAM families and (ii) the potential of genomic prediction to screen lines from BC1-NAM families for hybrid performance prior to phenotypic evaluation. Despite the diverse geographical origins and agronomic performance of the unadapted parents for BC1-NAM families, many BC1-derived lines performed significantly better in the hybrid trials than the elite recurrent parent, R.Tx436. The genomic prediction accuracies for grain yield, plant height, and days to mid-anthesis were acceptable, but the prediction accuracies for plant height were lower than expected. While the prediction accuracies increased when including more individuals in the training set, improvements tended to plateau between two and five lines per family, with larger training sets being required for more complex traits such as grain yield. Therefore, genomic prediction models can be optimized in a large BC1-NAM population with a relatively low fraction of individuals needing to be evaluated. These results suggest that genomic prediction is an effective method of pre-screening lines within BC1-NAM families prior to evaluation in extensive hybrid field trials. Full article
Show Figures

Figure 1

14 pages, 1611 KiB  
Article
Newly Developed Restorer Lines of Sorghum [Sorghum bicolor (L.) Moench] Resistant to Greenbug
by Evgeny E. Radchenko, Irina N. Anisimova, Maria K. Ryazanova, Ilya A. Kibkalo and Natalia V. Alpatieva
Plants 2024, 13(3), 425; https://doi.org/10.3390/plants13030425 - 31 Jan 2024
Viewed by 2119
Abstract
Eight lines of grain sorghum [Sorghum bicolor (L.) Moench], which can be used as a promising source material in heterotic hybrid breeding as pollen fertility restorers and donors of resistance to the greenbug (Schizaphis graminum Rondani), are characterized. The new restorer [...] Read more.
Eight lines of grain sorghum [Sorghum bicolor (L.) Moench], which can be used as a promising source material in heterotic hybrid breeding as pollen fertility restorers and donors of resistance to the greenbug (Schizaphis graminum Rondani), are characterized. The new restorer lines (R-lines) were developed by crossing the maternal sterile line Nizkorosloe 81s (CMS A1) with two lines selected from the grain sorghum collection accessions VIR-928 and VIR-929 as the paternal forms. The R-lines were genotyped using PCR markers, and also characterized by height, duration of the seedling–flowering period, and some of the technological properties of flour. With the use of microsatellite markers linked to the Rf genes and by hybridological analysis, it was shown that the new lines carry the dominant allele of the gene Rf2. The PCoA analysis demonstrated clear differences of each R-line from the parents. The genotypes of the new lines and their parental forms for the Rf2 locus were confirmed by applying three allele-specific codominant CAPS markers which detected SNPs in the candidate Rf2 gene. All new lines were highly fertile, as demonstrated by cytological analysis of acetocarmine-stained pollen preparations. A high resistance to the greenbug was demonstrated for each new R-line both in the laboratory and field conditions against a severe aphid infestation. Grain quality parameters such as protein content and dough rheological properties varied widely and were quite satisfactory in some R-lines. Characteristics common to all eight sorghum lines studied, such as the ability to restore pollen fertility in the F1 generation, good pollen quality, greenbug resistance, early ripening, spreading panicle, and low stature, allow us to recommend them for producing commercial F1 hybrids with satisfactory grain quality for both fodder and food purposes. Full article
(This article belongs to the Special Issue Genetics and Genomics of Crop Breeding and Improvement)
Show Figures

Figure 1

15 pages, 279 KiB  
Article
Research on Genotype Markers for Plant Height and Assisted Breeding of Key Sorghum Resources in China
by Yubin Wang, Na Lv, Feng Yin, Guoqi Duan, Hao Niu, Jianqiang Chu, Haisheng Yan, Lan Ju, Fangfang Fan, Xin Lv and Junai Ping
Genes 2024, 15(1), 83; https://doi.org/10.3390/genes15010083 - 9 Jan 2024
Cited by 2 | Viewed by 1919
Abstract
Dwarfing and the selection of optimal plant types constitute the primary focus of sorghum breeding. However, the lack of clarity regarding the gene types associated with plant height genes Dw1-Dw4 in the primary breeding materials has led to increased plant heights in improved [...] Read more.
Dwarfing and the selection of optimal plant types constitute the primary focus of sorghum breeding. However, the lack of clarity regarding the gene types associated with plant height genes Dw1-Dw4 in the primary breeding materials has led to increased plant heights in improved offspring of the same plant height type, resulting in unsatisfactory morphological traits. This study aimed to elucidate the gene types related to plant height in breeding materials, validate the regulatory mechanisms, and establish a material improvement system. The goal was to achieve molecular-marker-assisted dwarf breeding through the detection of plant height genes and the test cross verification of main Chinese sorghum materials. Using 38 main male sterile lines and 57 main restorer lines of grain sorghum as materials, three plant height genes were detected and classified. Ninety-five F1 generation hybrids of these materials, along with typical materials, were measured at the wax maturity stage. Test cross results demonstrated that the variation in dw1-dw3 genes in the breeding materials significantly influenced the plant height of hybrid offspring. The main male sterile lines in Chinese sorghum predominantly exhibited the “three-dwarf” type of Kafir and its improved lines, characterized by the genotype (Dw1-Dw2-dw3-dw4). On the other hand, restorer lines mainly showcased the improved “two-dwarf” (Dw1-Dw2-dw3-dw4) genotype of the Kaoliang/Caudatum subspecies, along with the “three-dwarf” type of some Kafir and its improved lines. The test materials predominantly contained dw3 genes, with relatively fewer dw1 genes in the restorer lines. The primary restorer materials lacked the dw2 gene, and dw2 significantly influenced plant type. The increased plant height in improved offspring of the same plant height type material was attributed to differences in gene types. Therefore, the enhancement of plant height in breeding materials should prioritize the use of different methods in conjunction with Dw1 and Dw2 classification. Full article
(This article belongs to the Section Plant Genetics and Genomics)
15 pages, 3185 KiB  
Article
A New Approach to Identifying Sorghum Hybrids Using UAV Imagery Using Multispectral Signature and Machine Learning
by Dthenifer Cordeiro Santana, Gustavo de Faria Theodoro, Ricardo Gava, João Lucas Gouveia de Oliveira, Larissa Pereira Ribeiro Teodoro, Izabela Cristina de Oliveira, Fábio Henrique Rojo Baio, Carlos Antonio da Silva Junior, Job Teixeira de Oliveira and Paulo Eduardo Teodoro
Algorithms 2024, 17(1), 23; https://doi.org/10.3390/a17010023 - 5 Jan 2024
Cited by 6 | Viewed by 2566
Abstract
Using multispectral sensors attached to unmanned aerial vehicles (UAVs) can assist in the collection of morphological and physiological information from several crops. This approach, also known as high-throughput phenotyping, combined with data processing by machine learning (ML) algorithms, can provide fast, accurate, and [...] Read more.
Using multispectral sensors attached to unmanned aerial vehicles (UAVs) can assist in the collection of morphological and physiological information from several crops. This approach, also known as high-throughput phenotyping, combined with data processing by machine learning (ML) algorithms, can provide fast, accurate, and large-scale discrimination of genotypes in the field, which is crucial for improving the efficiency of breeding programs. Despite their importance, studies aimed at accurately classifying sorghum hybrids using spectral variables as input sets in ML models are still scarce in the literature. Against this backdrop, this study aimed: (I) to discriminate sorghum hybrids based on canopy reflectance in different spectral bands (SB) and vegetation indices (VIs); (II) to evaluate the performance of ML algorithms in classifying sorghum hybrids; (III) to evaluate the best dataset input for the algorithms. A field experiment was carried out in the 2022 crop season in a randomized block design with three replications and six sorghum hybrids. At 60 days after crop emergence, a flight was carried out over the experimental area using the Sensefly eBee real time kinematic. The spectral bands (SB) acquired by the sensor were: blue (475 nm, B_475), green (550 nm, G_550), red (660 nm, R_660), Rededge (735 nm, RE_735) e NIR (790 nm, NIR_790). From the SB acquired, vegetation indices (VIs) were calculated. Data were submitted to ML classification analysis, in which three input settings (using only SB, using only VIs, and using SB + VIs) and six algorithms were tested: artificial neural networks (ANN), support vector machine (SVM), J48 decision trees (J48), random forest (RF), REPTree (DT) and logistic regression (LR, conventional technique used as a control). There were differences in the spectral signature of each sorghum hybrid, which made it possible to differentiate them using SBs and VIs. The ANN algorithm performed best for the three accuracy metrics tested, regardless of the input used. In this case, the use of SB is feasible due to the speed and practicality of analyzing the data, as it does not require calculations to perform the VIs. RF showed better accuracy when VIs were used as an input. The use of VIs provided the best performance for all the algorithms, as did the use of SB + VIs which provided good performance for all the algorithms except RF. Using ML algorithms provides accurate identification of the hybrids, in which ANNs using only SB and RF using VIs as inputs stand out (above 55 for CC, above 0.4 for kappa and around 0.6 for F-score). There were differences in the spectral signature of each sorghum hybrid, which makes it possible to differentiate them using wavelengths and vegetation indices. Processing the multispectral data using machine learning techniques made it possible to accurately differentiate the hybrids, with emphasis on artificial neural networks using spectral bands as inputs and random forest using vegetation indices as inputs. Full article
Show Figures

Figure 1

14 pages, 3630 KiB  
Article
The Breeding of Waxy Sorghum Using Traditional Three-Line Method and Marker-Assisted Selection
by Yong-Pei Wu, Yu-Chi Chang, Su-Chen Kuo, Dah-Jing Liao, Ting-Yu Shen, Hsin-I Kuo, Sheng-Wen Wang and Yu-Chien Tseng
Agriculture 2023, 13(11), 2054; https://doi.org/10.3390/agriculture13112054 - 26 Oct 2023
Cited by 2 | Viewed by 1903
Abstract
Sorghum (Sorghum bicolor) exhibits drought resistance and environmental adaptability, making it a crucial cereal crop for semi-arid regions. It has a wide range of uses, including as food, feed, brooms, alcohol production, and bioethanol. In particular, Taiwan imports nearly 50,000 tons [...] Read more.
Sorghum (Sorghum bicolor) exhibits drought resistance and environmental adaptability, making it a crucial cereal crop for semi-arid regions. It has a wide range of uses, including as food, feed, brooms, alcohol production, and bioethanol. In particular, Taiwan imports nearly 50,000 tons of sorghum annually, primarily for the production of sorghum liquor. However, the ideal raw material for high-quality sorghum liquor is waxy sorghum, and not all sorghum varieties imported or promoted in Taiwan are of this waxy type. Consequently, there is a shortage of sufficient waxy sorghum raw materials to meet the demands of the Taiwan market. The occurrence of waxy sorghum (wx) is caused by the mutation of granule-bound starch synthase I (GBBS I), and there are currently several known types of mutants, carrying different wxa, wxb, and wxc waxy alleles. Among them, wxc is a novel mutation type, and in native sorghum in Taiwan, individuals with the waxy allele wxc have been found. The three-line method is a commonly used breeding strategy, which simplifies the process of emasculation to obtain hybrid F1 offspring. In this study, imported sorghum variety Liangnuo No.1 (with male sterility), native glutinous sorghum variety SB6 from Taiwan (carrying the wxc waxy allele), and sorghum reference genome variety BTx623 were used as research materials. The goal was to use the three-line method to produce waxy sorghums, including the male sterile line (A-line), male sterile maintenance line (B-line), and fertility-restoring line (R-line). The breeding results showed that by using backcross breeding, molecular-assisted selection, and traditional field selection methods, high-quality three-line materials (A-, B-, R-lines, named CNA1, CNB1 CNR1, respectively) and F1 hybrid (CNH1) with favorable agronomic traits and yield quality were successfully obtained. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

21 pages, 4344 KiB  
Article
Wavelet Analysis of GPR Data for Belowground Mass Assessment of Sorghum Hybrid for Soil Carbon Sequestration
by Matthew Wolfe, Iliyana D. Dobreva, Henry A. Ruiz-Guzman, Da Huo, Brody L. Teare, Tyler Adams, Mark E. Everett, Michael Bishop, Russell Jessup and Dirk B. Hays
Remote Sens. 2023, 15(15), 3832; https://doi.org/10.3390/rs15153832 - 1 Aug 2023
Cited by 1 | Viewed by 2283
Abstract
Among many agricultural practices proposed to cut carbon emissions in the next 30 years is the deposition of carbon in soils as plant matter. Adding rooting traits as part of a sequestration strategy would result in significantly increased carbon sequestration. Integrating these traits [...] Read more.
Among many agricultural practices proposed to cut carbon emissions in the next 30 years is the deposition of carbon in soils as plant matter. Adding rooting traits as part of a sequestration strategy would result in significantly increased carbon sequestration. Integrating these traits into production agriculture requires a belowground phenotyping method compatible with high-throughput breeding (i.e., rapid, inexpensive, reliable, and non-destructive). However, methods that fulfill these criteria currently do not exist. We hypothesized that ground-penetrating radar (GPR) could fill this need as a phenotypic selection tool. In this study, we employed a prototype GPR antenna array to scan and discriminate the root and rhizome mass of the perennial sorghum hybrid PSH09TX15. B-scan level time/discrete frequency analyses using continuous wavelet transform were utilized to extract features of interest that could be correlated to the biomass of the subsurface roots and rhizome. Time frequency analysis yielded strong correlations between radar features and belowground biomass (max R −0.91 for roots and −0.78 rhizomes, respectively) These results demonstrate that continued refinement of GPR data analysis workflows should yield an applicable phenotyping tool for breeding efforts in contexts where selection is otherwise impractical. Full article
(This article belongs to the Special Issue Digital Farming with Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop