Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = solid shaft

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2806 KiB  
Article
Operating Solutions to Improve the Direct Reduction of Iron Ore by Hydrogen in a Shaft Furnace
by Antoine Marsigny, Olivier Mirgaux and Fabrice Patisson
Metals 2025, 15(8), 862; https://doi.org/10.3390/met15080862 (registering DOI) - 1 Aug 2025
Viewed by 252
Abstract
The production of iron and steel plays a significant role in the anthropogenic carbon footprint, accounting for 7% of global GHG emissions. In the context of CO2 mitigation, the steelmaking industry is looking to potentially replace traditional carbon-based ironmaking processes with hydrogen-based [...] Read more.
The production of iron and steel plays a significant role in the anthropogenic carbon footprint, accounting for 7% of global GHG emissions. In the context of CO2 mitigation, the steelmaking industry is looking to potentially replace traditional carbon-based ironmaking processes with hydrogen-based direct reduction of iron ore in shaft furnaces. Before industrialization, detailed modeling and parametric studies were needed to determine the proper operating parameters of this promising technology. The modeling approach selected here was to complement REDUCTOR, a detailed finite-volume model of the shaft furnace, which can simulate the gas and solid flows, heat transfers and reaction kinetics throughout the reactor, with an extension that describes the whole gas circuit of the direct reduction plant, including the top gas recycling set up and the fresh hydrogen production. Innovative strategies (such as the redirection of part of the bustle gas to a cooling inlet, the use of high nitrogen content in the gas, and the introduction of a hot solid burden) were investigated, and their effects on furnace operation (gas utilization degree and total energy consumption) were studied with a constant metallization target of 94%. It has also been demonstrated that complete metallization can be achieved at little expense. These strategies can improve the thermochemical state of the furnace and lead to different energy requirements. Full article
(This article belongs to the Special Issue Recent Developments and Research on Ironmaking and Steelmaking)
Show Figures

Graphical abstract

30 pages, 7377 KiB  
Article
Gas–Solid Coupling Dynamic Modeling and Transverse Vibration Suppression for Ultra-High-Speed Elevator
by Jiacheng Jiang, Chengjin Qin, Pengcheng Xia and Chengliang Liu
Actuators 2025, 14(7), 319; https://doi.org/10.3390/act14070319 - 25 Jun 2025
Viewed by 235
Abstract
When in operation, ultra-high-speed elevators encounter transverse vibrations due to uneven guide rails and airflow disturbances, which can greatly undermine passenger comfort. To alleviate these adverse effects and boost passenger comfort, a gas–solid coupling dynamic model for ultra-high-speed elevator cars is constructed, and [...] Read more.
When in operation, ultra-high-speed elevators encounter transverse vibrations due to uneven guide rails and airflow disturbances, which can greatly undermine passenger comfort. To alleviate these adverse effects and boost passenger comfort, a gas–solid coupling dynamic model for ultra-high-speed elevator cars is constructed, and a vibration suppression approach is proposed. To start with, the flow field model of the elevator car-shaft under different motion states is simulated, and the calculation formula of air excitation is derived. Next, by incorporating the flow field excitation into the four degrees of freedom dynamic model of the separation between the car and the frame, a transverse vibration model of the elevator car based on gas–solid coupling is established. Finally, an LQR controller is used to suppress elevator transverse vibration, and a multi-objective optimization algorithm is applied to optimize the parameters of the weight matrix to obtain the optimal solution of the LQR controller. A set of controllers with moderate control cost and system performance meeting the requirements was selected, and the effectiveness of the controller was verified. Compared with other methods, the proposed LQR-based method has greater advantages in suppressing the transverse vibration of ultra-high-speed elevators. This work provides an effective solution for enhancing the ride comfort of ultra-high-speed elevators and holds potential for application in the vibration control of high-speed transportation systems. Full article
(This article belongs to the Special Issue Recent Developments in Precision Actuation Technologies)
Show Figures

Figure 1

15 pages, 367 KiB  
Article
The Effects of Solid-State Fermentation by Aspergillus spp. on the Nutritional Profile of Selected Agro-Industrial by-Products as Potential Feedstuffs for Weaner Rabbits
by Adedoyin Titi Amos, Damilola Uthman Kareem, Tolulope Modupe Adeleye, Emmanuel Abiodun Adeyeye, Munirat Olaide Abatan, Olusola Sarah Ayorinde, Esther Oluwasayo Adeboye, Maicon Sbardella, Adeboye Olusesan Fafiolu, Abimbola Oladele Oso and Olusegun Mark Obafemi Idowu
Fermentation 2025, 11(6), 356; https://doi.org/10.3390/fermentation11060356 - 19 Jun 2025
Viewed by 646
Abstract
This study evaluates the effects of solid-state fermentation inoculated with Aspergillus spp. on the nutritional profile of selected agro-industrial by-products (AIBPs: cowpea shell, groundnut shell, soybean hull, and maize shaft). These AIBPs were assessed as potential feedstuffs in weaner rabbit diets, which often [...] Read more.
This study evaluates the effects of solid-state fermentation inoculated with Aspergillus spp. on the nutritional profile of selected agro-industrial by-products (AIBPs: cowpea shell, groundnut shell, soybean hull, and maize shaft). These AIBPs were assessed as potential feedstuffs in weaner rabbit diets, which often exhibit digestive disorders when introduced to highly lignified feed ingredients. The AIBPs were milled to a particle size of 2 mm, sterilized, and subjected to fermentation with Aspergillus spp. under microaerophilic conditions at 28 ± 2 °C for 10 days. Samples (four replicates per treatment) were analyzed for chemical constituents (mineral and proximate composition, anti-nutritional factors, and fibre fractions) before and after fermentation. Digestible energy and digestibility coefficient of gross energy were calculated. Data were subjected to two-way analysis of variance (ANOVA). There was an increase (p < 0.05) in mineral profile, proximate composition, digestible energy, digestibility coefficient of gross energy, and dry matter, with a reduction (p < 0.05) in crude fibre, fibre fractions, and anti-nutritional factors. It was concluded that fermentation with Aspergillus spp. improved the nutritional value of the selected agro-industrial by-products. Therefore, fermented materials possess a better nutritional profile to be used in feeding programs for weaner rabbits. This will ensure sustainable animal production and add value to agricultural waste, which would otherwise constitute an environmental nuisance. Full article
Show Figures

Figure 1

23 pages, 4810 KiB  
Article
Optimization Design and Dynamic Characteristics Analysis of Self-Responsive Anti-Falling Device for Inclined Shaft TBMs
by Han Peng, Can Yang, Linjian Shangguan, Lianhui Jia, Bing Li, Chuang Xu and Wenjuan Yang
Machines 2025, 13(6), 531; https://doi.org/10.3390/machines13060531 - 18 Jun 2025
Viewed by 371
Abstract
To address the frequent failure of anti-falling devices in inclined shaft tunnel boring machines caused by cyclic loading and fatigue during construction, this study proposes an optimized self-responsive anti-falling device design. Based on the operational conditions of the “Tianyue” tunnel boring machine, a [...] Read more.
To address the frequent failure of anti-falling devices in inclined shaft tunnel boring machines caused by cyclic loading and fatigue during construction, this study proposes an optimized self-responsive anti-falling device design. Based on the operational conditions of the “Tianyue” tunnel boring machine, a three-dimensional model was constructed using SolidWorks. Finite element static analysis was employed to validate structural integrity, revealing a maximum stress of 461.19 MPa with a safety factor of 1.71. Explicit dynamic simulations further demonstrated the dynamic penetration process of propellant-driven telescopic columns through concrete lining walls, achieving a penetration depth exceeding 500 mm. The results demonstrate that the device can respond to falling signals within 12 ms and activate mechanical locking. The Q690D steel structure exhibits a deformation of 5.543 mm with favorable stress distribution, meeting engineering safety requirements. The energy release characteristics of trinitrotoluene propellant and material compatibility were systematically verified. Compared to conventional hydraulic support systems, this design offers significant improvements in response speed, maintenance cost reduction, and environmental adaptability, providing an innovative solution for fall protection in complex geological environments. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

20 pages, 7137 KiB  
Article
Design and Analysis of a Serial Position-Controlled Variable Stiffness Rotating Mechanism Based on Multi-Stage Torsional Compliant Mechanisms
by Kai Wen and Guanglei Wu
Actuators 2025, 14(5), 236; https://doi.org/10.3390/act14050236 - 8 May 2025
Viewed by 624
Abstract
This work presents the design and experimental validation of a position-controlled rotating mechanism featuring multi-stage variable stiffness. Before designing the overall mechanism, three different compliant mechanisms, based on flexible beams, are parametrically optimized using a SolidWorks–Ansys co-simulation technique. The flexible beams are composed [...] Read more.
This work presents the design and experimental validation of a position-controlled rotating mechanism featuring multi-stage variable stiffness. Before designing the overall mechanism, three different compliant mechanisms, based on flexible beams, are parametrically optimized using a SolidWorks–Ansys co-simulation technique. The flexible beams are composed of multiple straight segments, Bezier curves, and multiple arc segments. The corresponding torque–deflection curves of the compliant mechanisms are collected and fitted into analytical expressions, from which the stiffness equation varying with the angular position is derived for stiffness regulation. A combination of three-stage compliant mechanisms connected in serial is realized to prototype the physical mechanism, which can have three different stiffness ranges of the output shaft. The maximum stiffness is about nine times higher than the lowest one, leading to a broader bandwidth of varying stiffness, which can make the mechanism more adaptive to the external payloads for safety consideration. Experimental measurements are carried out, and the comparison shows a good agreement between the experimental and simulation results, which experimentally validated the design concept. The compact and simple structure, as well as the multi-stage variable stiffness ranges, implies high adaptability of the designed mechanism. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

18 pages, 7965 KiB  
Article
Research on the Lubrication State of the Contact Interface Under the Tilt and Skew State of the Roller of the Aviation Bearing
by Lina Zhou, Xiaofeng Yang, Zhigang Luo, Jingjing Zhang, Zhen Li and Xiaodong Wang
Lubricants 2025, 13(4), 174; https://doi.org/10.3390/lubricants13040174 - 10 Apr 2025
Viewed by 575
Abstract
The lubrication behavior and mechanical characteristics of the main bearing area of an aero-engine main shaft bearing determine the reliability and life of the main shaft bearing. In aero-engine main shaft bearings, the lubricant not only plays the role of lubrication but also [...] Read more.
The lubrication behavior and mechanical characteristics of the main bearing area of an aero-engine main shaft bearing determine the reliability and life of the main shaft bearing. In aero-engine main shaft bearings, the lubricant not only plays the role of lubrication but also affects the dynamic characteristics of the bearing; therefore, if the lubricant drag force is insufficient, it will lead to rolling body slipping. Slipping not only affects the reliability of the bearing operation but also will make the temperature of the contact area instantaneously increase, leading to the occurrence of gluing, scraping and other lubrication failure phenomena in the main bearing area. A lubricant under the shear conditions of traction characteristics is actually the external manifestation of rheological properties. Rheological properties are one of the elastic fluid power lubrication theories and are an important part of the study. Elasto-hydrodynamic lubrication theory of the oil film pressure, film thickness and temperature and solid domains interact to form a thermal–fluid–solid coupling relationship; this coupling relationship affects the main bearing area of the lubrication behavior and mechanical properties, thus affecting the lubrication state of the bearings and dynamic characteristics. With the continuous improvement of aero-engine performance requirements for main shaft bearings, it is of great significance to carry out a coupling study of the lubrication behavior and mechanical properties of the bearing contact zone under heavy load, high speed and high temperature conditions to improve the service performance, reliability and life of the bearings. Full article
Show Figures

Figure 1

15 pages, 4159 KiB  
Review
A Review of Gravity Energy Storage
by Ronglu Wang, Lu Zhang, Chenyang Shi and Chunqiu Zhao
Energies 2025, 18(7), 1812; https://doi.org/10.3390/en18071812 - 3 Apr 2025
Cited by 1 | Viewed by 2861
Abstract
Gravity energy storage, a technology based on gravitational potential energy conversion, offers advantages including long lifespan, environmental friendliness, and low maintenance costs, demonstrating broad application prospects in renewable energy integration and grid peak regulation. This paper reviews the technical principles, characteristics, and application [...] Read more.
Gravity energy storage, a technology based on gravitational potential energy conversion, offers advantages including long lifespan, environmental friendliness, and low maintenance costs, demonstrating broad application prospects in renewable energy integration and grid peak regulation. This paper reviews the technical principles, characteristics, and application progress of liquid gravity energy storage (LGES), like pumped hydro storage (PHS) and solid gravity energy storage (SGES) systems—tower-based (T-SGES), shaft-type (S-SGES), rail-mounted (R-SGES), and mountain gravity energy storage (M-SGES). PHS, the most mature technology, is widely deployed for large-scale energy storage but faces significant geographical constraints. T-SGES and R-SGES exhibit higher flexibility for diverse terrains, while S-SGES leverage abandoned mines for resource reuse. Despite advantages such as high round-trip efficiency and extended lifecycle, challenges remain in efficiency optimization, high initial investments, and land utilization. Future development of gravity energy storage will require technological innovation, intelligent dispatch systems, and policy support to enhance economic viability and accelerate commercialization. Full article
Show Figures

Figure 1

16 pages, 9704 KiB  
Article
Research on the Microstructure and Properties of QT400-18 Laser Cladding Remanufacturing
by Jiakai Yan, Peng Dong, Hongxia Zhang, Xujing Niu, Chen Liang and Kewei Li
Metals 2025, 15(3), 312; https://doi.org/10.3390/met15030312 - 13 Mar 2025
Viewed by 599
Abstract
To address the failure issue of local wear in QT400-18 transition shafts used in high-speed trains, laser cladding remanufacturing of a ductile cast iron surface was carried out using 45 wt.%Fe + 55 wt.% Inconel625 powder. The phase composition, microhardness, interfacial bonding strength, [...] Read more.
To address the failure issue of local wear in QT400-18 transition shafts used in high-speed trains, laser cladding remanufacturing of a ductile cast iron surface was carried out using 45 wt.%Fe + 55 wt.% Inconel625 powder. The phase composition, microhardness, interfacial bonding strength, and wear resistance of the cladding layer were analyzed. The results show that the cladding layer is primarily composed of a γ (Ni, Fe) solid solution and a small amount of eutectic carbides. The microstructure of the cladding layer forms columnar dendrites, cellular dendrites, and equiaxed crystals from bottom to top. The microstructure of the single-layer, single-pass interface consists of ferrite, acicular martensite, and ledeburite, while the multi-layer, multi-pass interface consists of ferrite, granular pearlite, and discontinuous ledeburite. The average microhardness of the single-layer, single-pass cladding layer is approximately 350 HV0.5, and the hardness of the fine-grained and coarse-grained regions of the multi-layer, multi-pass cladding layer is approximately 330 HV0.5 and 250 HV0.5, respectively. The interfacial bonding strength reaches 96.5% of the base material strength. The wear mechanism of the cladding layer is mainly mild abrasive wear, with significantly better wear resistance than the base material. Full article
(This article belongs to the Special Issue Development of Metallic Material Laser Additive Manufacturing)
Show Figures

Figure 1

14 pages, 5669 KiB  
Article
Numerical and Experimental Study of Packed Bed Heat Transfer on the Preheating of Manganese Ore with Air up to 600 °C
by Sifiso Nation Sambo, Lina Hockaday, Tumisang Seodigeng and Quinn Gareth Reynolds
Metals 2025, 15(3), 269; https://doi.org/10.3390/met15030269 - 28 Feb 2025
Viewed by 826
Abstract
This work studies heat transport in the fluid–solid interface of a packed bed to demonstrate the feasibility of preheating lumpy manganese ores to 600 °C with air at 750 °C. Preheated manganese ores aim to reduce furnace energy consumption during smelting in submerged [...] Read more.
This work studies heat transport in the fluid–solid interface of a packed bed to demonstrate the feasibility of preheating lumpy manganese ores to 600 °C with air at 750 °C. Preheated manganese ores aim to reduce furnace energy consumption during smelting in submerged arc furnaces to produce manganese ferroalloys. The preheating process was experimentally studied in a pilot-scale shaft-type column. The air was heated to 750 °C and used as a heat transfer fluid to heat a packed bed of manganese ore from room temperature to 600 °C. A one-dimensional three-phase (manganese ore, air, and the column wall) numerical model was developed to simulate the preheating process. The energy balance of the three phases was carried across a finite volume using the volume averaging technique. Numerical schemes were applied, and non-dimensional parameters were introduced before applying numerical techniques to solve the systems of linear equations. Python NumPy and SciPy modules were used for the computation of the packed bed temperature fields. Temperature data from the preheating tests were used for model validation. The model prediction of the transfer process agreed with experimental results to least square errors of less than 25 °C. Data from experimental measurements confirmed the feasibility of using air as the transfer fluid in the preheating of manganese ore. Detailed temperature field data generated from the model can be used for the sizing of manganese ore preheating units and the implementation of control protocols for the preheating process. Full article
Show Figures

Figure 1

12 pages, 2383 KiB  
Article
Experimental Verification and Multi-Physics-Based Computer-Aided Engineering Simulation Methods for Dynamic Characteristics Analysis of Gas Foil Bearings at Lift-Off State
by Tai-Yuan Yu and Pei-Jen Wang
Lubricants 2025, 13(2), 75; https://doi.org/10.3390/lubricants13020075 - 10 Feb 2025
Cited by 1 | Viewed by 990
Abstract
This paper presents an analysis of the dynamic characteristics observed and studied during the startup process of a gas foil radial bearing. It utilizes a comparison of both experimental data and three-dimensional fluid–solid interaction computational fluid dynamics simulations to investigate a gas foil [...] Read more.
This paper presents an analysis of the dynamic characteristics observed and studied during the startup process of a gas foil radial bearing. It utilizes a comparison of both experimental data and three-dimensional fluid–solid interaction computational fluid dynamics simulations to investigate a gas foil bearing with three bump-type pads. The analytical model employs the fluid–structure interaction finite element method to examine the relationship between the components and the thin working fluid film within the bearing. This analysis was conducted under various operational conditions, including ambient pressure and temperature, shaft rotational speed, and the load applied to the shaft within the bearing. The foil structure of the bearing was modeled by representing the top and bump foils as a series of linear springs that are interconnected with the rigid housing. Meanwhile, the hydrodynamic pressure distribution acting on the top foil was modeled as a gas film operating under steady-state lubrication conditions. The comprehensive three-dimensional multi-physics model was developed using a commercial computer-aided engineering package, enabling independent finite element calculations for both fluid and solid domains. Following these calculations, the model exchanged analysis results across the interface between domains, allowing simulations to continue until the system achieved a quasi-steady state. An in-house experimental system was designed to evaluate the performance of the gas foil bearing under different working conditions, including the load applied to the shaft and the rotational speed. The experiment investigated the operational state of a gas foil radial bearing under ambient pressure (1 bar), ambient temperature (303 K), rotational speeds ranging from 1.5 to 9.5 krpm, and a load of 0.5602 kgw. Some operational conditions of the bearing were defined as boundary condition inputs for the simulation model. The model’s results, notably the predicted lift-off rotational speed of the bearing, show strong alignment with results from in-house experiments. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

26 pages, 7066 KiB  
Article
Comprehensive Thermodynamic Performance Evaluation of a Novel Dual-Shaft Solid Oxide Fuel Cell Hybrid Propulsion System
by Jinghui Xu, Xizhen Wang, Zepeng Wang, Kaiqiang Yang, Xueshun Li and Yongjun Zhao
Aerospace 2025, 12(1), 59; https://doi.org/10.3390/aerospace12010059 - 16 Jan 2025
Cited by 3 | Viewed by 1256
Abstract
With the rapid growth of air travel, reducing carbon emissions in aviation is imperative. Electric aircraft play a key role in achieving sustainable aviation, especially for large civil aircraft, where reducing emissions, improving the fuel efficiency, and enabling flexible power regulation are essential. [...] Read more.
With the rapid growth of air travel, reducing carbon emissions in aviation is imperative. Electric aircraft play a key role in achieving sustainable aviation, especially for large civil aircraft, where reducing emissions, improving the fuel efficiency, and enabling flexible power regulation are essential. This study proposes a dual-shaft, separated-exhaust fuel cell hybrid aircraft propulsion system (HAPS), using a solid oxide fuel cell (SOFC) to replace the conventional turbine-driven compressor. The independent speed control of the high- and low-pressure spools is realized via a power distribution system. A thermodynamic model is developed, and performance evaluations, including parametric, exergy, and sensitivity analyses, are conducted. At the design point, the system delivers 36.304 kN thrust, 16.775 g/(kN·s) specific fuel consumption, 15.931 MW SOFC power, and 54.759% SOFC efficiency. The exergy analysis highlights the optimization of components like the heat exchanger and fan to reduce energy losses. The sensitivity analysis reveals that the spool speeds and fuel utilization significantly impact the performance. The findings provide valuable insights into optimizing control strategies and offer a novel, efficient, and low-carbon power solution for aviation, supporting the industry’s transition towards sustainability. Full article
(This article belongs to the Special Issue Aircraft Electric Power System: Design, Control, and Maintenance)
Show Figures

Figure 1

20 pages, 5879 KiB  
Article
Thermal Characteristics Analysis and Experimental Study of Magnetic Fluid in Sealing Gap
by Xinyue He, Zhenggui Li, Jie Qing, Jie Min, Chuanshi Cheng and Changrong Shen
Lubricants 2025, 13(1), 33; https://doi.org/10.3390/lubricants13010033 - 13 Jan 2025
Viewed by 840
Abstract
The widespread application of magnetic fluid seals in mechanical devices highlights the significant impact of temperature on the stability of these sealing systems. This paper investigates the magnetic field characteristics and thermal properties of magnetic fluid in sealing devices through both numerical simulations [...] Read more.
The widespread application of magnetic fluid seals in mechanical devices highlights the significant impact of temperature on the stability of these sealing systems. This paper investigates the magnetic field characteristics and thermal properties of magnetic fluid in sealing devices through both numerical simulations and experimental methods. The effects of rotational speed, magnetic fluid solid content, and heating power on the magnetic fluid temperature of the magnetic sealing device were analyzed. The numerical simulation findings indicate that the viscosity the of magnetic fluid significantly contributes to enhanced energy dissipation, while the temperature of the magnetic fluid rises with increasing rotational speed. The initial-phase transition point of the magnetic fluid and its correlation with phase transition volume relative to shaft rotational speed was determined. The experimental results show that the magnetic fluid temperature rises continuously and the time to reach stability increases with the increase in power, and the same is true for the magnetic fluid with a different solid content. Under the same power, the temperature variation is not large, and the magneto-liquid variation is consistent with that in the numerical simulation. This research provides theoretical insights for designing magnetic fluid sealing devices. Full article
(This article belongs to the Special Issue Recent Advances in Sealing Technologies)
Show Figures

Figure 1

13 pages, 4162 KiB  
Article
Field Test on the Application of Industrial Solid Waste in the Grouting Process of Pre-Bored Grouted Planted Pile
by Junjie Ma, Xiaonan Gong, Xunjian Hu, Gang Lei and Rihong Zhang
Buildings 2025, 15(1), 29; https://doi.org/10.3390/buildings15010029 - 25 Dec 2024
Cited by 1 | Viewed by 831
Abstract
In the installation of pre-bored grouted planted (PGP) piles and other composite pile foundations, cement is commonly used in the grouting stage. However, the cement-production process generates significant CO2 emissions, which are not favorable for achieving low-carbon societal goals. This study explores [...] Read more.
In the installation of pre-bored grouted planted (PGP) piles and other composite pile foundations, cement is commonly used in the grouting stage. However, the cement-production process generates significant CO2 emissions, which are not favorable for achieving low-carbon societal goals. This study explores the use of industrial solid waste (mineral powder and gypsum powder) mixed with cement as a grouting material in test pile TP1, while traditional cement grout was used in test pile TP2. Both test piles were instrumented with optical fiber sensors along their shafts. The findings indicate that the ultimate load-bearing capacity of TP1 was approximately 93% of that of TP2, signifying a 7% reduction when mineral and gypsum powder were added to cement. Additionally, TP1’s peak surface friction in various soil layers ranged from 1.29 to 2.79 times that of the bored pile, whereas TP2’s peak surface friction was about 1.42 to 3.10 times higher. The cement consumption for TP1 was roughly 65% less than for TP2, and the cost of grouting materials for TP1 was reduced by 35%. This study confirms that utilizing solid waste in the grouting stage of PGP piles is feasible, and optimizing material proportions may enhance future performance. Full article
(This article belongs to the Special Issue New Reinforcement Technologies Applied in Slope and Foundation)
Show Figures

Figure 1

19 pages, 11868 KiB  
Article
Tribological Investigation of Polymer Composite Dynamic Shaft Seals in Extraterrestrial Applications
by Ádám Kalácska, Alexander Coen, Jean Carlos Poletto, Patrick De Baets and Gábor Kalácska
Lubricants 2024, 12(12), 451; https://doi.org/10.3390/lubricants12120451 - 18 Dec 2024
Cited by 3 | Viewed by 1100
Abstract
Polymer seals are utilized in various engineering applications to prevent leakage and contamination. The study investigates the wear and friction behavior of PTFE-based dynamic rotary seals, targeting their usage in space applications. Pin-on-disc dry sliding wear tests were performed with 0.5 MPa contact [...] Read more.
Polymer seals are utilized in various engineering applications to prevent leakage and contamination. The study investigates the wear and friction behavior of PTFE-based dynamic rotary seals, targeting their usage in space applications. Pin-on-disc dry sliding wear tests were performed with 0.5 MPa contact pressure and 0.2 m/s sliding velocity combining different lip seal (PTFE, PTFE+GF+MoS2), packing (PTFE, PTFE+Aramid fiber+solid lubricant) and shaft materials (34CrNiMo6, PEEK) involving third-body lunar (LHS-1) and Martian regolith (MGS-1) simulants. To understand the different influences of extraterrestrial regolith simulants compared to commonly encountered abrasives on Earth, quartz sand was selected as a reference. Quartz soil resulted in lower wear rates but a similar coefficient of friction to other regoliths. In the case of lip seals, testing with LHS-1 on PEEK and testing with MGS-1 on steel resulted in the most severe wear. Post-mortem surface analysis revealed the effect of external abrasive particles on the wear process and the transfer layer formation. The surface analysis confirmed that both lunar and Martian regolith simulants resulted in significant embedded particles. Based on the wear performance results, the lip seals performed better, but installation with an external packing could further aid the tribosystem. Full article
(This article belongs to the Special Issue Modeling and Characterization of Wear)
Show Figures

Figure 1

13 pages, 6488 KiB  
Article
Microstructure and Tribological Properties of FeCrCoMnSix High-Entropy Alloy Coatings
by Shuling Zhang, Di Jiang, Shengdi Sun and Bo Zhang
Coatings 2024, 14(12), 1476; https://doi.org/10.3390/coatings14121476 - 22 Nov 2024
Cited by 2 | Viewed by 1149
Abstract
For shaft parts, 45 steel has been widely used due to its favorable mechanical properties and low cost. However, the relatively low wear resistance of 45 steel limits its application. In this work, high-entropy alloy of FeCrCoMnSix (x = 0, 0.3, 0.6, [...] Read more.
For shaft parts, 45 steel has been widely used due to its favorable mechanical properties and low cost. However, the relatively low wear resistance of 45 steel limits its application. In this work, high-entropy alloy of FeCrCoMnSix (x = 0, 0.3, 0.6, 0.9, 1) coatings were prepared on the surface of a 45 steel substrate using laser cladding technology to improve the wear performance of 45 steel. The effect of the Si element on the microstructure and tribological property of these coatings is investigated. The results show that the structure of FeCrCoMn coatings is mainly an FCC + HCP dual-phase solid solution, grown in equiaxial crystals. When a small amount of Si (x = 0.3) is added, the BCC phase is generated in the coating; meanwhile, the microstructure is transformed into the divorced eutectic character. When the content of Si is x = 0.6, the eutectic structure is promoted, and the microstructure is refined and becomes denser. When the content of Si increases to x = 0.9 and 1.0, the metal silicate phase containing Mn and Cr is formed due to the precipitation of supersaturated solid solution. At the same time, the microstructure is transformed into dendritic crystals due to the composition super-cooling effect by the excessive Si element, inducing serious element segregation. The hardness of FeCrCoMnSix high-entropy alloy coatings increases to 425.8 HV when the Si content is 0.6 under the synergistic effect of the solid-solution and dense eutectic structure. The friction and wear analysis shows that the friction and wear mechanisms of the coating are mainly abrasive wear and oxidative wear. The coefficient of friction and the wear rate of the FeCrCoMnSix high-entropy alloy coating decreases to 0.202 and 4.06 × 10−5 mm3/N·m, respectively, when the content of Si is 0.6 due to the dense microstructure and high hardness. The above studies prove that the presence of Si in the FeCrCoMnSi0.6 high-entropy alloy coating induces a refined eutectic microstructure and improves the coating’s anti-wear properties by increasing hardness and decreasing the coefficient of friction. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

Back to TopTop