Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (332)

Search Parameters:
Keywords = soft tissue material properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1175 KB  
Review
Metallogels as Supramolecular Platforms for Biomedical Applications: A Review
by Pasqualina Liana Scognamiglio, Diego Tesauro and Giovanni N. Roviello
Processes 2025, 13(11), 3671; https://doi.org/10.3390/pr13113671 (registering DOI) - 13 Nov 2025
Abstract
Metallogels, three-dimensional supramolecular networks formed through metal–ligand coordination, have emerged as a new generation of adaptive soft materials with promising biomedical potential. By integrating the structural stability and tuneable functionality of metal centres with the dynamic self-assembly of organic gelators, these systems exhibit [...] Read more.
Metallogels, three-dimensional supramolecular networks formed through metal–ligand coordination, have emerged as a new generation of adaptive soft materials with promising biomedical potential. By integrating the structural stability and tuneable functionality of metal centres with the dynamic self-assembly of organic gelators, these systems exhibit exceptional mechanical strength, responsiveness, and multifunctionality. Recent studies demonstrate their diverse applications in drug delivery, anticancer therapy, antimicrobial and wound healing treatments, biosensing, bioimaging, and tissue engineering. Interestingly, the coordination of metal ions such as Ru(II), Zn(II), Fe(III), and lanthanides enables the creation of self-healing, thixotropic, and stimuli-responsive gels capable of controlled release and therapeutic action. Moreover, the incorporation of luminescent or redox-active metals adds optical and electronic properties suitable for diagnostic and monitoring purposes. This collection summarizes the most recent advances in the field, highlighting how rational molecular design and coordination chemistry contribute to the development of multifunctional, biocompatible, and responsive metallogels that bridge the gap between materials science and medicine. Full article
Show Figures

Figure 1

18 pages, 2232 KB  
Article
Additive Manufacturing to Mimic the Nonlinear Mechanical Behavior of Cardiac Soft Tissue
by Sara Valvez, M. Oliveira-Santos, L. Gonçalves, A. P. Piedade and A. M. Amaro
Polymers 2025, 17(21), 2949; https://doi.org/10.3390/polym17212949 - 5 Nov 2025
Viewed by 340
Abstract
Soft biological tissues display highly nonlinear and anisotropic mechanical behavior, which is critical to their physiological function. Replicating these mechanical properties using engineered materials and additive manufacturing represents a significant challenge in biomedical engineering, particularly for surgical simulation, device development, and preclinical testing. [...] Read more.
Soft biological tissues display highly nonlinear and anisotropic mechanical behavior, which is critical to their physiological function. Replicating these mechanical properties using engineered materials and additive manufacturing represents a significant challenge in biomedical engineering, particularly for surgical simulation, device development, and preclinical testing. The left atrial appendage (LAA) was selected since it plays a central role in thrombus formation during atrial fibrillation, significantly contributing to cardioembolic stroke. This study proposes a framework for reproducing the nonlinear stress–strain behavior of soft tissue using 3D-printed models. The methodology integrates experimental material selection with optimization of key printing parameters to ensure structural reliability and functional mechanical performance. Two polymers—polyurethane (TPU) and a thermoplastic with elastomer-type behavior (TPE)—were selected for their tunable hardness and elasticity. A parametric study was conducted to investigate the effects of Shore A hardness (60A to 100A), infill density (0% to 100%), and external shell number (zero to two) on the tensile performance of printed models. Mechanical testing was performed to extract stress–strain curves and evaluate the mechanical response. The practical implications of this study are significant, demonstrating the potential of additive manufacturing for anatomical reproduction and replicating functional mechanical properties in soft tissue models. Full article
Show Figures

Figure 1

19 pages, 897 KB  
Review
Evolution of Anchor Polymer Systems Used in Arthroscopic Shoulder Surgery—A Comprehensive Review
by Eun-Ji Yoon, Kyeong-Eon Kwon and Jong-Ho Kim
Bioengineering 2025, 12(11), 1146; https://doi.org/10.3390/bioengineering12111146 - 23 Oct 2025
Viewed by 366
Abstract
Arthroscopic shoulder surgery has undergone significant evolution over the past decades, particularly in the materials used for suture anchors. The transition from metallic to bioabsorbable polymer anchors has revolutionized soft tissue-to-bone repair procedures, offering distinct advantages in terms of biocompatibility, imaging compatibility, and [...] Read more.
Arthroscopic shoulder surgery has undergone significant evolution over the past decades, particularly in the materials used for suture anchors. The transition from metallic to bioabsorbable polymer anchors has revolutionized soft tissue-to-bone repair procedures, offering distinct advantages in terms of biocompatibility, imaging compatibility, and reduced complications. This comprehensive review examines the current state-of-the-art in anchor polymers used in arthroscopic shoulder surgery and their biocomposite formulations. Additionally, we explore the role of biostable polymers and emerging technologies in anchor design. The review synthesizes clinical outcomes, degradation kinetics, biocompatibility profiles, and mechanical properties of various anchor polymer systems. We also discuss the challenges associated with each material type, including osteolysis, cyst formation, premature degradation, and osseointegration. Recent advances in biocomposite anchors demonstrate promising solutions to address these limitations, offering controlled degradation rates and enhanced osteoconductivity. This review provides clinicians and researchers with a comprehensive understanding of anchor polymer technologies, their clinical applications, and future directions in arthroscopic shoulder surgery. Nevertheless, potential publication bias and heterogeneity among studies should be considered when interpreting comparative data. Full article
Show Figures

Figure 1

19 pages, 3539 KB  
Article
Biocompatible Interpenetrating Network Hydrogels with Dually Cross-Linked Polyol
by Ulygbek B. Tuleuov, Alexander L. Kwiatkowski, Akerke T. Kazhmuratova, Lyazzat Zh. Zhaparova, Yermauyt Nassikhatuly, Miroslav Šlouf, Andrey V. Shibaev, Viktor I. Petrenko, Senentxu Lanceros-Méndez and Yerkeblan M. Tazhbayev
Polymers 2025, 17(20), 2737; https://doi.org/10.3390/polym17202737 - 13 Oct 2025
Viewed by 672
Abstract
Modern tissue regeneration strategies rely on soft biocompatible materials with adequate mechanical properties to support the growing tissues. Polymer hydrogels have been shown to be available for this purpose, as their mechanical properties can be controllably tuned. In this work, we introduce interpenetrating [...] Read more.
Modern tissue regeneration strategies rely on soft biocompatible materials with adequate mechanical properties to support the growing tissues. Polymer hydrogels have been shown to be available for this purpose, as their mechanical properties can be controllably tuned. In this work, we introduce interpenetrating polymer networks (IPN) hydrogels with improved elasticity due to a dual cross-linking mechanism in one of the networks. The proposed hydrogels contain entangled polymer networks of covalently cross-linked poly(ethylene glycol) methacrylate/diacrylate (PEGMA/PEGDA) and poly(vinyl alcohol) (PVA) with two types of physical cross-links—microcrystallites and tannic acid (TA). Rheological measurements demonstrate the synergistic enhancement of the elastic modulus of the single PEGMA/PEGDA network just upon the addition of PVA, since the entanglements between the two components are formed. Moreover, the mechanical properties of IPNs can be independently tuned by varying the PEGMA/PEGDA ratio and the concentration of PVA. Subsequent freezing–thawing and immersion in the TA solution of IPN hydrogels further increase the elasticity because of the formation of the microcrystallites and OH-bonds with TA in the PVA network, as evidenced by X-ray diffraction and ATR FTIR-spectroscopy, respectively. Structural analysis by cryogenic scanning electron microscopy and light microscopy reveals a microphase-separated morphology of the hydrogels. It promotes extensive contact between PVA macromolecules, but nevertheless enables the formation of a 3D network. Such structural arrangement results in the enhanced mechanical performance of the proposed hydrogels, highlighting their potential use for tissue engineering. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

36 pages, 8183 KB  
Review
Recent Advances in Conductive Composite Hydrogels for Electronic Skin Applications
by Yiqing Yuan, Yilong Zhang, Haiyang Duan, Yitao Zhang, Lijun Lu, Artem Emel’yanov, Alexander S. Pozdnyakov, Pengcheng Zhu and Yanchao Mao
Gels 2025, 11(10), 822; https://doi.org/10.3390/gels11100822 - 13 Oct 2025
Viewed by 1111
Abstract
Electronic skins (E-skins) are the integration of intelligent wearable sensors that can collect human physiological, motion, or environmental parameters in real-time through flexible, sensitive materials. The performance of E-skins depends on the selection of materials to a large extent. Hydrogel materials are an [...] Read more.
Electronic skins (E-skins) are the integration of intelligent wearable sensors that can collect human physiological, motion, or environmental parameters in real-time through flexible, sensitive materials. The performance of E-skins depends on the selection of materials to a large extent. Hydrogel materials are an excellent candidate for E-skin preparation due to their tissue-like softness and biocompatibility. However, their low electrical conductivity, weak mechanical strength, and environmental instability seriously hinder high-fidelity signal acquisition and reliable operation in practical applications. To overcome these bottlenecks, conductive composite hydrogels have emerged as a promising alternative material. The unique properties of conductive composite hydrogels, such as high stretchability, self-healing ability, and adjustable electrical conductivity, address the relevant issues of traditional hydrogels in wearable applications. This review focuses on conductive composite hydrogels for wearable E-skins. Firstly, the types, characteristics, and preparation strategies of hydrogel matrix materials are introduced. Subsequently, the performance regulation mechanisms of key conductive fillers on composite hydrogels are discussed. Then, the application progress in electrophysiological signal monitoring, human–machine interaction, and human motion monitoring is reviewed. Finally, the current challenges and future development directions of hydrogel-based E-skins are prospected, aiming to provide comprehensive material and fabrication references for the practical application of composite hydrogel in electronic skins. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Figure 1

15 pages, 3126 KB  
Article
A Finite-Element Model of Seated Human Body Representing the Distribution of Static Pressures and Dynamic Forces over a Rigid Seat During Vertical Vibration for Sitting Postures with Various Thigh Contact
by Weitan Yin, Shaoqing Liu, Jianying Liang, Chi Liu, Yi Qiu, Xu Zheng, Linfeng Sun and Shan Huang
Appl. Sci. 2025, 15(19), 10716; https://doi.org/10.3390/app151910716 - 4 Oct 2025
Viewed by 385
Abstract
Overall sitting comfort is related to both static pressure distribution and dynamic human–seat interaction during vibration. This study proposes a simplified finite-element model of the seated human body that could potentially be used to assess overall sitting comfort. The static pressures of the [...] Read more.
Overall sitting comfort is related to both static pressure distribution and dynamic human–seat interaction during vibration. This study proposes a simplified finite-element model of the seated human body that could potentially be used to assess overall sitting comfort. The static pressures of the seated human body measured on a rigid seat with different footrest layouts, together with the overall and localised apparent masses of the human body measured in a previous study, were used for model validation. The proposed model contained homogeneous soft tissues of the buttocks and thighs and rigid bodies connected to represent the torso. The tissue geometry was adjusted to match the measured anthropometry. Viscoelastic material was assigned to the tissues, and the properties were identified by fitting the modelled pressures and apparent masses to the measurement results. The proposed model was capable of reproducing static pressures and dynamic forces over the seat for the three sitting postures. Full article
Show Figures

Figure 1

34 pages, 3132 KB  
Review
Innovative Applications of Hydrogels in Contemporary Medicine
by Maciej Rybicki, Karolina Czajkowska, Agata Grochowska, Bartłomiej Białas, Michał Dziatosz, Igor Karolczak, Julia Kot, Radosław Aleksander Wach and Karol Kamil Kłosiński
Gels 2025, 11(10), 798; https://doi.org/10.3390/gels11100798 - 3 Oct 2025
Cited by 1 | Viewed by 1717
Abstract
Hydrogels are hydrophilic, soft polymer networks with high water content and mechanical properties that are tunable; they are also biocompatible. Therefore, as biomaterials, they are of interest to modern medicine. In this review, the main applications of hydrogels in essential clinical applications are [...] Read more.
Hydrogels are hydrophilic, soft polymer networks with high water content and mechanical properties that are tunable; they are also biocompatible. Therefore, as biomaterials, they are of interest to modern medicine. In this review, the main applications of hydrogels in essential clinical applications are discussed. Chemical, physical, or hybrid crosslinking of either synthetic or natural polymers allow for the precise control of hydrogels’ physicochemical properties and their specific characteristics for certain applications, such as stimuli-responsiveness, drug retention and release, and biodegradability. Hydrogels are employed in gynecology to regenerate the endometrium, treat infections, and prevent pregnancy. They show promise in cardiology in myocardial infarction therapy through injectable scaffolds, patches in the heart, and medication delivery. In rheumatoid arthritis, hydrogels act as drug delivery systems, lubricants, scaffolds, and immunomodulators, ensuring effective local treatment. They are being developed, among other applications, as antimicrobial coatings for stents and radiotherapy barriers for urology. Ophthalmology benefits from the use of hydrogels in contact lenses, corneal bandages, and vitreous implants. They are used as materials for chemoembolization, tumor models, and drug delivery devices in cancer therapy, with wafers of Gliadel presently used in clinics. Applications in abdominal surgery include hydrogel-coated meshes for hernia repair or Janus-type hydrogels to prevent adhesions and aid tissue repair. Results from clinical and preclinical studies illustrate hydrogels’ diversity, though problems remain with mechanical stability, long-term safety, and mass production. Hydrogels are, in general, next-generation biomaterials for regenerative medicine, individualized treatment, and new treatment protocols. Full article
(This article belongs to the Special Issue Polymer Hydrogels and Networks)
Show Figures

Figure 1

46 pages, 3900 KB  
Review
Beyond Packaging: A Perspective on the Emerging Applications of Biodegradable Polymers in Electronics, Sensors, Actuators, and Healthcare
by Reshma Kailas Kumar, Chaoying Wan and Paresh Kumar Samantaray
Materials 2025, 18(19), 4485; https://doi.org/10.3390/ma18194485 - 26 Sep 2025
Viewed by 918
Abstract
Biopolymers have emerged as a transformative class of materials that reconcile high-performance functionality with environmental stewardship. Their inherent capacity for controlled degradation and biocompatibility has driven rapid advancements across electronics, sensing, actuation, and healthcare. In flexible electronics, these polymers serve as substrates, dielectrics, [...] Read more.
Biopolymers have emerged as a transformative class of materials that reconcile high-performance functionality with environmental stewardship. Their inherent capacity for controlled degradation and biocompatibility has driven rapid advancements across electronics, sensing, actuation, and healthcare. In flexible electronics, these polymers serve as substrates, dielectrics, and conductive composites that enable transient devices, reducing electronic waste without compromising electrical performance. Within sensing and actuation, biodegradable polymer matrices facilitate the development of fully resorbable biosensors and soft actuators. These systems harness tailored degradation kinetics to achieve temporal control over signal transduction and mechanical response, unlocking applications in in vivo monitoring and on-demand drug delivery. In healthcare, biodegradable polymers underpin novel approaches in tissue engineering, wound healing, and bioresorbable implants. Their tunable chemical architectures and processing versatility allow for precise regulation of mechanical properties, degradation rates, and therapeutic payloads, fostering seamless integration with biological environments. The convergence of these emerging applications underscores the pivotal role of biodegradable polymers in advancing sustainable technology and personalized medicine. Continued interdisciplinary research into polymer design, processing strategies, and integration techniques will accelerate commercialization and broaden the impact of these lower eCO2 value materials across diverse sectors. This perspective article comments on the innovation in these sectors that go beyond the applications of biodegradable materials in packaging applications. Full article
(This article belongs to the Special Issue Recent Developments in Bio-Based and Biodegradable Plastics)
Show Figures

Graphical abstract

34 pages, 8883 KB  
Review
Next-Generation Natural Hydrogels in Oral Tissue Engineering
by Mariana Chelu, Monica Popa and José María Calderón Moreno
Pharmaceutics 2025, 17(10), 1256; https://doi.org/10.3390/pharmaceutics17101256 - 25 Sep 2025
Viewed by 1068
Abstract
Hydrogels have emerged as promising biomaterials for oral tissue regeneration thanks to their high-water content, excellent biocompatibility, and ability to mimic native tissue environments. These versatile materials can be tailored to support cell adhesion, proliferation, and differentiation, making them suitable for repairing both [...] Read more.
Hydrogels have emerged as promising biomaterials for oral tissue regeneration thanks to their high-water content, excellent biocompatibility, and ability to mimic native tissue environments. These versatile materials can be tailored to support cell adhesion, proliferation, and differentiation, making them suitable for repairing both soft and hard oral tissues. When engineered from natural polymers and enriched with bioactive agents, hydrogels offer enhanced regenerative potential. Biopolymer-based hydrogels, derived from materials such as chitosan, alginate, collagen, hyaluronic acid, and gelatin, are particularly attractive due to their biodegradability, bioactivity, and structural similarity to the extracellular matrix, creating an optimal microenvironment for cell growth and tissue remodeling. Recent innovations have transformed these systems into multifunctional platforms capable of supporting targeted regeneration of periodontal tissues, alveolar bone, oral mucosa, dental pulp, and dentin. Integration of bioactive molecules, particularly essential oils, bio-derived constituents, cells, or growth factors, has introduced intrinsic antimicrobial, anti-inflammatory, and antioxidant functionalities, addressing the dual challenge of promoting tissue regeneration while at the same time attenuating microbial contamination in the oral environment. This review explores the design strategies, material selection, functional properties, and biomedical applications in periodontal therapy, guided tissue regeneration, and implant integration of natural polymer-based hydrogels enriched with bioactive factors, highlighting their role in promoting oral tissue regeneration. In addition, we discuss current challenges related to mechanical stability, degradation rates, and clinical translation, while highlighting future directions for optimizing these next-generation bioactive hydrogel systems in regenerative dentistry. Full article
Show Figures

Graphical abstract

25 pages, 5195 KB  
Article
Mechanical Testing of 3D-Printed Pediatric Trachea-Shaped Specimens: A Suitability Study
by Marta Cecchitelli, Giorgia Fiori, Annalisa Genovesi, Massimiliano Barletta, Luca Borro, Jan Galo, Aurelio Secinaro, Salvatore Andrea Sciuto and Andrea Scorza
Appl. Sci. 2025, 15(19), 10352; https://doi.org/10.3390/app151910352 - 24 Sep 2025
Viewed by 536
Abstract
In the absence of standard procedures for testing 3D-printed soft polymers, an experimental protocol was proposed to assess the suitability of Flexible 80A Resin for a pediatric trachea anatomical 3D model for surgical simulation. Eighteen specimens printed via stereolithography are involved, including anatomical, [...] Read more.
In the absence of standard procedures for testing 3D-printed soft polymers, an experimental protocol was proposed to assess the suitability of Flexible 80A Resin for a pediatric trachea anatomical 3D model for surgical simulation. Eighteen specimens printed via stereolithography are involved, including anatomical, cylindrical, and dog-bone shapes, to investigate the geometry effect on measured properties. Static tensile tests revealed that using standardized dog-bone specimens as a reference for the material’s Young’s modulus leads to a mean absolute percentage error (MAPE) up to 50% compared to anatomical specimens. Measurement uncertainty combined repeatability with input errors, and the ANOVA test confirmed the need for dedicated mechanical measurements when evaluating complex 3D-printed geometries. The study concludes the suitability of selected material: the average elastic modulus of anatomical specimens was 4.75 MPa, closely matching values reported for tracheal tissue in the literature, with a MAPE of only 2%. Dynamic mechanical tests showed trachea-like viscoelasticity: anatomical specimens were consistently stiffer and more dissipative than cylindrical ones. Creep tests confirmed the viscoelastic behavior simulating airway time scales. The anatomical specimens exhibit faster local relaxation, while cylindrical ones show slower long-term relaxation, both modeled by a two-element generalized Maxwell model (R2 = 0.99 and 0.98). Full article
Show Figures

Figure 1

25 pages, 2114 KB  
Review
Functional Hydrogels: A Promising Platform for Biomedical and Environmental Applications
by Mohzibudin Z. Quazi, Aaquib Saeed Quazi, Youngseo Song and Nokyoung Park
Int. J. Mol. Sci. 2025, 26(18), 9066; https://doi.org/10.3390/ijms26189066 - 17 Sep 2025
Viewed by 1155
Abstract
Functional hydrogels are a growing class of soft materials. Functional hydrogels are characterized by their three-dimensional (3D) polymeric network and high water-retention capacity. Functional hydrogels are deliberately engineered with specific chemical groups, stimuli-responsive motifs, or crosslinking strategies that impart targeted biomedical or environmental [...] Read more.
Functional hydrogels are a growing class of soft materials. Functional hydrogels are characterized by their three-dimensional (3D) polymeric network and high water-retention capacity. Functional hydrogels are deliberately engineered with specific chemical groups, stimuli-responsive motifs, or crosslinking strategies that impart targeted biomedical or environmental roles (e.g., drug delivery, pollutant removal). Their capacity to imitate the extracellular matrix, and their biocompatibility and customizable physicochemical properties make them highly suitable for biomedical and environmental applications. In contrast, non-functional hydrogels are defined as passive polymer networks that primarily serve as water-swollen matrices without such application-oriented modifications. Recent progress includes stimuli-responsive hydrogel designs. Stimuli such as pH, temperature, enzymes, light, etc., enable controlled drug delivery and targeted therapy. Moreover, hydrogels have shown great potential in tissue engineering and regenerative medicine. The flexibility and biofunctionality of hydrogels improve cell adhesion and tissue integration. Functional hydrogels are being explored for water purification by heavy metal ion removal and pollutant detection. The surface functionalities of hydrogels have shown selective binding and adsorption, along with porous structures that make them effective for environmental remediation. However, hydrogels have long been postulated as potential candidates to be used in clinical advancements. The first reported clinical trial was in the 1980s; however, their exploration in the last two decades has still struggled to achieve positive results. In this review, we discuss the rational hydrogel designs, synthesis techniques, application-specific performance, and the hydrogel-based materials being used in ongoing clinical trials (FDA–approved) and their mechanism of action. We also elaborate on the key challenges remaining, such as biocompatibility, mechanical stability, scalability, and future directions, to unlocking their multifunctionality and responsiveness. Full article
(This article belongs to the Special Issue Rational Design and Application of Functional Hydrogels)
Show Figures

Figure 1

27 pages, 17846 KB  
Review
Emerging Biomedical Applications of Sustainable Cellulose Nanocrystal-Incorporated Hydrogels: A Scoping Review
by Dinuki M. Seneviratne, Eliza J. Whiteside, Louisa C. E. Windus, Paulomi (Polly) Burey, Raelene Ward and Pratheep K. Annamalai
Gels 2025, 11(9), 740; https://doi.org/10.3390/gels11090740 - 15 Sep 2025
Viewed by 863
Abstract
Cellulose nanocrystals (CNCs), derived from renewable cellulose sources, have emerged as a versatile class of nanomaterial with exceptional mechanical strength, tuneable surface chemistry and inherent biocompatibility. In the scenario of contemporary commercial hydrogel products, which are expensive and rely on synthetic materials, the [...] Read more.
Cellulose nanocrystals (CNCs), derived from renewable cellulose sources, have emerged as a versatile class of nanomaterial with exceptional mechanical strength, tuneable surface chemistry and inherent biocompatibility. In the scenario of contemporary commercial hydrogel products, which are expensive and rely on synthetic materials, the sustainable origin and unique physicochemical properties have positioned CNCs as promising sustainable functional building blocks for next-generation hydrogels in biomedical applications. Over the past decade, CNC-based hydrogels have gained momentum as soft biomaterials capable of interacting with diverse tissue types, predominantly demonstrated through in vitro cell line studies. This review critically examines the current landscape of research on biomedical applications of CNC-based hydrogels, focusing on their biomedical utility across 22 systematically screened studies. It revealed applications spanning around bone and cartilage tissue engineering, wound healing, medical implants and sensors, and drug delivery. We highlight the predominance of microcrystalline cellulose as the CNC source and sulfuric acid hydrolysis as the preferred extraction method, with several studies incorporating surface modifications to enhance functionality. Despite growing interest, there remains a lack of data for transitioning towards human clinical studies and commercialisation. Hence, this review highlights the pressing need for scalable, sustainable, and affordable CNC-based hydrogel systems that can democratise access to advanced biomedical technologies. Full article
(This article belongs to the Special Issue Gel Film and Its Wide Range of Applications)
Show Figures

Graphical abstract

44 pages, 14233 KB  
Review
Janus Hydrogels: Design, Properties, and Applications
by Wei Guo, Mahta Mirzaei and Lei Nie
Gels 2025, 11(9), 717; https://doi.org/10.3390/gels11090717 - 8 Sep 2025
Viewed by 1276
Abstract
Janus hydrogels have attracted significant attention in materials science and biomedicine owing to their anisotropic dual-faced architecture. Unlike conventional homogeneous hydrogels, these heterogeneous systems exhibit structural and functional asymmetry, endowing them with remarkable adaptability to dynamic environmental stimuli. Their inherent biocompatibility, biodegradability, and [...] Read more.
Janus hydrogels have attracted significant attention in materials science and biomedicine owing to their anisotropic dual-faced architecture. Unlike conventional homogeneous hydrogels, these heterogeneous systems exhibit structural and functional asymmetry, endowing them with remarkable adaptability to dynamic environmental stimuli. Their inherent biocompatibility, biodegradability, and unique “adhesion–antiadhesion” duality have demonstrated exceptional potential in biomedical applications ranging from advanced wound healing and internal tissue adhesion prevention to cardiac tissue regeneration. Furthermore, “hydrophilic–hydrophobic” Janus configurations, synergistically integrated with tunable conductivity and stimuli-responsiveness, showcase the great potential in emerging domains, including wearable biosensing, high-efficiency desalination, and humidity regulation systems. This review systematically examines contemporary synthesis strategies for Janus hydrogels using various technologies, including layer-by-layer, self-assembly, and one-pot methods. We elucidate the properties and applications of Janus hydrogels in biomedicine, environmental engineering, and soft robotics, and we emphasize recent developments in this field while projecting future trajectories and challenges. Full article
(This article belongs to the Special Issue Structure and Properties of Functional Hydrogels (2nd Edition))
Show Figures

Figure 1

13 pages, 1290 KB  
Systematic Review
Clinical Outcomes of Zirconia Abutments for Implant Dentistry: Systematic Review
by Andrea Scribante, Dario De Martis, Filippo Vezzoni, Maria Mirando, Domenico Sfondrini and Paolo Zampetti
Prosthesis 2025, 7(5), 113; https://doi.org/10.3390/prosthesis7050113 - 2 Sep 2025
Viewed by 2181
Abstract
Background: Dental implants have become integral in restoring partially or completely edentulous patients due to their reported long-term success. While titanium remains the primary material for implants and abutments due to its mechanical properties and biocompatibility, zirconia has emerged as a promising [...] Read more.
Background: Dental implants have become integral in restoring partially or completely edentulous patients due to their reported long-term success. While titanium remains the primary material for implants and abutments due to its mechanical properties and biocompatibility, zirconia has emerged as a promising alternative, especially for aesthetic regions. This systematic review aimed to assess whether zirconia abutments present a rational alternative to titanium in modern implantology, focusing on their mechanical and clinical performances. Method: The workflow used for this review included the PRISMA checklist. The eligibility criteria included various study types, with a preference given to clinical trials. The search strategy employed the PICO model, including a large number of relevant studies, and online research was carried on the online databases PubMed and Scopus, with “implant” AND “abutment” AND “zirconia” and “zirconia abutment” AND “mechanical properties” used as search strings. Results: Six clinical studies were included with an adequate follow-up and patient cohort; they suggest that while zirconia abutments offer improved aesthetics and biological integration, concerns persist regarding their mechanical properties, particularly regarding their fatigue resistance and connection stability. In vitro studies have revealed differences between titanium and zirconia abutments, with the latter showing greater susceptibility to fatigue-induced deformation and fretting wear. The clinical outcomes, however, demonstrate favourable long-term performance, with zirconia abutments promoting healthy soft tissue conditions. CAD/CAM technologies enable the precise customization of zirconia abutments, enhancing their compatibility and aesthetic outcomes. Conclusions: Although this review faces limitations due to the scarcity of comparative studies and varied methodologies, it underscores the potential of zirconia abutments in implantology. In conclusion, while zirconia abutments offer promising advantages, the careful consideration of patient-specific factors and the long-term outcomes is warranted for their optimal utilisation in implant-supported prostheses. Full article
(This article belongs to the Special Issue Prosthesis: Spotlighting the Work of the Editorial Board Members)
Show Figures

Figure 1

14 pages, 1557 KB  
Article
Modulating CT Attenuation of Polyvinyl Alcohol Cryogels for Individualized Training Phantoms in Interventional Radiology: A Proof-of-Concept Study
by Martin Volk, Ivan Vogt, Marilena Georgiades, Johanna Menhorn, Mathias Becker, Georg Rose, Maciej Pech and Oliver S. Grosser
Gels 2025, 11(8), 664; https://doi.org/10.3390/gels11080664 - 20 Aug 2025
Viewed by 669
Abstract
Anthropomorphic CT phantoms are essential training tools for interventional radiology. Given the high technical demands and stringent safety requirements in this field, realistic CT phantoms are vital simulation tools that support effective hands-on training, procedural planning, and risk mitigation. However, commercially available phantom [...] Read more.
Anthropomorphic CT phantoms are essential training tools for interventional radiology. Given the high technical demands and stringent safety requirements in this field, realistic CT phantoms are vital simulation tools that support effective hands-on training, procedural planning, and risk mitigation. However, commercially available phantom geometries are limited in their scope. This study investigates the use of polyvinyl alcohol (PVA) to fabricate customizable training phantoms. PVA, a non-toxic material, can be processed into PVA cryogels (PVA-C) with tissue-like mechanical properties. We modified PVA-C (10 wt.% PVA) by incorporating various additives to adjust X-ray attenuation and achieve Hounsfield units (HUs) similar to different soft tissues. HU values were measured at X-ray tube voltages of 70, 120, and 150 kV. The inclusion of barium sulfate (e.g., U = 120 kV; 0.1–2 wt.%: 33.29 ± 5.45–323.72 ± 12.64 HU) and iohexol (e.g., U = 120 kV; 0.1–2 wt.%: 26.05 ± 4.74–161.99 ± 5.69 HU) significantly increased HU values. Iohexol produced more homogeneous HU distributions than barium sulfate and cellulose derivatives, with the latter having air gaps and inconsistencies. The tested formulations encompassed a wide range of soft tissue densities, with HU values varying significantly across the energy range (p < 0.001). While cellulose derivatives showed variable HU modulation, their primary role appears to be in modifying phantom texture and morphology rather than precise attenuation control. In conclusion, PVA-C demonstrates strong potential for use in interventional radiology training phantoms. Further studies may enhance phantom realism by replicating tissue textures, for example, through the incorporation of cellulose-based substances. Full article
(This article belongs to the Special Issue Gel-Related Materials: Challenges and Opportunities (2nd Edition))
Show Figures

Graphical abstract

Back to TopTop