Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = smooth GIoU loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4310 KiB  
Article
Smooth GIoU Loss for Oriented Object Detection in Remote Sensing Images
by Xiaoliang Qian, Niannian Zhang and Wei Wang
Remote Sens. 2023, 15(5), 1259; https://doi.org/10.3390/rs15051259 - 24 Feb 2023
Cited by 35 | Viewed by 3957
Abstract
Oriented object detection (OOD) can more accurately locate objects with an arbitrary direction in remote sensing images (RSIs) compared to horizontal object detection. The most commonly used bounding box regression (BBR) loss in OOD is smooth L1 loss, which requires the precondition that [...] Read more.
Oriented object detection (OOD) can more accurately locate objects with an arbitrary direction in remote sensing images (RSIs) compared to horizontal object detection. The most commonly used bounding box regression (BBR) loss in OOD is smooth L1 loss, which requires the precondition that spatial parameters are independent of one another. This independence is an ideal that is not achievable in practice. To avoid this problem, various kinds of IoU-based BBR losses have been widely used in OOD; however, their relationships with IoUs are approximately linear. Consequently, the gradient value, i.e., the learning intensity, cannot be dynamically adjusted with the IoU in these cases, which restricts the accuracy of object location. To handle this problem, a novel BBR loss, named smooth generalized intersection over union (GIoU) loss, is proposed. The contributions it makes include two aspects. First of all, smooth GIoU loss can employ more appropriate learning intensities in the different ranges of GIoU values to address the above problem and the design scheme of smooth GIoU loss can be generalized to other IoU-based BBR losses. Secondly, the existing computational scheme of GIoU loss can be modified to fit OOD. The ablation study of smooth GIoU loss validates the effectiveness of its design scheme. Comprehensive comparisons performed on two RSI datasets demonstrate that the proposed smooth GIoU loss is superior to other BBR losses adopted by existing OOD methods and can be generalized for various kinds of OOD methods. Furthermore, the core idea of smooth GIoU loss can be generalized to other IoU-based BBR losses. Full article
Show Figures

Figure 1

22 pages, 6084 KiB  
Article
Automobile Fine-Grained Detection Algorithm Based on Multi-Improved YOLOv3 in Smart Streetlights
by Fan Yang, Deming Yang, Zhiming He, Yuanhua Fu and Kui Jiang
Algorithms 2020, 13(5), 114; https://doi.org/10.3390/a13050114 - 2 May 2020
Cited by 7 | Viewed by 4339
Abstract
Upgrading ordinary streetlights to smart streetlights to help monitor traffic flow is a low-cost and pragmatic option for cities. Fine-grained classification of vehicles in the sight of smart streetlights is essential for intelligent transportation and smart cities. In order to improve the classification [...] Read more.
Upgrading ordinary streetlights to smart streetlights to help monitor traffic flow is a low-cost and pragmatic option for cities. Fine-grained classification of vehicles in the sight of smart streetlights is essential for intelligent transportation and smart cities. In order to improve the classification accuracy of distant cars, we propose a reformed YOLOv3 (You Only Look Once, version 3) algorithm to realize the detection of various types of automobiles, such as SUVs, sedans, taxis, commercial vehicles, small commercial vehicles, vans, buses, trucks and pickup trucks. Based on the dataset UA-DETRAC-LITE, manually labeled data is added to improve the data balance. First, data optimization for the vehicle target is performed to improve the generalization ability and position regression loss function of the model. The experimental results show that, within the range of 67 m, and through scale optimization (i.e., by introducing multi-scale training and anchor clustering), the classification accuracies of trucks and pickup trucks are raised by 26.98% and 16.54%, respectively, and the overall accuracy is increased by 8%. Secondly, label smoothing and mixup optimization is also performed to improve the generalization ability of the model. Compared with the original YOLO algorithm, the accuracy of the proposed algorithm is improved by 16.01%. By combining the optimization of the position regression loss function of GIOU (Generalized Intersection Over Union), the overall system accuracy can reach 92.7%, which improves the performance by 21.28% compared with the original YOLOv3 algorithm. Full article
(This article belongs to the Special Issue Algorithms for Smart Cities)
Show Figures

Figure 1

Back to TopTop