Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (202)

Search Parameters:
Keywords = sludge pyrolysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2162 KiB  
Article
Simultaneous Decontamination for Ammonia Nitrogen and Phosphate Efficiently by Crystal Morphology MgO-Coated Functional Biochar Derived from Sludge and Sunflower Stalk
by Zhiwei Li, Jingxin Huang, Weizhen Zhang, Hao Yu and Yin Wang
Toxics 2025, 13(7), 577; https://doi.org/10.3390/toxics13070577 - 9 Jul 2025
Viewed by 370
Abstract
Eutrophication driven by nitrogen and phosphorus discharge remains a critical global environmental challenge. This study developed a sustainable strategy for synergistic nutrient removal and recovery by fabricating MgO-coated biochar (Mg-MBC600) through co-pyrolysis of municipal sludge and sunflower stalk (300–700 °C). Systematic investigations revealed [...] Read more.
Eutrophication driven by nitrogen and phosphorus discharge remains a critical global environmental challenge. This study developed a sustainable strategy for synergistic nutrient removal and recovery by fabricating MgO-coated biochar (Mg-MBC600) through co-pyrolysis of municipal sludge and sunflower stalk (300–700 °C). Systematic investigations revealed temperature-dependent adsorption performance, with optimal nutrient removal achieved at 600 °C pyrolysis. The Mg-MBC600 composite exhibited enhanced physicochemical properties, including a specific surface area of 156.08 m2/g and pore volume of 0.1829 cm3/g, attributable to magnesium-induced structural modifications. Advanced characterization confirmed the homogeneous dispersion of MgO nanoparticles (~50 nm) across carbon matrices, forming active sites for chemisorption via electron-sharing interactions. The maximum adsorption capacities of Mg-MBC600 for nitrogen and phosphorus reached 84.92 mg/L and 182.27 mg/L, respectively. Adsorption kinetics adhered to the pseudo-second-order model, indicating rate-limiting chemical bonding mechanisms. Equilibrium studies demonstrated hybrid monolayer–multilayer adsorption. Solution pH exerted dual-phase control: acidic conditions (pH 3–5) favored phosphate removal through Mg3(PO4)2 precipitation, while neutral–alkaline conditions (pH 7–8) promoted NH4+ adsorption via MgNH4PO4 crystallization. XPS analysis verified that MgO-mediated chemical precipitation and surface complexation dominated nutrient immobilization. This approach establishes a circular economy framework by converting waste biomass into multifunctional adsorbents, simultaneously addressing sludge management challenges and enabling eco-friendly wastewater remediation. Full article
(This article belongs to the Special Issue Environmental Study of Waste Management: Life Cycle Assessment)
Show Figures

Figure 1

14 pages, 4223 KiB  
Article
Scalable Preparation of High-Performance Sludge Biochar with Magnetic for Acid Red G Degradation by Activating Peroxymonosulfate
by Feiya Xu, Yajun Ji, Lu Yu, Mengjie Ma, Dingcan Ma and Junguo Wei
Catalysts 2025, 15(7), 637; https://doi.org/10.3390/catal15070637 - 30 Jun 2025
Viewed by 363
Abstract
The sludge pyrolysis technology for biochar production delivers dual environmental benefits, addressing both sludge disposal challenges and enabling environmental remediation through the utilization of the resultant biochar. However, the complex multi-step procedures and low catalyst output in previous studies constrain the practical implementation [...] Read more.
The sludge pyrolysis technology for biochar production delivers dual environmental benefits, addressing both sludge disposal challenges and enabling environmental remediation through the utilization of the resultant biochar. However, the complex multi-step procedures and low catalyst output in previous studies constrain the practical implementation of this technology. A facile sludge pyrolysis method was constructed to achieve the batch production of municipal sludge biochar (MSB) in this study. Compared to municipal sludge (MS), the resultant MSB showed a higher BET surface area, more well-developed pore channel architecture, and plentiful active sites for activating peroxymonosulfate (PMS). Under the optimized conditions (CMSB = CPMS = 0.2 g/L), 93.34% of Acid Red G (ARG, 20 mg/L) was degraded after 10 min, posing an excellent rate constant of 0.278 min−1. Additionally, MSB demonstrated excellent broad pH adaptability, ion interference resistance, reusability, and recyclability for ARG elimination. It was primary Fe sites that excited PMS to generate O2 and Fe-oxo species (FeIV=O) for ARG degradation. The reaction process exhibited minimal heavy metal leaching, indicating limited environmental risk. Therefore, the practical applicability of the sludge biochar production, coupled with its scalable manufacturing capacity and exceptional catalytic activity, collectively demonstrated that this study established a viable pyrolysis methodology for municipal sludge, offering critical insights for sludge disposal and resource reutilization. Full article
Show Figures

Figure 1

35 pages, 1686 KiB  
Review
State-of-the-Art Decarbonization in Sludge Thermal Treatments for Electrical Power Generation Considering Sensors and the Application of Artificial Intelligence
by Rafael Ninno Muniz, William Gouvêa Buratto, Rodolfo Cardoso, Carlos Frederico de Oliveira Barros, Ademir Nied and Gabriel Villarrubia Gonzalez
Water 2025, 17(13), 1946; https://doi.org/10.3390/w17131946 - 29 Jun 2025
Viewed by 564
Abstract
This study explores innovative strategies for decarbonizing sludge thermal treatments used in electrical power generation, with a focus on integrating sensor technologies and artificial intelligence. Sludge, a carbon-intensive byproduct of wastewater treatment, presents both environmental challenges and opportunities for energy recovery. The paper [...] Read more.
This study explores innovative strategies for decarbonizing sludge thermal treatments used in electrical power generation, with a focus on integrating sensor technologies and artificial intelligence. Sludge, a carbon-intensive byproduct of wastewater treatment, presents both environmental challenges and opportunities for energy recovery. The paper provides a comprehensive analysis of thermal processes such as pyrolysis, gasification, co-combustion, and emerging methods, including hydrothermal carbonization and supercritical water gasification. It evaluates their carbon mitigation potential, energy efficiency, and economic feasibility, emphasizing the importance of catalyst selection, carbon dioxide capture techniques, and reactor optimization. The role of real-time monitoring via sensors and predictive modeling through artificial intelligence (AI) is highlighted as critical for enhancing process control and sustainability. Case studies and recent advances are discussed to outline future pathways for integrating thermal treatment with circular economy principles. This work contributes to sustainable waste-to-energy practices, supporting global decarbonization efforts and advancing the energy transition. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

27 pages, 870 KiB  
Review
Thermochemical Conversion of Sewage Sludge: Progress in Pyrolysis and Gasification
by Yibo Hu and Ziwei Chen
Water 2025, 17(12), 1833; https://doi.org/10.3390/w17121833 - 19 Jun 2025
Cited by 1 | Viewed by 717
Abstract
Sewage sludge, as a by-product of wastewater treatment, poses severe environmental challenges due to its high moisture, ash, and heavy metal content. Thermochemical conversion technologies, including pyrolysis and gasification, offer promising pathways for transforming sludge into valuable products such as bio-oil, biochar, and [...] Read more.
Sewage sludge, as a by-product of wastewater treatment, poses severe environmental challenges due to its high moisture, ash, and heavy metal content. Thermochemical conversion technologies, including pyrolysis and gasification, offer promising pathways for transforming sludge into valuable products such as bio-oil, biochar, and syngas. This paper systematically reviews recent advancements in pyrolysis and gasification, focusing on process optimization and catalyst development to enhance product quality and energy recovery. In pyrolysis, factors such as temperature, residence time, and heating rate significantly influence product yields and properties, while catalytic and co-pyrolysis approaches further improve product structure and reduce environmental risks. In gasification, parameters like the equivalence ratio, steam-to-sludge ratio, and catalyst application are key to enhancing syngas yield and quality, with biomass co-gasification offering additional benefits. Despite substantial progress, commercialization remains challenged by high operational costs, catalyst durability, and environmental impacts. Future research should emphasize improving sludge pretreatment, optimizing thermochemical processes, developing efficient and cost-effective catalysts, and addressing critical issues such as bio-oil quality, tar management, and syngas purification to promote the industrial application of these technologies. Full article
Show Figures

Figure 1

17 pages, 3394 KiB  
Article
Effects of Bioavailability and Microbial Community on the Degradation of Atrazine in Sewage Sludge Biochar-Amended Soils
by Siying Li, Xin Li, Yunyang Li and Yue Zhao
Energies 2025, 18(12), 3158; https://doi.org/10.3390/en18123158 - 16 Jun 2025
Viewed by 374
Abstract
Biochar, as an emerging biotechnology, has been widely used in the remediation of soil organic pollution, mainly by promoting the abundance of related degrading bacteria in soil. In this study, we explored the influence of sewage sludge biochars pyrolyzed at different temperatures of [...] Read more.
Biochar, as an emerging biotechnology, has been widely used in the remediation of soil organic pollution, mainly by promoting the abundance of related degrading bacteria in soil. In this study, we explored the influence of sewage sludge biochars pyrolyzed at different temperatures of 300–700 °C (SSB300-SSB700) and addition rates (1% and 5%) on the atrazine biodegradation in soils. After a 21-day incubation, the application of 5% SSB300 significantly increased soil catalase (CAT), urease activity, dissolved organic carbon (DOC), and electrical conductivity (EC). However, biochar amendment exhibited inhibitory effects on atrazine degradation in soils. The atrazine degradation ratio decreased with decreasing pyrolysis temperature and increasing addition rates. Further analysis found that there were two possible reasons for the significant decline of atrazine biodegradation in SSB300 groups: (1) SSB300 demonstrated higher adsorption capacity for atrazine compared to SSB500 and SSB700 and reduced atrazine bioavailability due to its stronger hydrophobic nature and more abundant surface functional groups; and (2) the SSB300 significantly decreased the abundances of dominant atrazine-degraders (Arthrobacter and Pseudomonas) and atrazine-degrading genes (atzA, atzB, and trzN). Full article
(This article belongs to the Topic Biomass Use and its Health and Environmental Effects)
Show Figures

Figure 1

21 pages, 2036 KiB  
Review
A Mini-Review of Sludge-Derived Biochar (SDB) for Wastewater Treatment: Recent Advances in 2020–2025
by Lia Wang, Lan Liang, Ning Li, Guanyi Chen, Haixiao Guo and Li’an Hou
Appl. Sci. 2025, 15(11), 6173; https://doi.org/10.3390/app15116173 - 30 May 2025
Cited by 1 | Viewed by 1212
Abstract
Sludge-derived biochar (SDB) synthesized by the pyrolysis of sludge is gaining enormous interest as a sustainable solution to wastewater treatment and sludge disposal. Despite the proliferation of general biochar reviews, a focused synthesis on SDB-specific advances, particularly covering the recent surge in multifunctional [...] Read more.
Sludge-derived biochar (SDB) synthesized by the pyrolysis of sludge is gaining enormous interest as a sustainable solution to wastewater treatment and sludge disposal. Despite the proliferation of general biochar reviews, a focused synthesis on SDB-specific advances, particularly covering the recent surge in multifunctional wastewater treatment applications (2020–2025), receives little emphasis. In particular, a critical analysis of recent trends, application challenges, and future research directions for SDB is still limited. Unlike broader biochar reviews, this mini-review highlights the comparative advantages and limitations of SDB, identifies emerging integration strategies (e.g., bio-electrochemical systems, catalytic membranes), and outlines future research priorities toward enhancing the durability and environmental safety of SDB applications. Specifically, this review summarized the advances from 2020 to 2025, focusing exclusively on functional modifications, and practical applications of SDB across diverse wastewater treatment technologies involved in adsorption, catalytic oxidation, membrane integration, electrochemical processes and bio-treatment systems. Quantitative comparisons of adsorption capacities (e.g., >99% Cd2+ removal, >150 mg/g tetracycline adsorption) and catalytic degradation efficiencies are provided to illustrate recent improvements. The potential of SDB in evaluating traditional and emerging contaminant degradation among the Fenton-like, persulfate, and peracetic acid activation systems was emphasized. Integration with membrane technologies reduces fouling, while electrochemical applications, including microbial fuel cells, yield higher power densities. To improve the functionality of SDB-based systems in targeting contamination removal, modification strategies, i.e., thermal activation, heteroatom doping (N, S, P), and metal loading, played crucial roles. Emerging trends highlight hybrid systems and persistent free radicals for non-radical pathways. Despite progress, critical challenges persist in scalability, long-term stability, lifecycle assessments, and scale-up implementation. The targeted synthesis of this review offers valuable insights to guide the development and practical deployment of SDB in sustainable wastewater management. Full article
Show Figures

Figure 1

16 pages, 3003 KiB  
Article
Removal of COD from Secondary Effluent Using Fenton Iron Sludge-Based Biochar/Fe(VI)/H2O2 Process
by Lia Wang, Xu He, Lan Liang, Yanshan Wang, Beibei Yan, Guanyi Chen, Ning Li and Li’an Hou
Appl. Sci. 2025, 15(11), 5945; https://doi.org/10.3390/app15115945 - 25 May 2025
Viewed by 512
Abstract
The conventional Fenton process generates large amounts of Fenton sludge during wastewater treatment. Achieving effective utilization of Fenton sludge and reducing its production remain pivotal challenges. In this study, Fenton sludge biochar catalysts (Cat) were prepared using Fenton sludge via pyrolysis. In addition, [...] Read more.
The conventional Fenton process generates large amounts of Fenton sludge during wastewater treatment. Achieving effective utilization of Fenton sludge and reducing its production remain pivotal challenges. In this study, Fenton sludge biochar catalysts (Cat) were prepared using Fenton sludge via pyrolysis. In addition, chemical oxygen demand (COD) from secondary effluent was removed by Fenton sludge biochar catalysts activated with H2O2/Fe(VI). Specifically, the removal efficiency of COD could reach 46.2% in the Cat−2/H2O2/Fe(VI) system under weakly alkaline conditions. The mechanistic analysis confirmed that high-valent iron, OH, O2•−, and 1O2 all participate in the degradation process. Furthermore, a continuous-flow reactor was applied to treat secondary effluent, with COD decreasing from 65 mg/L to 36 mg/L. This study provides new insights into the resource utilization of Fenton sludge and the treatment of complex wastewater. Full article
(This article belongs to the Special Issue Wastewater Treatment and Purification Technologies)
Show Figures

Figure 1

20 pages, 3713 KiB  
Article
Tertiary Treatment of Pulp Industry Effluents Using Activated Biochar Derived from Biological Sludge Within a Circular Economy Framework
by Antonio Machado Netto, Marília Christian Gomes Morais Nascimento, Leonardo Souza de Caux, Marcela de Oliveira Brahim Cortez, José Pedro Rodrigues Ferreira, Keivison Almeida Monteiro and Renata Pereira Lopes Moreira
Processes 2025, 13(6), 1647; https://doi.org/10.3390/pr13061647 - 23 May 2025
Viewed by 1245
Abstract
The application of circular economy principles to the sustainable management of waste from the pulp industry presents significant environmental challenges. In this context, using biological sludge as a raw material for producing activated biochar (BC) emerges as a promising and sustainable alternative. This [...] Read more.
The application of circular economy principles to the sustainable management of waste from the pulp industry presents significant environmental challenges. In this context, using biological sludge as a raw material for producing activated biochar (BC) emerges as a promising and sustainable alternative. This study evaluated the valorization of biological sludge through the synthesis of activated BC for the removal of color, chemical oxygen demand (COD), and conductivity from the industry’s effluent. BC was produced using chemical activation with phosphoric acid (H3PO4) and potassium hydroxide (KOH), followed by pyrolysis at 500 °C and 450 °C, respectively. A central composite rotational design (CCRD) was applied to optimize the process. The optimized BCs were characterized by proximate analysis, FTIR, BET surface area, higher heating value (HHV), and SEM. Adsorption assays showed that H3PO4-activated BC achieved removal efficiencies of 52.2% for color, 23.9% for COD, and 46.2% for conductivity at a dosage of 5 g L⁻1. Conversely, KOH-activated BC did not perform effectively. The results highlight the influence of activation and pyrolysis on BC properties and confirm the potential of this approach for the tertiary treatment of industrial effluents, contributing to waste valorization and environmental sustainability. Full article
(This article belongs to the Special Issue Environmental Protection and Remediation Processes)
Show Figures

Graphical abstract

20 pages, 1834 KiB  
Article
Conversion of Sewage Sludge with Combined Pyrolysis and Gasification via the Enhanced Carbon-To-X-Output Technology
by Wolfgang Gebhard, Sebastian Zant, Johannes Neidel, Andreas Apfelbacher and Robert Daschner
Biomass 2025, 5(2), 28; https://doi.org/10.3390/biomass5020028 - 17 May 2025
Viewed by 1354
Abstract
Sustainably produced hydrogen has the potential to substitute fossil fuels and significantly reduce CO2 emissions. Fraunhofer UMSICHT develops a new thermochemical conversion technology to gasify ash-rich biogenic residues and waste materials that are difficult to treat with conventional gasifiers, enabling their conversion [...] Read more.
Sustainably produced hydrogen has the potential to substitute fossil fuels and significantly reduce CO2 emissions. Fraunhofer UMSICHT develops a new thermochemical conversion technology to gasify ash-rich biogenic residues and waste materials that are difficult to treat with conventional gasifiers, enabling their conversion into higher-quality energy carriers such as hydrogen and syngas. Ash-rich feedstocks are difficult to convert in conventional gasification methods, as they tend to agglomerate and form slag, leading to blockages in the reactor and process disturbances. In this experimental study, hydrogen-rich syngas is produced from biogenic residual and waste materials (sewage sludge) using the Enhanced Carbon-To-X-Output (EXO) process. The EXO process is a three-stage thermochemical conversion process that consists of a combination of multi-stage gasification and a subsequent reforming step. The influence of temperature in the reforming step on the gas composition and hydrogen yield is systematically investigated. The reformer temperature of the process is gradually increased from 500 °C to 900 °C. The feedstock throughput of the pilot plant is approximately 10 kg/h. The results demonstrate that the temperature of the reforming step has a significant impact on the composition and yield of syngas as well as the hydrogen yield. By increasing the reformer temperature, the syngas yield could be enhanced. The hydrogen yield increased from 15.7 gH2/kgFeed to 35.7 gH2/kgFeed. The hydrogen content in the syngas significantly increased from 23.6 vol.% to 39 vol.%. The produced syngas can be effectively utilized for sustainable hydrogen production, as a feedstock for subsequent syntheses, or for power and heat generation. Full article
Show Figures

Figure 1

16 pages, 2130 KiB  
Article
Application of Biochar on Soil Improvement and Speciation Transformation of Heavy Metal in Constructed Wetland
by Yuan Zhou, Xiaoqin Nie, Yao Zhao, Liqiu Zhang, Yatian Cheng, Cancan Jiang, Wenbin Zhao, Xiangchun Wang and Chao Yang
Biology 2025, 14(5), 515; https://doi.org/10.3390/biology14050515 - 7 May 2025
Cited by 1 | Viewed by 484
Abstract
The pyrolysis of sewage sludge into biochar, enhanced by incorporating agriculture waste rich in inorganic minerals and lignocellulosic compounds, provides an effective approach for achieving sludge-harmless treatment and resourceful utilization. In this study, sewage sludge and maize straw-based biochar (SMB) was prepared using [...] Read more.
The pyrolysis of sewage sludge into biochar, enhanced by incorporating agriculture waste rich in inorganic minerals and lignocellulosic compounds, provides an effective approach for achieving sludge-harmless treatment and resourceful utilization. In this study, sewage sludge and maize straw-based biochar (SMB) was prepared using the co-pyrolysis method, and the effects of different application ratios (0%, 1%, 3%, and 5%, w/w) of SMB on soil properties, ryegrass growth, microbial community structure, and Pb content and speciation in the contaminated soil of constructed wetlands were investigated. The results showed that SMB had a high carbon content (28.58%) and was rich in functional groups (e.g., -C-O, -C-N). The results indicated that increasing SMB dosage (0–5% w/w) in Pb-contaminated soil elevated soil pH from 6.40 to 7.93, cation-exchange capacity (CEC) from 30.59 to 79.03 cmol/kg (+158%), and organic carbon content by 65% (from 176.79 mg/kg to 107.3 mg/kg), while reducing available phosphorus and potassium by 20% and 30%, respectively, resulting in a 6% decline in ryegrass leaf length. SMB application enriched Pb-resistant bacteria (e.g., Sphingomonas abundance increased from 10.3% to 11.2%) and enhanced Pb immobilization. After 55 days, the total soil Pb increased by 33%, and the residual fraction Pb significantly increased by 7.3% to 21.7%, driven by functional group complexation, ion exchange, pH, and CEC improvements. Full article
(This article belongs to the Special Issue The Application of Microorganisms and Plants in Soil Improvement)
Show Figures

Figure 1

23 pages, 3745 KiB  
Article
Towards Circularity in Anaerobic Digestion: Methane Yield Enhancement Using Biochar from Co-Pyrolysis of Anaerobic Sludge and Residual Lignocellulosic Biomass
by César Omar Díaz Lara, Diana Cabañas Vargas, Julio César Sacramento Rivero, Sergio Baz-Rodríguez, Juan Enrique Ruiz Espinoza, Erick Alberto Aguilera-Cauich, José Martín Baas-López and Daniella E. Pacheco-Catalán
Recycling 2025, 10(3), 84; https://doi.org/10.3390/recycling10030084 - 1 May 2025
Viewed by 1681
Abstract
Improper management of anaerobic pig sludge poses significant environmental and health risks. Converting this waste into biochar to enhance methane production during anaerobic digestion (AD) presents an environmentally sound and circular solution, especially when the biochar is produced through co-pyrolysis with lignocellulosic biomass [...] Read more.
Improper management of anaerobic pig sludge poses significant environmental and health risks. Converting this waste into biochar to enhance methane production during anaerobic digestion (AD) presents an environmentally sound and circular solution, especially when the biochar is produced through co-pyrolysis with lignocellulosic biomass residues. This study first determined the co-pyrolysis biomass ratio (anaerobic sludge to lignocellulosic biomass) that caused the highest increase on methane yield. Subsequently, the effects of biochar dosage (6, 12, 18, 24, and 30 g/L) and particle size (0.5–1 cm, 212–355 µm, and <53 µm) on methane production were assessed. Biochar derived from up to 25 % anaerobic pig sludge increased methane yield by 74.49 ± 1.25 % without compromising its catalytic effect. Methane yield was significantly affected by both biochar dosage and particle size, with best results observed at dosages of 12–18 g/L. These findings highlight the feasibility of the co-pyrolysis of anaerobic pig sludge and lignocellulosic residues as an attractive circular solution for integrated waste management and energy production. Full article
Show Figures

Graphical abstract

17 pages, 3454 KiB  
Article
Enhanced Adsorption of Aqueous Ciprofloxacin Hydrochloride by a Manganese-Modified Magnetic Dual-Sludge Biochar
by Jingxi Tie, Mengjia Yan, Sihao Shao and Xiaohan Duan
Water 2025, 17(8), 1229; https://doi.org/10.3390/w17081229 - 20 Apr 2025
Viewed by 539
Abstract
In this study, an effective composite material, manganese-modified magnetic dual-sludge biochar (Mn@MDSBC), was developed for the adsorption of ciprofloxacin hydrochloride (CIP). This composite was prepared by means of a simple one-pot method, which involved the pyrolysis of iron-based waterworks sludge (IBWS) and paper [...] Read more.
In this study, an effective composite material, manganese-modified magnetic dual-sludge biochar (Mn@MDSBC), was developed for the adsorption of ciprofloxacin hydrochloride (CIP). This composite was prepared by means of a simple one-pot method, which involved the pyrolysis of iron-based waterworks sludge (IBWS) and paper mill sludge (PMS) loaded with manganese (Mn) under controlled conditions in a nitrogen atmosphere. The synthesized Mn@MDSBC was subjected to a comprehensive suite of characterization approaches, which included N2 adsorption–desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Subsequently, static adsorption tests were conducted to investigate how different factors, including the initial solution pH, reaction time and temperature, CIP concentration, and ionic strength influence the adsorption of CIP by Mn@MDSBC. Mn@MDSBC had the maximum CIP adsorption capacity of 75.86 mg/g at pH 5, among the pH values ranging from 3 to 9. The pseudo-second order model provided the best description of the adsorption process, while the experimental data aligned more closely with the Langmuir equation than with the Freundlich model, indicating monolayer adsorption. The adsorption process was found to be non-spontaneous and exothermic according to thermodynamic analysis. The presence of Cl and SO42− enhanced CIP adsorption, while PO43− weakened it. After five cycles of reuse, Mn@MDSBC experienced a 17.17% loss in CIP adsorption capacity. The primary mechanisms for CIP removal by Mn@MDSBC were identified as physical and chemical adsorption, hydrogen bonding, and π-π stacking interactions. In summary, the study underscores the high efficiency of Mn@MDSBC as a composite material for CIP adsorption, highlighting its potential for application in wastewater treatment processes. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 3456 KiB  
Article
Evaluation of the Adsorption Potential of Benzo(a)pyrene in Coal Produced from Sewage Treatment Station Sludge
by Natiele Kleemann, Débora Jaeschke, Nauro Silveira, Luiz Pinto, Tito Cadaval, Jean Arias, Sergiane Barbosa, Ednei Primel and Adilson Bamberg
Fluids 2025, 10(4), 98; https://doi.org/10.3390/fluids10040098 - 7 Apr 2025
Cited by 2 | Viewed by 406
Abstract
This work investigates the adsorption of benzo[a]pyrene (BaP) using a charcoal adsorbent derived from sewage treatment plant sludge. BaP is a polycyclic aromatic hydrocarbon (PAH), carcinogenic to humans, which his used by the World Health Organization as a marker for all PAH mixtures. [...] Read more.
This work investigates the adsorption of benzo[a]pyrene (BaP) using a charcoal adsorbent derived from sewage treatment plant sludge. BaP is a polycyclic aromatic hydrocarbon (PAH), carcinogenic to humans, which his used by the World Health Organization as a marker for all PAH mixtures. The charcoal was produced by the pyrolysis (500 °C, 4 h) of municipal sewage sludge. The resulting biochar presented mesoporous and oxygenated functional groups that are beneficial for the adsorption of benzo[a]pyrene. The material contained graphitic structures, suggesting potential sites for π–π interactions. The adsorption followed the Elovich kinetic model. A maximum adsorbed value of 60.8 µg g−1 was achieved for an initial BaP concentration of 100 µg L−1 of BaP at 298 K after 20 min. Parameters related to mass transfer phenomena, such as the intraparticle diffusion coefficient, were determined using the homogeneous solid diffusion model (HSDM). These experimental data demonstrate the great potential for computational fluid dynamics (CFD) applications. The value reached for the intraparticle diffusion coefficient was 1.63 × 10−13 m2s−1. Adsorption equilibrium experiments showed that the Langmuir model was most suitable for experimental data, suggesting a monolayer molecular adsorption process. The results showed that charcoal can be employed as an effective material for removing BaP. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Applied to Transport Phenomena)
Show Figures

Figure 1

20 pages, 2678 KiB  
Article
Low-Temperature Slow Pyrolysis: Exploring Biomass-Specific Biochar Characteristics and Potential for Soil Applications
by Matheus Antonio da Silva, Adibe Luiz Abdalla Filho, Ruan Carnier, Juliana de Oliveira Santos Marcatto, Marcelo Saldanha, Aline Renee Coscione, Thaís Alves de Carvalho, Gabriel Rodrigo Merlotto and Cristiano Alberto de Andrade
Technologies 2025, 13(3), 100; https://doi.org/10.3390/technologies13030100 - 3 Mar 2025
Cited by 1 | Viewed by 1931
Abstract
The pyrolysis process of residues has emerged as a sustainable method for managing organic waste, producing biochars that offer significant benefits for agriculture and the environment. These benefits depend on the properties of the raw biomass and the pyrolysis conditions, such as washing [...] Read more.
The pyrolysis process of residues has emerged as a sustainable method for managing organic waste, producing biochars that offer significant benefits for agriculture and the environment. These benefits depend on the properties of the raw biomass and the pyrolysis conditions, such as washing and drying. This study investigated biochar production through slow pyrolysis at 300 °C, using eight biomass types, four being plant residues (PBR)—sugarcane bagasse, filter cake, sawdust, and stranded algae—and four non-plant-based residues (NPBR)—poultry litter, sheep manure, layer chicken manure, and sewage sludge. The physicochemical properties assessed included yield, carbon (C) and nitrogen (N) content, electrical conductivity, pH, macro- and micronutrients, and potentially toxic metals. Pyrolysis generally increased pH and concentrated C, N, phosphorus (P), and other nutrients while reducing electrical conductivity, C/N ratio, potassium (K), and sulfur (S) contents. The increases in the pH of the biochars in relation to the respective biomasses were between 0.3 and 1.9, with the greatest differences observed for the NPBR biochars. Biochars from sugarcane bagasse and sawdust exhibited high C content (74.57–77.67%), highlighting their potential use for C sequestration. Filter cake biochar excelled in P (14.28 g kg⁻1) and micronutrients, while algae biochar showed elevated N, calcium (Ca), and boron (B) levels. NPBR biochars were rich in N (2.28–3.67%) and P (20.7–43.4 g kg⁻1), making them ideal fertilizers. Although sewage sludge biochar contained higher levels of potentially toxic metals, these remained within regulatory limits. This research highlights variations in the composition of biochars depending on the characteristics of the original biomass and the pyrolysis process, to contribute to the production of customized biochars for the purposes of their application in the soil. Biochars derived from exclusively plant biomasses showed important aspects related to the recovery of carbon from biomass and can be preferred as biochar used to sequester carbon in the soil. On the other hand, biochars obtained from residues with some animal contributions are more enriched in nutrients and should be directed to the management of soil fertility. Full article
(This article belongs to the Special Issue Recent Advances in Applied Activated Carbon Research)
Show Figures

Figure 1

20 pages, 5440 KiB  
Article
Novel Ni/SBA-15 Catalyst Pellets for Tar Catalytic Cracking in a Dried Sewage Sludge Pyrolysis Pilot Plant
by Emmanuel Iro, Saeed Hajimirzaee, Takehiko Sasaki and Maria Olea
Catalysts 2025, 15(2), 142; https://doi.org/10.3390/catal15020142 - 3 Feb 2025
Viewed by 1166
Abstract
Novel Ni/SBA-15 catalysts were synthesised and their activity in the dry reforming of methane process was assessed. These materials were prepared into extrudates shaped like pellets and tested in a pyrolysis pilot plant fitted with a catalytic reactor for sewage sludge pyrolysis tar [...] Read more.
Novel Ni/SBA-15 catalysts were synthesised and their activity in the dry reforming of methane process was assessed. These materials were prepared into extrudates shaped like pellets and tested in a pyrolysis pilot plant fitted with a catalytic reactor for sewage sludge pyrolysis tar removal. The Ni/SBA-15 catalyst pellets remained highly active and stable throughout the test’s duration, converting 100% tar in the hot gas to smaller non-condensable gases, thereby increasing the pyrolysis gas fraction and eliminating the problematic tar in the vapour stream. Catalyst characterisation with Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray (EDX) analysis, Transmission Electron Microscopy (TEM), and Thermogravimetric Analysis (TGA) confirmed that both the Ni/SBA-15-powered catalyst and the pellets were resistant to sintering and carbon deposition and remained highly active even with relatively high-level sulphur in the feed stream. The Ni/SBA-15 catalyst extrudates were prepared by mixing the powdered catalyst with varied amounts of colloidal silica binder and fixed amounts of methyl cellulose and water. The highest mechanical strength of the extrudates was determined to be of those obtained with 36% of the inorganic binder. The physical properties and catalytic activity of Ni/SBA-15 pellets with 36% colloidal silica were compared with the original powdered Ni/SBA-15 catalyst to assess the binder inhibitory effect, if any. The results confirmed that colloidal silica binder did not inhibit the desired catalyst properties and performance in the reaction. Instead, enhanced catalytic performance was observed. Full article
(This article belongs to the Section Catalysis for Sustainable Energy)
Show Figures

Figure 1

Back to TopTop