Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,108)

Search Parameters:
Keywords = slope aspects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7718 KiB  
Article
Monitoring the Early Growth of Pinus and Eucalyptus Plantations Using a Planet NICFI-Based Canopy Height Model: A Case Study in Riqueza, Brazil
by Fabien H. Wagner, Fábio Marcelo Breunig, Rafaelo Balbinot, Emanuel Araújo Silva, Messias Carneiro Soares, Marco Antonio Kramm, Mayumi C. M. Hirye, Griffin Carter, Ricardo Dalagnol, Stephen C. Hagen and Sassan Saatchi
Remote Sens. 2025, 17(15), 2718; https://doi.org/10.3390/rs17152718 - 6 Aug 2025
Abstract
Monitoring the height of secondary forest regrowth is essential for assessing ecosystem recovery, but current methods rely on field surveys, airborne or UAV LiDAR, and 3D reconstruction from high-resolution UAV imagery, which are often costly or limited by logistical constraints. Here, we address [...] Read more.
Monitoring the height of secondary forest regrowth is essential for assessing ecosystem recovery, but current methods rely on field surveys, airborne or UAV LiDAR, and 3D reconstruction from high-resolution UAV imagery, which are often costly or limited by logistical constraints. Here, we address the challenge of scaling up canopy height monitoring by evaluating a recent deep learning model, trained on data from the Amazon and Atlantic Forests, developed to extract canopy height from RGB-NIR Planet NICFI imagery. The research questions are as follows: (i) How are canopy height estimates from the model affected by slope and orientation in natural forests, based on a large and well-balanced experimental design? (ii) How effectively does the model capture the growth trajectories of Pinus and Eucalyptus plantations over an eight-year period following planting? We find that the model closely tracks Pinus growth at the parcel scale, with predictions generally within one standard deviation of UAV-derived heights. For Eucalyptus, while growth is detected, the model consistently underestimates height, by more than 10 m in some cases, until late in the cycle when the canopy becomes less dense. In stable natural forests, the model reveals seasonal artifacts driven by topographic variables (slope × aspect × day of year), for which we propose strategies to reduce their influence. These results highlight the model’s potential as a cost-effective and scalable alternative to field-based and LiDAR methods, enabling broad-scale monitoring of forest regrowth and contributing to innovation in remote sensing for forest dynamics assessment. Full article
Show Figures

Figure 1

23 pages, 28189 KiB  
Article
Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia
by Manel Mersni, Dhekra Souissi, Adnen Amiri, Abdelaziz Sebei, Mohamed Hédi Inoubli and Hans-Balder Havenith
Geosciences 2025, 15(8), 297; https://doi.org/10.3390/geosciences15080297 - 3 Aug 2025
Viewed by 355
Abstract
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. [...] Read more.
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. The used database covers 286 landslides, including ten landslide factor maps: rainfall, slope, aspect, topographic roughness index, lithology, land use and land cover, distance from streams, drainage density, lineament density, and distance from roads. The AHP and ANN approaches were applied to classify the factors by analyzing the correlation relationship between landslide distribution and the significance of associated factors. The Landslide Susceptibility Index result reveals five susceptible zones organized from very low to very high risk, where the zones with the highest risks are associated with the combination of extreme amounts of rainfall and steep slope. The performance of the models was confirmed utilizing the area under the Relative Operating Characteristic (ROC) curves. The computed ROC curve (AUC) values (0.720 for ANN and 0.651 for AHP) convey the advantage of the ANN method compared to the AHP method. The overlay of the landslide inventory data locations of historical landslides and susceptibility maps shows the concordance of the results, which is in favor of the established model reliability. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 (registering DOI) - 1 Aug 2025
Viewed by 216
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

10 pages, 3612 KiB  
Communication
Comparison of Habitat Selection Models Between Habitat Utilization Intensity and Presence–Absence Data: A Case Study of the Chinese Pangolin
by Hongliang Dou, Ruiqi Gao, Fei Wu and Haiyang Gao
Biology 2025, 14(8), 976; https://doi.org/10.3390/biology14080976 (registering DOI) - 1 Aug 2025
Viewed by 126
Abstract
Identifying habitat characteristics is essential for conserving critically endangered species. When quantifying species habitat characteristics, ignoring data types may lead to misunderstandings about species’ specific habitat requirements. This study focused on the critically endangered Chinese pangolin in Guangdong Province, China, and divided the [...] Read more.
Identifying habitat characteristics is essential for conserving critically endangered species. When quantifying species habitat characteristics, ignoring data types may lead to misunderstandings about species’ specific habitat requirements. This study focused on the critically endangered Chinese pangolin in Guangdong Province, China, and divided the study area into 600 m × 600 m grids based on its average home range. The burrow number within each grid was obtained through line transect surveys, with burrow numbers/line transect lengths used as direct indicators of habitat utilization intensity. The relationships with sixteen environmental variables, which could be divided into three categories, including topographic, human disturbance and land cover composition, were quantified using the GAM method. We also converted continuous data into binary data (0, 1), constructed GAMs and compared them with habitat utilization intensity models. Our results indicate that the habitat utilization intensity model identified profile curvature and slope as primary factors, showing a nonlinear response to profile curvature (Edf = 5.610, p = 0.014) and a positive relationship with slope (Edf = 1.000, p = 0.006). The presence–absence model emphasized distance to water (Edf = 1.000, p = 0.014), slope (Edf = 1.709, p = 0.043) and aspect (Edf = 2.000, p = 0.026). The intensity model explained significantly more deviance, captured complex nonlinear relationships and supported higher model complexity without overfitting. This study demonstrates that habitat utilization intensity data provides a more ecologically informative basis for in situ conservation (e.g., identifying core habitats), and the process from habitat selection to habitat utilization should be integrated to reveal species’ habitat characteristics. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

23 pages, 3769 KiB  
Article
Study on the Spatio-Temporal Distribution and Influencing Factors of Soil Erosion Gullies at the County Scale of Northeast China
by Jianhua Ren, Lei Wang, Zimeng Xu, Jinzhong Xu, Xingming Zheng, Qiang Chen and Kai Li
Sustainability 2025, 17(15), 6966; https://doi.org/10.3390/su17156966 - 31 Jul 2025
Viewed by 224
Abstract
Gully erosion refers to the landform formed by soil and water loss through gully development, which is a critical manifestation of soil degradation. However, research on the spatio-temporal variations in erosion gullies at the county scale remains insufficient, particularly regarding changes in gully [...] Read more.
Gully erosion refers to the landform formed by soil and water loss through gully development, which is a critical manifestation of soil degradation. However, research on the spatio-temporal variations in erosion gullies at the county scale remains insufficient, particularly regarding changes in gully aggregation and their driving factors. This study utilized high-resolution remote sensing imagery, gully interpretation information, topographic data, meteorological records, vegetation coverage, soil texture, and land use datasets to analyze the spatio-temporal patterns and influencing factors of erosion gully evolution in Bin County, Heilongjiang Province of China, from 2012 to 2022. Kernel density evaluation (KDE) analysis was also employed to explore these dynamics. The results indicate that the gully number in Bin County has significantly increased over the past decade. Gully development involves not only headward erosion of gully heads but also lateral expansion of gully channels. Gully evolution is most pronounced in slope intervals. While gentle slopes and slope intervals host the highest density of gullies, the aspect does not significantly influence gully development. Vegetation coverage exhibits a clear threshold effect of 0.6 in inhibiting erosion gully formation. Additionally, cultivated areas contain the largest number of gullies and experience the most intense changes; gully aggregation in forested and grassland regions shows an upward trend; the central part of the black soil region has witnessed a marked decrease in gully aggregation; and meadow soil areas exhibit relatively stable spatio-temporal variations in gully distribution. These findings provide valuable data and decision-making support for soil erosion control and transformation efforts. Full article
(This article belongs to the Special Issue Sustainable Agriculture, Soil Erosion and Soil Conservation)
Show Figures

Figure 1

17 pages, 11770 KiB  
Article
Landslide Prediction in Mountainous Terrain Using Weighted Overlay Analysis Method: A Case Study of Al Figrah Road, Al-Madinah Al-Munawarah, Western Saudi Arabia
by Talal Alharbi, Abdelbaset S. El-Sorogy and Naji Rikan
Sustainability 2025, 17(15), 6914; https://doi.org/10.3390/su17156914 - 30 Jul 2025
Viewed by 242
Abstract
This study applies the Weighted Overlay Analysis (WOA) method integrated with GIS to assess landslide susceptibility along Al Figrah Road in Al-Madinah Al-Munawarah, western Saudi Arabia. Seven key conditioning factors, elevation, slope, aspect, drainage density, lithology, soil type, and precipitation were integrated using [...] Read more.
This study applies the Weighted Overlay Analysis (WOA) method integrated with GIS to assess landslide susceptibility along Al Figrah Road in Al-Madinah Al-Munawarah, western Saudi Arabia. Seven key conditioning factors, elevation, slope, aspect, drainage density, lithology, soil type, and precipitation were integrated using high-resolution remote sensing data and expert-assigned weights. The output susceptibility map categorized the region into three zones: low (93.5 million m2), moderate (271.2 million m2), and high risk (33.1 million m2). Approximately 29% of the road corridor lies within the low-risk zone, 48% in the moderate zone, and 23% in the high-risk zone. Ten critical sites with potential landslide activity were detected along the road, correlating well with the high-risk zones on the map. Structural weaknesses in the area, such as faults, joints, foliation planes, and shear zones in both igneous and metamorphic rock units, were key contributors to slope instability. The findings offer practical guidance for infrastructure planning and geohazard mitigation in arid, mountainous environments and demonstrate the applicability of WOA in data-scarce regions. Full article
(This article belongs to the Special Issue Sustainable Assessment and Risk Analysis on Landslide Hazards)
Show Figures

Figure 1

18 pages, 5558 KiB  
Article
Microclimate Variability in a Highly Dynamic Karstic System
by Diego Gil, Mario Sánchez-Gómez and Joaquín Tovar-Pescador
Geosciences 2025, 15(8), 280; https://doi.org/10.3390/geosciences15080280 - 24 Jul 2025
Viewed by 163
Abstract
In this study, we examined the microclimates at eight entrances to a karst system distributed between an elevation of 812 and 906 m in Southern Spain. The karst system, characterised by subvertical open tectonic joints that form narrow shafts, developed on the slope [...] Read more.
In this study, we examined the microclimates at eight entrances to a karst system distributed between an elevation of 812 and 906 m in Southern Spain. The karst system, characterised by subvertical open tectonic joints that form narrow shafts, developed on the slope of a mountainous area with a Mediterranean climate and strong chimney effect, resulting in an intense airflow throughout the year. The airflows modify the entrance temperatures, creating a distinctive pattern in each opening that changes with the seasons. The objective of this work is to characterise the outflows and find simple temperature-based parameters that provide information about the karst interior. The entrances were monitored for five years (2017–2022) with temperature–humidity dataloggers at different depths. Other data collected include discrete wind measurements and outside weather data. The most significant parameters identified were the characteristic temperature (Ty), recorded at the end of the outflow season, and the rate of cooling/warming, which ranges between 0.1 and 0.9 °C/month. These parameters allowed the entrances to be grouped based on the efficiency of heat exchange between the outside air and the cave walls, which depends on the rock-boundary geometry. This research demonstrates that simple temperature studies with data recorded at selected positions will allow us to understand geometric aspects of inaccessible karst systems. Dynamic high-airflow cave systems could become a natural source of evidence for climate change and its effects on the underground world. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

29 pages, 8706 KiB  
Article
An Integrated Risk Assessment of Rockfalls Along Highway Networks in Mountainous Regions: The Case of Guizhou, China
by Jinchen Yang, Zhiwen Xu, Mei Gong, Suhua Zhou and Minghua Huang
Appl. Sci. 2025, 15(15), 8212; https://doi.org/10.3390/app15158212 - 23 Jul 2025
Viewed by 225
Abstract
Rockfalls, among the most common natural disasters, pose risks such as traffic congestion, casualties, and substantial property damage. Guizhou Province, with China’s fourth-longest highway network, features mountainous terrain prone to frequent rockfall incidents annually. Consequently, assessing highway rockfall risks in Guizhou Province is [...] Read more.
Rockfalls, among the most common natural disasters, pose risks such as traffic congestion, casualties, and substantial property damage. Guizhou Province, with China’s fourth-longest highway network, features mountainous terrain prone to frequent rockfall incidents annually. Consequently, assessing highway rockfall risks in Guizhou Province is crucial for safeguarding the lives and travel of residents. This study evaluates highway rockfall risk through three key components: susceptibility, hazard, and vulnerability. Susceptibility was assessed using information content and logistic regression methods, considering factors such as elevation, slope, normalized difference vegetation index (NDVI), aspect, distance from fault, relief amplitude, lithology, and rock weathering index (RWI). Hazard assessment utilized a fuzzy analytic hierarchy process (AHP), focusing on average annual rainfall and daily maximum rainfall. Socioeconomic factors, including GDP, population density, and land use type, were incorporated to gauge vulnerability. Integration of these assessments via a risk matrix yielded comprehensive highway rockfall risk profiles. Results indicate a predominantly high risk across Guizhou Province, with high-risk zones covering 41.19% of the area. Spatially, the western regions exhibit higher risk levels compared to eastern areas. Notably, the Bijie region features over 70% of its highway mileage categorized as high risk or above. Logistic regression identified distance from fault lines as the most negatively correlated factor affecting highway rockfall susceptibility, whereas elevation gradient demonstrated a minimal influence. This research provides valuable insights for decision-makers in formulating highway rockfall prevention and control strategies. Full article
Show Figures

Figure 1

29 pages, 6638 KiB  
Article
Forest Fragmentation in Bavaria: A First-Time Quantitative Analysis Based on Earth Observation Data
by Kjirsten Coleman and Claudia Kuenzer
Remote Sens. 2025, 17(15), 2558; https://doi.org/10.3390/rs17152558 - 23 Jul 2025
Viewed by 388
Abstract
Anthropogenic and climatic pressures can transform contiguous forests into smaller, less connected fragments. Forest biodiversity and ecosystem functioning can furthermore be compromised or enhanced. We present a descriptive analysis of forest fragmentation in Bavaria, the largest federal state in Germany. We calculated 22 [...] Read more.
Anthropogenic and climatic pressures can transform contiguous forests into smaller, less connected fragments. Forest biodiversity and ecosystem functioning can furthermore be compromised or enhanced. We present a descriptive analysis of forest fragmentation in Bavaria, the largest federal state in Germany. We calculated 22 metrics of fragmentation using forest polygons, aggregated within administrative units and with respect to both elevation and aspect orientation. Using a forest mask from September 2024, we found 2.384 million hectares of forest across Bavaria, distributed amongst 83,253 forest polygons 0.1 hectare and larger. The smallest patch category (XS, <25 ha) outnumbered all other size classes by nearly 13 to 1. Edge zones accounted for more than 1.68 million hectares, leaving less than 703,000 hectares as core forest. Although south-facing slopes dominated the state, the highest forest cover (~36%) was found on the least abundant east-oriented slopes. Most of the area is located at 400–600 m.a.s.l., with around 30% of this area covered by forests; however, XL forest patches (>3594 ha) dominated higher elevations, covering 30–60% of land surface area between 600 and 1400 m.a.s.l. The distribution of the largest patches follows the higher terrain and corresponds well to protected areas. K-Means clustering delineated 3 clusters, which corresponded well with the predominance of patchiness, aggregation, and edginess within districts. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Landscape Ecology)
Show Figures

Graphical abstract

16 pages, 3609 KiB  
Article
Will Wind Turbines Affect the Distribution of Alashan Ground Squirrel? Insights from Large-Scale Wind Farms in China
by Yuan Wang, Wenbin Yang, Qin Li, Min Zhao, Ying Yang, Xiangfeng Shi, Dazhi Zhang and Guijun Yang
Biology 2025, 14(7), 886; https://doi.org/10.3390/biology14070886 - 19 Jul 2025
Viewed by 235
Abstract
The wind energy resources in the northwestern desert and semi-desert grassland regions of China are abundant. However, the ramifications of large-scale centralized wind farm operations on terrestrial rodents remain incompletely understood. In May and September 2024, we employed a grid sampling method combined [...] Read more.
The wind energy resources in the northwestern desert and semi-desert grassland regions of China are abundant. However, the ramifications of large-scale centralized wind farm operations on terrestrial rodents remain incompletely understood. In May and September 2024, we employed a grid sampling method combined with burrow counting and kernel density analysis to investigate the spatial distribution of Alashan ground squirrel (Spermophilus alashanicus) burrows in different wind turbine power zones (control, 750 kW, 1500 kW, 2000 kW, and 2500 kW) at the Taiyangshan wind farm in China. Using generalized additive models and structural equation models, we analysed the relationship between burrow spatial distribution and environmental factors. The results revealed no significant linear correlation between burrow density and turbine layout density, but was significantly positively correlated with turbine power (p < 0.05). The highest burrow density was observed in the 2500 kW zone, with values of 24.43 ± 7.18 burrows/hm2 in May and 21.29 ± 3.38 burrows/hm2 in September (p < 0.05). The squirrels exhibited a tendency to avoid constructing burrows within the rotor sweeping areas of the turbines. The burrow density distribution exhibited a multinuclear clustering pattern in both May and September, with a northwest–southeast spatial orientation. Turbine power, aspect, and plan convexity had significant positive effects on burrow density, whereas vegetation height had a significant negative effect. Moreover, vegetation height indirectly influenced burrow density through its interactions with turbine power and relief degree. Under the combined influence of turbine power, topography, and vegetation, Alashan ground squirrels preferred habitats in low-density, high-power turbine zones with shorter vegetation, sunny slopes, convex landforms, and minimal disturbance. Full article
Show Figures

Graphical abstract

14 pages, 16969 KiB  
Article
FTT: A Frequency-Aware Texture Matching Transformer for Digital Bathymetry Model Super-Resolution
by Peikun Xiao, Jianping Wu and Yingjie Wang
J. Mar. Sci. Eng. 2025, 13(7), 1365; https://doi.org/10.3390/jmse13071365 - 17 Jul 2025
Viewed by 183
Abstract
Deep learning has shown significant advantages over traditional spatial interpolation methods in single image super-resolution (SISR). Recently, many studies have applied super-resolution (SR) methods to generate high-resolution (HR) digital bathymetry models (DBMs), but substantial differences between DBM and natural images have been ignored, [...] Read more.
Deep learning has shown significant advantages over traditional spatial interpolation methods in single image super-resolution (SISR). Recently, many studies have applied super-resolution (SR) methods to generate high-resolution (HR) digital bathymetry models (DBMs), but substantial differences between DBM and natural images have been ignored, which leads to serious distortions and inaccuracies. Given the critical role of HR DBM in marine resource exploitation, economic development, and scientific innovation, we propose a frequency-aware texture matching transformer (FTT) for DBM SR, incorporating global terrain feature extraction (GTFE), high-frequency feature extraction (HFFE), and a terrain matching block (TMB). GTFE has the capability to perceive spatial heterogeneity and spatial locations, allowing it to accurately capture large-scale terrain features. HFFE can explicitly extract high-frequency priors beneficial for DBM SR and implicitly refine the representation of high-frequency information in the global terrain feature. TMB improves fidelity of generated HR DBM by generating position offsets to restore warped textures in deep features. Experimental results have demonstrated that the proposed FTT has superior performance in terms of elevation, slope, aspect, and fidelity of generated HR DBM. Notably, the root mean square error (RMSE) of elevation in steep terrain has been reduced by 4.89 m, which is a significant improvement in the accuracy and precision of the reconstruction. This research holds significant implications for improving the accuracy of DBM SR methods and the usefulness of HR bathymetry products for future marine research. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 3162 KiB  
Article
Assessing Mangrove Forest Recovery in the British Virgin Islands After Hurricanes Irma and Maria with Sentinel-2 Imagery and Google Earth Engine
by Michael R. Routhier, Gregg E. Moore, Barrett N. Rock, Stanley Glidden, Matthew Duckett and Susan Zaluski
Remote Sens. 2025, 17(14), 2485; https://doi.org/10.3390/rs17142485 - 17 Jul 2025
Viewed by 856
Abstract
Mangroves form the dominant coastal plant community of low-energy tropical intertidal habitats and provide critical ecosystem services to humans and the environment. However, more frequent and increasingly powerful hurricanes and storm surges are creating additional pressure on the natural resilience of these threatened [...] Read more.
Mangroves form the dominant coastal plant community of low-energy tropical intertidal habitats and provide critical ecosystem services to humans and the environment. However, more frequent and increasingly powerful hurricanes and storm surges are creating additional pressure on the natural resilience of these threatened coastal ecosystems. Advances in remote sensing techniques and approaches are critical to providing robust quantitative monitoring of post-storm mangrove forest recovery to better prioritize the often-limited resources available for the restoration of these storm-damaged habitats. Here, we build on previously utilized spatial and temporal ranges of European Space Agency (ESA) Sentinel satellite imagery to monitor and map the recovery of the mangrove forests of the British Virgin Islands (BVI) since the occurrence of back-to-back category 5 hurricanes, Irma and Maria, on September 6 and 19 of 2017, respectively. Pre- to post-storm changes in coastal mangrove forest health were assessed annually using the normalized difference vegetation index (NDVI) and moisture stress index (MSI) from 2016 to 2023 using Google Earth Engine. Results reveal a steady trajectory towards forest health recovery on many of the Territory’s islands since the storms’ impacts in 2017. However, some mangrove patches are slower to recover, such as those on the islands of Virgin Gorda and Jost Van Dyke, and, in some cases, have shown a continued decline (e.g., Prickly Pear Island). Our work also uses a linear ANCOVA model to assess a variety of geospatial, environmental, and anthropogenic drivers for mangrove recovery as a function of NDVI pre-storm and post-storm conditions. The model suggests that roughly 58% of the variability in the 7-year difference (2016 to 2023) in NDVI may be related by a positive linear relationship with the variable of population within 0.5 km and a negative linear relationship with the variables of northwest aspect vs. southwest aspect, island size, temperature, and slope. Full article
(This article belongs to the Special Issue Remote Sensing in Mangroves IV)
Show Figures

Figure 1

27 pages, 3599 KiB  
Article
Progressive Shrinkage of the Alpine Periglacial Weathering Zone and Its Escalating Disaster Risks in the Gongga Mountains over the Past Four Decades
by Qiuyang Zhang, Qiang Zhou, Fenggui Liu, Weidong Ma, Qiong Chen, Bo Wei, Long Li and Zemin Zhi
Remote Sens. 2025, 17(14), 2462; https://doi.org/10.3390/rs17142462 - 16 Jul 2025
Viewed by 269
Abstract
The Alpine Periglacial Weathering Zone (APWZ) is a critical transitional belt between alpine vegetation and glaciers, and a highly sensitive region to climate change. Its dynamic variations profoundly reflect the surface environment’s response to climatic shifts. Taking Gongga Mountain as the study area, [...] Read more.
The Alpine Periglacial Weathering Zone (APWZ) is a critical transitional belt between alpine vegetation and glaciers, and a highly sensitive region to climate change. Its dynamic variations profoundly reflect the surface environment’s response to climatic shifts. Taking Gongga Mountain as the study area, this study utilizes summer Landsat imagery from 1986 to 2024 and constructs a remote sensing method based on NDVI and NDSI indices using the Otsu thresholding algorithm on the Google Earth Engine platform to automatically extract the positions of the upper limit of vegetation and the snowline. Results show that over the past four decades, the APWZ in Gongga Mountain has exhibited a continuous upward shift, with the mean elevation rising from 4101 m to 4575 m. The upper limit of vegetation advanced at an average rate of 17.43 m/a, significantly faster than the snowline shift (3.9 m/a). The APWZ also experienced substantial areal shrinkage, with an average annual reduction of approximately 13.84 km2, highlighting the differential responses of various surface cover types to warming. Spatially, the most pronounced changes occurred in high-elevation zones (4200–4700 m), moderate slopes (25–33°), and sun-facing aspects (east, southeast, and south slopes), reflecting a typical climate–topography coupled driving mechanism. In the upper APWZ, glacier retreat has intensified weathering and increased debris accumulation, while the newly formed vegetation zone in the lower APWZ remains structurally fragile and unstable. Under extreme climatic disturbances, this setting is prone to triggering chain-type hazards such as landslides and debris flows. These findings enhance our capacity to monitor alpine ecological boundary changes and identify associated disaster risks, providing scientific support for managing climate-sensitive mountainous regions. Full article
Show Figures

Figure 1

19 pages, 749 KiB  
Article
Does the Slope Aspect Really Affect the Soil Chemical Properties, Growth and Arbuscular Mycorrhizal Colonization of Centipedegrass in a Hill Pasture?
by Manabu Tobisa, Yoshinori Uchida and Yoshinori Ikeda
Grasses 2025, 4(3), 30; https://doi.org/10.3390/grasses4030030 - 16 Jul 2025
Viewed by 231
Abstract
Arbuscular mycorrhizal (AM) fungi (AMF) form a symbiotic association with terrestrial plants and increase growth and productivity. The relationships between the growth of centipedegrass (CG) and AMF are not well understood. We monitored the growth and AM colonization of CG growing on the [...] Read more.
Arbuscular mycorrhizal (AM) fungi (AMF) form a symbiotic association with terrestrial plants and increase growth and productivity. The relationships between the growth of centipedegrass (CG) and AMF are not well understood. We monitored the growth and AM colonization of CG growing on the four slopes (north, east, south, and west) of a pasture, to obtain information on aspect differences in the soil chemical properties–grass–AMF association. Soil properties almost always varied between the slope aspects. The total soil N, C, EC, and moisture tended to be highest on the northern aspect, whereas the soil available P and pH tended to be highest on the western and southern aspects, respectively. Despite the aspect differences in the microclimate and soil properties, CG grew well in all aspects, showing similar dry matter weights (DMW) for the fouraspects. Furthermore, the AM colonization of CG, in any characteristic structures (internal hyphae, vesicles, and arbuscules), was not significantly different between the slope aspects on most measurement occasions, although the colonization usually varied between the seasons and years. There were no relationships between the DMW and AM characteristic structure colonization and between the DMW and soil chemical properties. However, the colonization of the arbuscules and vesicles of the CG had a correlation with some soil chemical properties. The results suggest that AM colonization on CG growing in a hill pasture did not differ between the slope aspects. This may be a factor contributing to the high adaptability of the grass to all slope aspects. Full article
Show Figures

Figure 1

19 pages, 7940 KiB  
Article
High-Salinity Fluid Downslope Flow on Regolith Layer Examined by Laboratory Experiment: Implications for Recurring Slope Lineae on Martian Surfaces
by Yoshiki Tabuchi, Arata Kioka, Takeshi Tsuji and Yasuhiro Yamada
Fluids 2025, 10(7), 183; https://doi.org/10.3390/fluids10070183 - 12 Jul 2025
Viewed by 339
Abstract
Numerous dark linear recurrent features called Recurring Slope Lineae (RSL) are observed on Martian surfaces, hypothesized as footprints of high-salinity liquid flow. This paper experimentally examined this “wet hypothesis” by analyzing the aspect ratios (length/width) of the flow traces on the granular material [...] Read more.
Numerous dark linear recurrent features called Recurring Slope Lineae (RSL) are observed on Martian surfaces, hypothesized as footprints of high-salinity liquid flow. This paper experimentally examined this “wet hypothesis” by analyzing the aspect ratios (length/width) of the flow traces on the granular material column to investigate how they vary with the granular material column, liquid and its flow rate, and inclination. While pure water produced low aspect ratios (<1.0) on the Martian regolith simulant column, high-salinity fluid (CaCl2(aq)) traces exhibited significantly higher aspect ratios (>4.0), suggesting that pure water alone is insufficient to explain RSL formulation. Furthermore, the aspect ratios of high-salinity fluid traces on Martian regolith simulants were among the highest observed across all studied granular materials with similar particle sizes, aligning closely with actual RSL observed on Martian slopes. The results further suggest that variable ARs of actual RSL at the given slope can partly be explained by variable flow rates of high-salinity flow as well as salinity (i.e., viscosity) of flow. The results can be attributed to the unique granular properties of Martian regolith, characterized by the lowest permeability and Beavers–Joseph slip coefficient among the studied granular materials. This distinctive microstructure surface promotes surface flow over Darcy flow within the regolith column, leading to a narrow and long-distance feature with high aspect ratios observed in Martian RSL. Thus, our findings support that high-salinity flows are the primary driver behind RSL formation on Mars. Our study suggests the presence of salts on the Martian surface and paves the way for further investigation into RSL formulation processes. Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

Back to TopTop