Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = sliding spotlight

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 18128 KiB  
Communication
Modified Spherical Geometry Algorithm for Spaceborne SAR Data Processing in Sliding Spotlight Mode
by Jixia Fan, Manyi Tao and Xinhua Mao
Remote Sens. 2025, 17(11), 1930; https://doi.org/10.3390/rs17111930 - 2 Jun 2025
Viewed by 350
Abstract
Spaceborne high-resolution wide-area SAR image formation processing faces critical challenges induced by orbital curvature, Earth rotation, and spherical ground surfaces. The Spherical Geometry Algorithm (SGA) offers an effective solution to these problems. However, the standard SGA is inherently limited to spotlight mode SAR [...] Read more.
Spaceborne high-resolution wide-area SAR image formation processing faces critical challenges induced by orbital curvature, Earth rotation, and spherical ground surfaces. The Spherical Geometry Algorithm (SGA) offers an effective solution to these problems. However, the standard SGA is inherently limited to spotlight mode SAR data processing and cannot be directly extended to other operational modes. To overcome this constraint, this paper proposes an enhanced SGA framework tailored for sliding spotlight mode SAR data processing. Firstly, this paper presents a rigorous analysis of time–frequency relationship variations during the classical SGA processing under sliding spotlight mode, and gives the reasons why the classical SGA can not be directly applied to the data processing in sliding spotlight mode. Then, a modified SGA processing framework is proposed to address the signal sampling ambiguity problem faced by the SGA in processing sliding spotlight mode data. The improved algorithm avoids the sampling ambiguity problem during azimuthal resampling and azimuthal IFFT by introducing an instantaneous Doppler central frequency correction processing before azimuthal resampling and a suitable amount of oversampling during azimuthal resampling. Finally, the effectiveness of the algorithm is verified by measured real data processing. Full article
(This article belongs to the Special Issue Advanced HRWS Spaceborne SAR: System Design and Signal Processing)
Show Figures

Graphical abstract

23 pages, 10943 KiB  
Article
An Enhanced Algorithm Based on Dual-Input Feature Fusion ShuffleNet for Synthetic Aperture Radar Operating Mode Recognition
by Haiying Wang, Wei Lu, Yingying Wu, Qunying Zhang, Xiaojun Liu and Guangyou Fang
Remote Sens. 2025, 17(9), 1523; https://doi.org/10.3390/rs17091523 - 25 Apr 2025
Viewed by 367
Abstract
Synthetic aperture radar (SAR) operating mode recognition plays a crucial role in SAR countermeasures and serves as the foundation for effective SAR interference. To address the limitations of current SAR operating mode recognition algorithms, such as low recognition rates, poor generalization, and limited [...] Read more.
Synthetic aperture radar (SAR) operating mode recognition plays a crucial role in SAR countermeasures and serves as the foundation for effective SAR interference. To address the limitations of current SAR operating mode recognition algorithms, such as low recognition rates, poor generalization, and limited engineering applicability under low signal-to-noise ratio (SNR) conditions, an enhanced algorithm named dual-input feature fusion ShuffleNet (DIFF-ShuffleNet) based on intercepted SAR signal data is proposed. First, the SAR signal is processed by combining pulse compression and time–frequency analysis technology to enhance anti-noise robustness. Then, an improved lightweight ShuffleNet architecture is designed to fuse range pulse compression (RPC) maps and azimuth time–frequency features, significantly improving recognition accuracy in low-SNR environments while maintaining practical deployability. Moreover, an improved coarse-to-fine search fractional Fourier transform (CFS-FRFT) algorithm is proposed to address the chirp rate estimation required for RPC. Simulations demonstrate that the proposed SAR operating mode recognition algorithm achieves over 95.00% recognition accuracy for SAR operating modes (stripmap, spotlight, sliding spotlight, and scan) at an SNR greater than −8 dB. Finally, four sets of measured SAR data are used to validate the algorithm’s effectiveness, with all recognition results being correct, demonstrating the algorithm’s practical applicability. Full article
Show Figures

Graphical abstract

16 pages, 4787 KiB  
Article
Enhancement Processing of High-Resolution Spaceborne SAR Wake Based on Equivalent Multi-Channel Technology
by Lei Yu, Yuting Liu, Xiaofei Xi and Pengbo Wang
Appl. Sci. 2025, 15(9), 4726; https://doi.org/10.3390/app15094726 - 24 Apr 2025
Viewed by 405
Abstract
Ship wake detection plays a crucial role in compensating for target detection failures caused by defocusing or displacement in SAR images due to vessel motion. This study addresses the challenge of enhancing wake features in high-resolution spaceborne SAR by exploiting the distinct linear [...] Read more.
Ship wake detection plays a crucial role in compensating for target detection failures caused by defocusing or displacement in SAR images due to vessel motion. This study addresses the challenge of enhancing wake features in high-resolution spaceborne SAR by exploiting the distinct linear characteristics of wake echoes and the random motion of ocean background clutter. We propose a novel method based on sub-aperture image sequences, which integrates equivalent multi-channel technology to fuse wake and wave information. This approach significantly improves the quality of raw wake images by enhancing linear features and suppressing background noise. The Radon transform is then applied to evaluate the enhanced wake images. Through a combination of principle analysis, enhancement processing, and both subjective and objective evaluations, we conducted experiments using real data from the AS01 SAR satellite and compared our method with traditional wake enhancement techniques. The results demonstrate that our method achieves significant wake enhancement and improves the recognition of detail wake features. Full article
Show Figures

Figure 1

22 pages, 6875 KiB  
Article
A Near-Real-Time Imaging Algorithm for Focusing Spaceborne SAR Data in Multiple Modes Based on an Embedded GPU
by Yunju Zhang, Mingyang Shang, Yini Lv and Xiaolan Qiu
Remote Sens. 2025, 17(9), 1495; https://doi.org/10.3390/rs17091495 - 23 Apr 2025
Cited by 1 | Viewed by 468
Abstract
To achieve on-board real-time processing for sliding-spotlight mode synthetic aperture radar (SAR), on the one hand, this paper proposes an adaptive and efficient imaging algorithm for the sliding-spotlight mode. On the other hand, a batch processing method was designed and optimized based on [...] Read more.
To achieve on-board real-time processing for sliding-spotlight mode synthetic aperture radar (SAR), on the one hand, this paper proposes an adaptive and efficient imaging algorithm for the sliding-spotlight mode. On the other hand, a batch processing method was designed and optimized based on the AGX Orin platform to implement the algorithm effectively. Based on the chirp scaling (CS) algorithm, sliding-spotlight mode imaging can be achieved by adding Deramp preprocessing along with either zero-padding or performing an extra chirp scaling operation. This article analyzes the computational complexity of the two algorithms and provides a criterion called the Method Choice Indicator (MCI) for selecting the appropriate method. Additionally, the mathematical expressions for time–frequency transformation are derived, providing the theoretical basis for calculating the equivalent PRF and the azimuth width represented by a single pixel. To increase the size of the data that AGX Orin can process, the batch processing method was proposed to reduce peak memory usage during imaging, so that the limited memory could be better utilized. Meanwhile, this algorithm was also compatible with strip mode and TOPSAR (Terrain Observation by Progressive scans SAR) mode imaging. While batch processing increased data transfers, the integrated architecture of AGX Orin minimized the negative impact. Subsequently, through a series of optimizations of the algorithm, the efficiency of the algorithm was further improved. As a result, it took 19.25 s to complete the imaging process for sliding-spotlight mode data with a size of 42,966 × 27,648. Since satellite data acquisition time was 11.43 s, it can be considered that this method achieved near-real-time imaging. The experimental results demonstrate the feasibility of on-board processing. Full article
Show Figures

Graphical abstract

24 pages, 7521 KiB  
Article
High-Resolution High-Squint Large-Scene Spaceborne Sliding Spotlight SAR Processing via Joint 2D Time and Frequency Domain Resampling
by Mingshan Ren, Heng Zhang and Weidong Yu
Remote Sens. 2025, 17(1), 163; https://doi.org/10.3390/rs17010163 - 6 Jan 2025
Viewed by 921
Abstract
A frequency domain imaging algorithm, featured as joint two-dimensional (2D) time and frequency domain resampling, used for high-resolution high-squint large-scene (HHL) spaceborne sliding spotlight synthetic aperture radar (SAR) processing is proposed in this paper. Due to the nonlinear beam rotation during HHL data [...] Read more.
A frequency domain imaging algorithm, featured as joint two-dimensional (2D) time and frequency domain resampling, used for high-resolution high-squint large-scene (HHL) spaceborne sliding spotlight synthetic aperture radar (SAR) processing is proposed in this paper. Due to the nonlinear beam rotation during HHL data acquisition, the Doppler centroid varies nonlinearly with azimuth time and traditional sub-aperture approaches and two step approach fail to remove the inertial Doppler aliasing of spaceborne sliding spotlight SAR data. In addition, curved orbit effect and long synthetic aperture time make the range histories difficult to model and introduce space-variants in both range and azimuth. In this paper, we use the azimuth deramping and 2D time-domain azimuth resampling, collectively referred to as preprocessing, to eliminate the aliasing in Doppler domain and correct the range-dependent azimuth-variants of range histories. After preprocessing, the squint sliding spotlight SAR data could be considered as equivalent broadside strip-map SAR during processing. Frequency domain focusing, mainly involves phase multiplication and resampling in 2D frequency and RD domain, is then applied to compensate for the residual space-variants and achieve the focusing of SAR data. Moreover, in order to adapt higher resolution and larger scene cases, the combination of the proposed algorithm and partitioning strategy is also discussed in this paper. Processing results of simulation data and Gaofen-3 experimental data are presented to demonstrate the feasibility of the proposed methods. Full article
Show Figures

Figure 1

28 pages, 16484 KiB  
Review
A Review of Spaceborne High-Resolution Spotlight/Sliding Spotlight Mode SAR Imaging
by Baolong Wu, Chengjin Liu and Jianlai Chen
Remote Sens. 2025, 17(1), 38; https://doi.org/10.3390/rs17010038 - 26 Dec 2024
Cited by 3 | Viewed by 1939
Abstract
Spotlight/sliding spotlight modes can achieve higher resolution than the other imaging modes and are widely used in object detection and recognition applications. This paper reviews the progress of the spaceborne spotlight/sliding spotlight SAR imaging field. The three steps of the current spaceborne spotlight/sliding [...] Read more.
Spotlight/sliding spotlight modes can achieve higher resolution than the other imaging modes and are widely used in object detection and recognition applications. This paper reviews the progress of the spaceborne spotlight/sliding spotlight SAR imaging field. The three steps of the current spaceborne spotlight/sliding spotlight SAR imaging algorithm framework are discussed in this paper. These include the following: eliminating the azimuth spectral aliasing by azimuth deramp preprocessing; implementing imaging processing using imaging kernels (RD, CS, RMA, etc.); and degrading the back-folded phenomenon in the final focused image domain by reference function multiplication post-processing. The different imaging kernels, consisting of RD, CS, RMA, BAS, FS, and PFA, are presented. The phase errors in high-resolution spaceborne spotlight/sliding spotlight SAR imaging, especially the stop-and-go error, curved orbit error, and tropospheric delay error, are analyzed in detail. Furthermore, the autofocus methods are described. In addition, some new imaging SAR systems based on spotlight/sliding spotlight SAR mode, which have more advantages than the classic spaceborne spotlight/sliding spotlight SAR imaging, were shown in this paper. These include FMCW-based systems, multichannel systems, varying-PRF systems, and bistatic systems. Full article
(This article belongs to the Special Issue Spaceborne High-Resolution SAR Imaging (Second Edition))
Show Figures

Figure 1

15 pages, 14003 KiB  
Article
Analysis of the Dihedral Corner Reflector’s RCS Features in Multi-Resource SAR
by Jie Liu, Tao Li, Sijie Ma, Yangmao Wen, Yanhao Xu and Guigen Nie
Appl. Sci. 2024, 14(12), 5054; https://doi.org/10.3390/app14125054 - 10 Jun 2024
Cited by 1 | Viewed by 1833
Abstract
Artificial corner reflectors are widely used in the vegetated landslide for time series InSAR monitoring due to their permanent scattering features. This paper investigated the RCS features of a novel dihedral CR under multi-resource SAR datasets. An RCS reduction model for the novel [...] Read more.
Artificial corner reflectors are widely used in the vegetated landslide for time series InSAR monitoring due to their permanent scattering features. This paper investigated the RCS features of a novel dihedral CR under multi-resource SAR datasets. An RCS reduction model for the novel dihedral corner reflector has been proposed to evaluate the energy loss caused by the deviation between the SAR incident angle and the CR’s axis. On the Huangtupo slope, Badong county, Hubei province, tens of dihedral CRs had been installed and the TSX–spotlight and Sentinel-TOPS data had been collected. Based on the observation results of CRs with more than ten deviation angles, the proposed reduction model was tested with preferable consistency under a real dataset, while 2 dBsm of systematic bias was verified in those datasets. The maximum incident angle deviation in the Sentinel data overlapping area is over 12°, which leads to a 2.4 dBsm RCS decrease for horizontally placed dihedral CRs estimated by the proposed model, which has also been testified by the observed results. The testing results from the Sentinel data show that in high, vegetation-covered mountain areas like the Huangtupo slope, the dihedral CRs with a 0.4 m slide length can be achieve 1 mm precision accuracy, while a side length of 0.2 m can achieve the same accuracy under TSX–spotlight data. Full article
(This article belongs to the Special Issue Latest Advances in Radar Remote Sensing Technologies)
Show Figures

Figure 1

19 pages, 11004 KiB  
Article
System Design and Echo Preprocessing of Spaceborne Squinted Two-Dimensional Beam Scanning Synthetic Aperture Radar
by Wei Xu, Xuhang Lu, Pingping Huang, Weixian Tan, Zhiqi Gao and Yaolong Qi
Sensors 2023, 23(20), 8377; https://doi.org/10.3390/s23208377 - 10 Oct 2023
Viewed by 1534
Abstract
Conventional squinted sliding spotlight synthetic aperture radar (SAR) imaging suffers from substantial swath width reduction and complex processing requirements due to the continuous variation in the squint angle and the large range cell migration (RCM) throughout the data acquisition interval. A novel two-dimensional [...] Read more.
Conventional squinted sliding spotlight synthetic aperture radar (SAR) imaging suffers from substantial swath width reduction and complex processing requirements due to the continuous variation in the squint angle and the large range cell migration (RCM) throughout the data acquisition interval. A novel two-dimensional (2D) beam scanning mode for high-resolution wide swath (HRWS) imaging is proposed. The key to the novel imaging mode lies in the synchronous scanning of azimuth and range beams, allowing for a broader and more flexible imaging swath with a high geometric resolution. Azimuth beam scanning from fore to aft was used to improve the azimuth resolution, while range beam scanning was adopted to illuminate the oblique wide swath to avoid the large RCM and the serious swath width reduction. Compared with the conventional sliding spotlight mode, both the swath width and swath length could be extended. According to the echo model of this imaging mode, an echo signal preprocessing approach is proposed. The key points of this approach are range data extension and azimuth data upsampling. A designed system example with a resolution of 0.5 m, swath width of 60 km, and azimuth coverage length of 134 km is presented. Furthermore, a simulation experiment on point targets was carried out. Both the presented system example and imaging results of point targets validated the proposed imaging mode. Full article
(This article belongs to the Special Issue Recent Advancements in Radar Imaging and Sensing Technology II)
Show Figures

Figure 1

12 pages, 1085 KiB  
Communication
Accuracy Improvement of High-Resolution Wide-Swath Spaceborne Synthetic Aperture Radar Imaging with Low Pule Repetition Frequency
by Xiaofeng Wang, Yaduan Ruan and Xinggan Zhang
Remote Sens. 2023, 15(15), 3811; https://doi.org/10.3390/rs15153811 - 31 Jul 2023
Cited by 4 | Viewed by 1452
Abstract
For a single-channel spaceborne synthetic aperture radar (SAR), the usage of a low pulse repetition frequency (PRF) is an effective technical way to extend the range swath. The sub-aperture imaging strategy is usually used to solve the problem of azimuth spectrum aliasing under [...] Read more.
For a single-channel spaceborne synthetic aperture radar (SAR), the usage of a low pulse repetition frequency (PRF) is an effective technical way to extend the range swath. The sub-aperture imaging strategy is usually used to solve the problem of azimuth spectrum aliasing under the condition of a low PRF. However, the required up-sampling processing before the coherent synthesis of sub-images will lead to spectrum discontinuity between adjacent sub-images, which leads to an obvious grating lobe phenomenon after the process of sub-image synthesis, resulting in a significant decrease in image quality. For this issue, a high-resolution wide-swath (HRWS) imaging algorithm for a spaceborne SAR with a low PRF is proposed in this paper based on optimal spectrum shift processing. First, each sub-aperture is imaged using the typical range migration algorithm (RMA), and then all sub-images are up-sampled at the same time. Then, based on the criterion of the minimum grating lobe, the optimal spectrum shift is estimated. Finally, the spectrum of all sub-images is shifted and then all the shifted sub-images are synthesized coherently. The simulation data processing results verify the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Spaceborne High-Resolution SAR Imaging)
Show Figures

Figure 1

14 pages, 5258 KiB  
Article
System Design and Signal Processing in Spaceborne Squint Sliding Spotlight SAR with Sub-Aperture Block-Varying PRF
by Wei Xu, Zhuo Zhang, Pingping Huang, Weixian Tan and Yaolong Qi
Electronics 2023, 12(13), 2835; https://doi.org/10.3390/electronics12132835 - 27 Jun 2023
Cited by 2 | Viewed by 1596
Abstract
To tackle the problems of Doppler spectrum, aliasing caused by azimuth beam scanning and azimuthal serious non-uniform sampling in squint sliding spotlight synthetic aperture radar (SAR) with varying repetition frequency technology, the azimuth sampling method of sub-aperture block-varying pulse repetition frequency (SBV-PRF) is [...] Read more.
To tackle the problems of Doppler spectrum, aliasing caused by azimuth beam scanning and azimuthal serious non-uniform sampling in squint sliding spotlight synthetic aperture radar (SAR) with varying repetition frequency technology, the azimuth sampling method of sub-aperture block-varying pulse repetition frequency (SBV-PRF) is proposed, where the sub-aperture division judgement makes the azimuth acquisition time of each sub-block small enough so that the Doppler bandwidth caused by the Doppler center change can be ignored. Based on the echo signal characteristics of a SBV-PRF transmission scheme, an azimuth pre-processing method combining SBV-PRF transmission scheme with sub-aperture division is proposed. Using this method, de-skewing is first performed on each set of sub-aperture data to eliminate the additional Doppler bandwidth introduced by the squint angle, and then the azimuth signal resampling is performed to ensure different sub-aperture data have the same sampling rate. The SBV-PRF technology reduces the difficulty of azimuth signal pre-processing while ensuring the complete acquisition of the complete echo data of the squint sliding spotlight mode. The effectiveness of the SBV-PRF system design and the signal processing method is verified by the point target echo simulation and imaging simulation results. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Figure 1

21 pages, 6988 KiB  
Article
Azimuth Full-Aperture Processing of Spaceborne Squint SAR Data with Block Varying PRF
by Zhuo Zhang, Wei Xu, Pingping Huang, Weixian Tan, Zhiqi Gao and Yaolong Qi
Sensors 2022, 22(23), 9328; https://doi.org/10.3390/s22239328 - 30 Nov 2022
Cited by 4 | Viewed by 2777
Abstract
The block varying pulse repetition frequency (BV-PRF) scheme applied to spaceborne squint sliding-spotlight synthetic aperture radar (SAR) can resolve large-range cell migration (RCM) and reduce azimuth signal non-uniformity. However, in the BV-PRF scheme, different raw data blocks have different PRFs, and the raw [...] Read more.
The block varying pulse repetition frequency (BV-PRF) scheme applied to spaceborne squint sliding-spotlight synthetic aperture radar (SAR) can resolve large-range cell migration (RCM) and reduce azimuth signal non-uniformity. However, in the BV-PRF scheme, different raw data blocks have different PRFs, and the raw data in each block are insufficiently sampled. To resolve the two problems, a novel azimuth full-aperture pre-processing method is proposed to handle the SAR raw data formed by the BV-PRF scheme. The key point of the approach is the resampling of block data with different PRFs and the continuous splicing of azimuth data. The method mainly consists of four parts: de-skewing, resampling, azimuth continuous combination, and Doppler history recovery. After de-skewing, the raw data with different PRFs can be resampled individually to obtain a uniform azimuth sampling interval, and an appropriate azimuth time shift is introduced to ensure the continuous combination of the azimuth signal. Consequently, the resulting raw data are sufficiently and uniformly sampled in azimuth, which could be well handled by classical SAR-focusing algorithms. Simulation results on point targets validate the proposed azimuth pre-processing approach. Furthermore, compared with methods to process SAR data with continuous PRF, the proposed method is more effective. Full article
(This article belongs to the Special Issue Radar Technology and Data Processing)
Show Figures

Figure 1

24 pages, 7119 KiB  
Article
A Novel Frequency-Domain Focusing Method for Geosynchronous Low-Earth-Orbit Bistatic SAR in Sliding-Spotlight Mode
by Zhichao Sun, Tianfu Chen, Huarui Sun, Junjie Wu, Zheng Lu, Zhongyu Li, Hongyang An and Jianyu Yang
Remote Sens. 2022, 14(13), 3178; https://doi.org/10.3390/rs14133178 - 1 Jul 2022
Cited by 9 | Viewed by 2673
Abstract
The low-earth-orbit synthetic aperture radar (SAR) can achieve enhanced remote-sensing capabilities by exploiting the large-scale and long-duration beam coverage of a geosynchronous (GEO) SAR illuminator. Different bistatic imaging modes can be implemented by the steering of an antenna beam onboard the LEO receiver, [...] Read more.
The low-earth-orbit synthetic aperture radar (SAR) can achieve enhanced remote-sensing capabilities by exploiting the large-scale and long-duration beam coverage of a geosynchronous (GEO) SAR illuminator. Different bistatic imaging modes can be implemented by the steering of an antenna beam onboard the LEO receiver, such as high-resolution sliding-spotlight mode. In this paper, the accurate focusing of GEO-LEO bistatic SAR (GEO-LEO BiSAR) in sliding-spotlight mode is investigated. First, the two major problems of the accurate bistatic range model, i.e., curved trajectory within long integration time and ‘stop-and-go’ assumption error, for sliding-spotlight GEO-LEO BiSAR are analyzed. Then, a novel bistatic range model based on equivalent circular orbit trajectory is proposed to accurately represent the range history of GEO-LEO BiSAR in sliding-spotlight mode. Based on the proposed range model, a frequency-domain imaging method is put forward. First, a modified two-step preprocessing method is implemented to remove the Doppler aliasing caused by azimuth variance of Doppler centroid and beam steering. Then, an azimuth trajectory scaling is formulated to remove the azimuth variance of motion parameters due to curved trajectory. A modified frequency-domain imaging method is derived to eliminate the 2-D spatial variance and achieve accurate focusing of the echo data. Finally, imaging results and analysis on both simulated data and real data from an equivalent BiSAR experiment validate the effectiveness of the proposed method. Full article
Show Figures

Figure 1

27 pages, 9576 KiB  
Article
A Unified Algorithm for the Sliding Spotlight and TOPS Modes Data Processing in Bistatic Configuration of the Geostationary Transmitter with LEO Receivers
by Feng Tian, Zhiyong Suo, Yuekun Wang, Zheng Lu, Zhen Wang and Zhenfang Li
Remote Sens. 2022, 14(9), 2006; https://doi.org/10.3390/rs14092006 - 21 Apr 2022
Cited by 5 | Viewed by 2023
Abstract
This paper deals with the imaging problem for sliding spotlight (SS) and terrain observation by progressive scan (TOPS) modes in bistatic configuration of the geostationary (GEO) transmitter with a low earth orbit satellite (LEO) receiver, named GTLR-BiSAR system. A unified imaging algorithm is [...] Read more.
This paper deals with the imaging problem for sliding spotlight (SS) and terrain observation by progressive scan (TOPS) modes in bistatic configuration of the geostationary (GEO) transmitter with a low earth orbit satellite (LEO) receiver, named GTLR-BiSAR system. A unified imaging algorithm is proposed to process the GTLR-BiSAR data acquired in SS or TOPS modes. Our main contributions include four aspects. Firstly, the imaging geometry of this novel configuration is described in detail. Furthermore, the GTLR-BiSAR signal expressions were deduced in both time and frequency domains. These signal expressions provide great support for the design of processing the algorithm theoretically. Secondly, we present a unified deramping-based technique according to the special geometry of GTLR-BiSAR to overcome the azimuth spectrum aliasing phenomenon, which typically affects SS and TOPS data. Thirdly, the spatial variance of GTLR-BiSAR data were thoroughly analyzed based on the range-Doppler (RD) geolocation functions. On the basis of a former analysis, we put forward the azimuth variance correction strategy and modified the conventional chirp scaling function to solve the range variance problem. Finally, we completed the derivation of the two-dimensional spectrum after the range chirp scaling. On the basis of spectrum expressions, we compensated for the quadratic and residue phase, and the azimuth compression was completed by SPECAN operation. In addition, we provide a flow diagram to visually exhibit the processing procedures. At the end of this paper, the simulation and real data experiment results are presented to validate the effectiveness of the proposed algorithm. Full article
(This article belongs to the Special Issue Distributed Spaceborne SAR: Systems, Algorithms, and Applications)
Show Figures

Figure 1

14 pages, 13889 KiB  
Technical Note
Phase Mismatch Calibration for Dual-Channel Sliding Spotlight SAR-GMTI
by Zhenning Zhang, Weidong Yu, Mingjie Zheng, Liangbo Zhao and Zi-Xuan Zhou
Remote Sens. 2022, 14(3), 617; https://doi.org/10.3390/rs14030617 - 27 Jan 2022
Cited by 3 | Viewed by 2998
Abstract
This article investigates channel phase mismatch calibration during the application of displaced-phase-center antenna (DPCA) in dual-channel sliding spotlight synthetic aperture radar (SAR) for ground moving target indication (GMTI). In sliding spotlight SAR, the utilization of beam progressive sweeping in azimuth causes antenna phase [...] Read more.
This article investigates channel phase mismatch calibration during the application of displaced-phase-center antenna (DPCA) in dual-channel sliding spotlight synthetic aperture radar (SAR) for ground moving target indication (GMTI). In sliding spotlight SAR, the utilization of beam progressive sweeping in azimuth causes antenna phase centers to be misaligned from the sensor path, resulting in the phase mismatch between channels. Then, spatial channel co-registration required in the DPCA cannot be achieved directly by an azimuth time shift. In this study, a calibration method based on scanning geometry of the dual-channel sliding spotlight SAR is developed to address this issue. Moreover, the effect of the phase mismatch calibration on the estimation of azimuth time difference between the two channels is derived and analyzed in depth. The clutter suppression results processed from experimental data acquired by a C-band dual-channel SAR system (Gaofen-3) operated in sliding spotlight mode are shown for the first time to demonstrate the effective phase mismatch calibration. Full article
Show Figures

Figure 1

24 pages, 5190 KiB  
Article
A Novel Imaging Algorithm for High-Resolution Wide-Swath Space-Borne SAR Based on a Spatial-Variant Equivalent Squint Range Model
by Yanan Guo, Pengbo Wang, Jie Chen, Zhirong Men, Lei Cui and Lei Zhuang
Remote Sens. 2022, 14(2), 368; https://doi.org/10.3390/rs14020368 - 13 Jan 2022
Cited by 4 | Viewed by 2302
Abstract
High-Resolution Wide-Swath (HRWS) is an important development direction of space-borne Synthetic Aperture Radar (SAR). The two-dimensional spatial variation of the Doppler parameters is the most significant characteristic of the sliding spotlight space-borne SAR system under the requirements of HRWS. Therefore, the compensation of [...] Read more.
High-Resolution Wide-Swath (HRWS) is an important development direction of space-borne Synthetic Aperture Radar (SAR). The two-dimensional spatial variation of the Doppler parameters is the most significant characteristic of the sliding spotlight space-borne SAR system under the requirements of HRWS. Therefore, the compensation of the two-dimensional spatial variation is the most challenging problem faced in the imaging of HRWS situations. The compensatory approach is then proposed to address this problem in this paper. The spatial distribution of the Doppler parameters for the HRWS space-borne SAR data in the sliding spotlight working mode is firstly analyzed, based on which a Spatial-Variant Equivalent Slant Range Model (SV-ESRM) is put forward to accurately formulate the range history for the distributed target. By introducing an azimuth-varying term, the SV-ESRM can precisely describe the range history for not only central targets but also marginal targets, which is more adaptive to the HRWS space-borne SAR requirements. Based on the SV-ESRM, a Modified Hybrid Correlation Algorithm (MHCA) for HRWS space-borne SAR imaging is derived to focus the full-scene data on one single imaging processing. A Doppler phase perturbation incorporated with the sub-aperture method is firstly performed to eliminate the azimuth variation of the Doppler parameters and remove the Doppler spectrum aliasing. Then, an advanced hybrid correlation is employed to achieve the precise differential Range Cell Migration (RCM) correction and Doppler phase compensation. A range phase perturbation method is also utilized to eliminate the range profile defocusing caused by range-azimuth coupling for marginal targets. Finally, a de-rotation processing is performed to remove the azimuth aliasing and the residual azimuth-variance and obtain the precisely focused SAR image. Simulation shows that the SAR echoes for a 20 km × 20 km scene with a 0.25 m resolution in both the range and azimuth directions could be focused precisely via one single imaging processing, which validates the feasibility of the proposed algorithm. Full article
Show Figures

Graphical abstract

Back to TopTop