Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = silk fibroin nanofiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7615 KiB  
Article
Electrospun Silk Fibroin/Cyclodextrin Nanofibers for Multifunctional Air Filtration
by Papimol Mongyun and Sompit Wanwong
Fibers 2025, 13(7), 94; https://doi.org/10.3390/fib13070094 - 8 Jul 2025
Viewed by 671
Abstract
Particulate matter (PM) and volatile organic compounds (VOCs) are major air pollutants that can cause significant risks to public health. To mitigate exposure, fibrous filters have been widely utilized for air purification. In this study, we developed electrospun silk fibroin/poly (ethylene oxide)/cyclodextrin (SF/PEO/CD) [...] Read more.
Particulate matter (PM) and volatile organic compounds (VOCs) are major air pollutants that can cause significant risks to public health. To mitigate exposure, fibrous filters have been widely utilized for air purification. In this study, we developed electrospun silk fibroin/poly (ethylene oxide)/cyclodextrin (SF/PEO/CD) nanofibers as multifunctional air filters capable of efficiently reducing PM2.5 and degrading VOCs. The resulting SF/PEO/10CD demonstrated the best multifunctional filtration performance, achieving PM2.5 capture efficiencies of 91.3% with a minimal pressure drop of 4 Pa and VOC removal efficiency of 50%. These characteristics highlight the potential of the SF/PEO/10CD nanofiber with effective, multifunctional properties and environmental benefits for sustainable air filtration application. Full article
Show Figures

Figure 1

15 pages, 11557 KiB  
Article
Toward Versatile Transient Electronics: Electrospun Biocompatible Silk Fibroin/Carbon Quantum Dot-Based Green-Emission, Water-Soluble Piezoelectric Nanofibers
by Zhipei Xia, Chubao Liu, Juan Li, Biyao Huang, Chu Pan, Yu Lai, Zhu Liu, Dongling Wu, Sen Liang, Xuanlun Wang, Weiqing Yang and Jun Lu
Polymers 2025, 17(11), 1579; https://doi.org/10.3390/polym17111579 - 5 Jun 2025
Viewed by 586
Abstract
The rapid development of wearable electronics requires multifunctional, transient electronic devices to reduce the ecological footprint and ensure data security. Unfortunately, existing transient electronic materials need to be degraded in chemical solvents or body fluids. Here, we report green luminescent, water-soluble, and biocompatible [...] Read more.
The rapid development of wearable electronics requires multifunctional, transient electronic devices to reduce the ecological footprint and ensure data security. Unfortunately, existing transient electronic materials need to be degraded in chemical solvents or body fluids. Here, we report green luminescent, water-soluble, and biocompatible piezoelectric nanofibers developed by electrospinning green carbon quantum dots (G-CQDs), mulberry silk fibroin (SF), and polyvinyl alcohol (PVA). The introduction of G-CQDs significantly enhances the piezoelectric output of silk fibroin-based fiber materials. Meanwhile, the silk fibroin-based hybrid fibers maintain the photoluminescent response of G-CQDs without sacrificing valuable biocompatibility. Notably, the piezoelectric output of a G-CQD/PVA/SF fiber-based nanogenerator is more than three times higher than that of a PVA/SF fiber-based nanogenerator. This is one of the highest levels of state-of-the-art piezoelectric devices based on biological organic materials. As a proof of concept, in the actual scenario of a rope skipping exercise, the G-CQD/PVA/SF fiber-based nanogenerator is further employed as a self-powered wearable sensor for real-time sensing of athletic motions. It demonstrates high portability, good flexibility, and stable piezoresponse for smart sports applications. This class of water-disposable, piezo/photoactive biological materials could be compelling building blocks for applications in a new generation of versatile, transient, wearable/implantable devices. Full article
(This article belongs to the Special Issue Polymer-Based Wearable Electronics)
Show Figures

Figure 1

27 pages, 9997 KiB  
Review
Silk Fibroin Nanofibers: Advancements in Bioactive Dressings through Electrospinning Technology for Diabetic Wound Healing
by Afaf Aldahish, Nirenjen Shanmugasundaram, Rajalakshimi Vasudevan, Taha Alqahtani, Saud Alqahtani, Ahmad Mohammad Asiri, Praveen Devanandan, Tamilanban Thamaraikani, Chitra Vellapandian and Narayanan Jayasankar
Pharmaceuticals 2024, 17(10), 1305; https://doi.org/10.3390/ph17101305 - 30 Sep 2024
Cited by 7 | Viewed by 3722
Abstract
Background: Non-healing diabetic wounds represent a significant clinical challenge globally, necessitating innovative approaches in drug delivery to enhance wound healing. Understanding the pathogenesis of these wounds is crucial for developing effective treatments. Bioactive dressings and polymeric nanofibers have emerged as promising modalities, with [...] Read more.
Background: Non-healing diabetic wounds represent a significant clinical challenge globally, necessitating innovative approaches in drug delivery to enhance wound healing. Understanding the pathogenesis of these wounds is crucial for developing effective treatments. Bioactive dressings and polymeric nanofibers have emerged as promising modalities, with silk biomaterials gaining attention for their unique properties in diabetic wound healing. Purpose of Review: The purpose of this review is to examine the challenges and innovations in treating non-healing diabetic wounds, emphasizing the global burden and the need for effective solutions. This review explores the complex mechanisms of wound healing in diabetes and evaluates the therapeutic potential of bioactive dressings and polymeric nanofibers. Special focus is given to the application of silk biomaterials, particularly silk fibroin, for wound healing, detailing their properties, mechanisms, and clinical translation. This review also describes various nanofiber fabrication methods, especially electrospinning technology, and presents existing evidence on the effectiveness of electrospun silk fibroin formulations. Recent Findings: Recent advancements highlight the potential of silk biomaterials in diabetic wound healing, owing to their biocompatibility, mechanical strength, and controlled drug release properties. Electrospun silk fibroin-based formulations have shown promising results in preclinical and clinical studies, demonstrating accelerated wound closure and tissue regeneration. Summary: Non-healing diabetic wounds present a significant healthcare burden globally, necessitating innovative therapeutic strategies. Bioactive dressings and polymeric nanofibers, particularly silk-based formulations fabricated through electrospinning, offer promising avenues for enhancing diabetic wound healing. Further research is warranted to optimize formulation parameters and validate efficacy in larger clinical trials. Full article
(This article belongs to the Special Issue Development of Specific Dosage Form: Wound Dressing)
Show Figures

Graphical abstract

13 pages, 2823 KiB  
Article
Instant and Multifunctional Nanofibers Loaded with Proanthocyanidins and Hyaluronic Acid for Skincare Applications
by Xuan Yang, Pengcheng Gu, Qiang Jiang, Xiting Cheng, Jia Fan and Yan Bai
Biomedicines 2024, 12(7), 1584; https://doi.org/10.3390/biomedicines12071584 - 17 Jul 2024
Cited by 5 | Viewed by 1378
Abstract
Hyaluronic-acid- and silk-fibroin-based nanofibrous mats loaded with proanthocyanidins and collagen peptides were fabricated as multifunctional facial masks using electrospinning. Their morphology, hygroscopicity and moisture retention, DPPH, ABTS free radical scavenging abilities, and cytocompatibility were investigated. The results showed that the nanofibrous mats were [...] Read more.
Hyaluronic-acid- and silk-fibroin-based nanofibrous mats loaded with proanthocyanidins and collagen peptides were fabricated as multifunctional facial masks using electrospinning. Their morphology, hygroscopicity and moisture retention, DPPH, ABTS free radical scavenging abilities, and cytocompatibility were investigated. The results showed that the nanofibrous mats were dense and uniform, with an average diameter ranging from 300 to 370 nm. The nanofibrous mats exhibited satisfactory moisture retention, oxidation resistance, biocompatibility, especially excellent DPPH, and ABTS free radical scavenging capacities. DPPH free radical scavenging activity was 90% with 15 mg/L nanofibers, and ABTS free radical scavenging activity was 90% with 0.005 mg/L nanofibers. The nanofibrous mats protected fibroblasts from oxidative stress damage induced by tert-butyl hydroperoxide (t-BHP) and significantly promoted their proliferation. Compared with traditional liquid masks and semi-solid facial masks, the multifunctional nanofibrous mats prepared in this study contained fewer additives, which has significant advantages in terms of safety. The nanofibrous mats were rapidly dissolved within 5 s after being sprayed with water, which facilitated the release and penetration of active ingredients for skincare. Therefore, the multifunctional nanofibrous mats displayed excellent moisture retention, oxidation resistance, and biocompatibility, indicating promising translational potential as facial masks and providing a valuable reference for skincare. Full article
(This article belongs to the Topic Advanced Functional Materials for Regenerative Medicine)
Show Figures

Figure 1

21 pages, 8308 KiB  
Article
Fabrication of Quercetin-Functionalized Morpholine and Pyridine Motifs-Laden Silk Fibroin Nanofibers for Effective Wound Healing in Preclinical Study
by Govindaraj Sabarees, Vadivel Velmurugan, Siddan Gouthaman, Viswas Raja Solomon and Subramani Kandhasamy
Pharmaceutics 2024, 16(4), 462; https://doi.org/10.3390/pharmaceutics16040462 - 26 Mar 2024
Cited by 2 | Viewed by 2443
Abstract
Choosing suitable wound dressings is crucial for effective wound healing. Spun scaffolds with bioactive molecule functionalization are gaining attention as a promising approach to expedite tissue repair and regeneration. Here, we present the synthesis of novel multifunctional quercetin with morpholine and pyridine functional [...] Read more.
Choosing suitable wound dressings is crucial for effective wound healing. Spun scaffolds with bioactive molecule functionalization are gaining attention as a promising approach to expedite tissue repair and regeneration. Here, we present the synthesis of novel multifunctional quercetin with morpholine and pyridine functional motifs (QFM) embedded in silk fibroin (SF)-spun fibers (SF-QFM) for preclinical skin repair therapies. The verification of the novel QFM structural arrangement was characterized using ATR-FTIR, NMR, and ESI-MS spectroscopy analysis. Extensive characterization of the spun SF-QFM fibrous mats revealed their excellent antibacterial and antioxidant properties, biocompatibility, biodegradability, and remarkable mechanical and controlled drug release capabilities. SF-QFM mats were studied for drug release in pH 7.4 PBS over 72 h. The QFM-controlled release is mainly driven by diffusion and follows Fickian’s law. Significant QFM release (40%) occurred within the first 6 h, with a total release of 79% at the end of 72 h, which is considered beneficial in effectively reducing bacterial load and helping expedite the healing process. Interestingly, the SF-QFM-spun mat demonstrated significantly improved NIH 3T3 cell proliferation and migration compared to the pure SF mat, as evidenced by the complete migration of NIH 3T3 cells within 24 h in the scratch assay. Furthermore, the in vivo outcome of SF-QFM was demonstrated by the regeneration of fresh fibroblasts and the realignment of collagen fibers deposition at 9 days post-operation in a preclinical rat full-thickness skin defect model. Our findings collectively indicate that the SF-QFM electrospun nanofiber scaffolds hold significant capability as a cost-effective and efficient bioactive spun architecture for use in wound healing applications. Full article
(This article belongs to the Special Issue Nanofibrous Scaffolds Application in Biomedicine)
Show Figures

Graphical abstract

16 pages, 3315 KiB  
Article
Evaluation of the Modification Effects of Heparin/Dalteparin on Silk Fibroin Structure and Physical Properties for Skin Wound Healing
by Rikako Hama and Yasumoto Nakazawa
Polymers 2024, 16(3), 321; https://doi.org/10.3390/polym16030321 - 24 Jan 2024
Cited by 1 | Viewed by 1895
Abstract
We have developed a functionalized silk fibroin (BSF) that can serve as an improved fundamental material for dressings by specifically capturing growth factors secreted during the healing process and supplying them to cells accumulated in the wound area to enhance the tissue regeneration [...] Read more.
We have developed a functionalized silk fibroin (BSF) that can serve as an improved fundamental material for dressings by specifically capturing growth factors secreted during the healing process and supplying them to cells accumulated in the wound area to enhance the tissue regeneration efficiency. When considering the design of heparin-modified BSF, there is a difficulty with binding to high-molecular-weight polysaccharides without disrupting the hydrophobic crystalline structure of the BSF. In this study, a low-molecular-weight pharmaceutical heparin, dalteparin, was selected and cross-linked with the tyrosine residue presence in the BSF non-crystalline region. When targeting 3D porous applications like nanofiber sheets, as it is crucial not only to enhance biological activity but also to improve handling by maintaining stability in water and mechanical strength, a trade-off between improved cell affinity and reduced mechanical strength depending on crystalline structure was evaluated. The use of dalteparin maintained the mechanical strength better than unfractionated heparin by reducing the effect on disturbing BSF recrystallization. Film surface hydrophilicity and cell proliferation induction were significantly higher in the dalteparin group. For BSF functionalization, using purified heparin was an effective approach that achieved a balance between preserving the mechanical properties and induction of tissue regeneration, offering the potential for various forms in the future. Full article
(This article belongs to the Special Issue Biopolymer-Based Biomimetic Scaffolds)
Show Figures

Figure 1

20 pages, 4119 KiB  
Article
Silk Fibroin/ZnO Coated TiO2 Nanotubes for Improved Antimicrobial Effect of Ti Dental Implants
by Angela Gabriela Păun, Cristina Dumitriu, Camelia Ungureanu and Simona Popescu
Materials 2023, 16(17), 5855; https://doi.org/10.3390/ma16175855 - 26 Aug 2023
Cited by 12 | Viewed by 2295
Abstract
The aim of the present research is to develop a novel hybrid coating for a Ti dental implant that combines nature-inspired biomimetic polymers and TiO2 nanostructures with an entrapped ZnO antimicrobial agent. ZnO was used in other studies to cover the surface [...] Read more.
The aim of the present research is to develop a novel hybrid coating for a Ti dental implant that combines nature-inspired biomimetic polymers and TiO2 nanostructures with an entrapped ZnO antimicrobial agent. ZnO was used in other studies to cover the surface of Ti or Ti–Zr to reduce the need of clinical antibiotics, prevent the onset of peri-implantitis, and increase the success rate of oral clinical implantation. We developed an original coating that represents a promising approach in clinical dentistry. The titanium surface was first anodized to obtain TiO2 nanotubes (NT). Subsequently, on the NT surface, silk fibroin isolated from Bombyx mori cocoons was deposited as nanofibers using the electrospun technique. For an improved antibacterial effect, ZnO nanoparticles were incorporated in this biopolymer using three different methods. The surface properties of the newly created coatings were assessed to establish how they are influenced by the most important features: morphology, wettability, topography. The evaluation of stability by electrochemical methods in simulated physiological solutions was discussed more in detail, considering that it could bring necessary information related to the behavior of the implant material. All samples had improved roughness and hydrophilicity, as well as corrosion stability (with protection efficiency over 80%). The antibacterial test shows that the functional hybrid coating has good antibacterial activity because it can inhibit the proliferation of Staphylococcus aureus up to 53% and Enterococcus faecalis up to 55%. All Ti samples with the modified surface have proven superior properties compared with unmodified TiNT, which proved that they have the potential to be used as implant material in dentistry. Full article
(This article belongs to the Special Issue The 15th Anniversary of Materials—Recent Advances in Biomaterials)
Show Figures

Graphical abstract

22 pages, 1123 KiB  
Review
Advances in Preparation and Properties of Regenerated Silk Fibroin
by Linlin Huang, Jifeng Shi, Wei Zhou and Qing Zhang
Int. J. Mol. Sci. 2023, 24(17), 13153; https://doi.org/10.3390/ijms241713153 - 24 Aug 2023
Cited by 33 | Viewed by 8892
Abstract
Over the years, silk fibroin (SF) has gained significant attention in various fields, such as biomedicine, tissue engineering, food processing, photochemistry, and biosensing, owing to its remarkable biocompatibility, machinability, and chemical modifiability. The process of obtaining regenerated silk fibroin (RSF) involves degumming, dissolving, [...] Read more.
Over the years, silk fibroin (SF) has gained significant attention in various fields, such as biomedicine, tissue engineering, food processing, photochemistry, and biosensing, owing to its remarkable biocompatibility, machinability, and chemical modifiability. The process of obtaining regenerated silk fibroin (RSF) involves degumming, dissolving, dialysis, and centrifugation. RSF can be further fabricated into films, sponges, microspheres, gels, nanofibers, and other forms. It is now understood that the dissolution method selected greatly impacts the molecular weight distribution and structure of RSF, consequently influencing its subsequent processing and application. This study comprehensively explores and summarizes different dissolution methods of SF while examining their effects on the structure and performance of RSF. The findings presented herein aim to provide valuable insights and references for researchers and practitioners interested in utilizing RSF in diverse fields. Full article
Show Figures

Figure 1

30 pages, 4648 KiB  
Article
Human Keratinocytes and Fibroblasts Co-Cultured on Silk Fibroin Scaffolds Exosomally Overrelease Angiogenic and Growth Factors
by Peng Hu, Ubaldo Armato, Giuliano Freddi, Anna Chiarini and Ilaria Dal Prà
Cells 2023, 12(14), 1827; https://doi.org/10.3390/cells12141827 - 11 Jul 2023
Cited by 8 | Viewed by 3618
Abstract
Objectives: The optimal healing of skin wounds, deep burns, and chronic ulcers is an important clinical problem. Attempts to solve it have been driving the search for skin equivalents based on synthetic or natural polymers. Methods: Consistent with this endeavor, we used regenerated [...] Read more.
Objectives: The optimal healing of skin wounds, deep burns, and chronic ulcers is an important clinical problem. Attempts to solve it have been driving the search for skin equivalents based on synthetic or natural polymers. Methods: Consistent with this endeavor, we used regenerated silk fibroin (SF) from Bombyx mori to produce a novel compound scaffold by welding a 3D carded/hydroentangled SF-microfiber-based nonwoven layer (C/H-3D-SFnw; to support dermis engineering) to an electrospun 2D SF nanofiber layer (ESFN; a basal lamina surrogate). Next, we assessed—via scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, differential scanning calorimetry, mono- and co-cultures of HaCaT keratinocytes and adult human dermal fibroblasts (HDFs), dsDNA assays, exosome isolation, double-antibody arrays, and angiogenesis assays—whether the C/H-3D-SFnws/ESFNs would allow the reconstitution of a functional human skin analog in vitro. Results: Physical analyses proved that the C/H-3D-SFnws/ESFNs met the requirements for human soft-tissue-like implants. dsDNA assays revealed that co-cultures of HaCaTs (on the 2D ESFN surface) and HDFs (inside the 3D C/H-3D-SFnws) grew more intensely than did the respective monocultures. Double-antibody arrays showed that the CD9+/CD81+ exosomes isolated from the 14-day pooled growth media of HDF and/or HaCaT mono- or co-cultures conveyed 35 distinct angiogenic/growth factors (AGFs). However, versus monocultures’ exosomes, HaCaT/HDF co-cultures’ exosomes (i) transported larger amounts of 15 AGFs, i.e., PIGF, ANGPT-1, bFGF, Tie-2, Angiogenin, VEGF-A, VEGF-D, TIMP-1/-2, GRO-α/-β/-γ, IL-1β, IL-6, IL-8, MMP-9, and MCP-1, and (ii) significantly more strongly stimulated human dermal microvascular endothelial cells to migrate and assemble tubes/nodes in vitro. Conclusions: Our results showed that both cell–cell and cell–SF interactions boosted the exosomal release of AGFs from HaCaTs/HDFs co-cultured on C/H-3D-SFnws/ESFNs. Hence, such exosomes are an asset for prospective clinical applications as they advance cell growth and neoangiogenesis and consequently graft take and skin healing. Moreover, this new integument analog could be instrumental in preclinical and translational studies on human skin pathophysiology and regeneration. Full article
(This article belongs to the Special Issue Skin Research: Cellular Mechanism and Therapeutic Potentials)
Show Figures

Graphical abstract

20 pages, 5857 KiB  
Article
Poly(vinyl alcohol)/Silk Fibroin/Ag-NPs Composite Nanofibers as a Substrate for MG-63 Cells’ Growth
by Monica L. Mejía Suaza, Jennifer C. Leos Rivera, Maria C. Rodríguez Padilla, Maria E. Moncada Acevedo, Claudia P. Ossa Orozco and Diana G. Zarate Triviño
Polymers 2023, 15(8), 1838; https://doi.org/10.3390/polym15081838 - 11 Apr 2023
Cited by 11 | Viewed by 3085
Abstract
Nanofiber scaffolds of polyvinyl alcohol, silk fibroin from Bombyx mori cocoons, and silver nanoparticles were developed as a substrate for MG-63 growth. The fiber morphology, mechanical properties, thermal degradation, chemical composition, and water contact angle were investigated. In vitro tests were performed by [...] Read more.
Nanofiber scaffolds of polyvinyl alcohol, silk fibroin from Bombyx mori cocoons, and silver nanoparticles were developed as a substrate for MG-63 growth. The fiber morphology, mechanical properties, thermal degradation, chemical composition, and water contact angle were investigated. In vitro tests were performed by the cell viability MTS test of MG-63 cells on electrospun PVA scaffolds, mineralization was analyzed by alizarin red, and the alkaline phosphatase (ALP) assay was evaluated. At higher PVA concentrations, Young’s modulus (E) increased. The addition of fibroin and silver nanoparticles improved the thermal stability of PVA scaffolds. FTIR spectra indicated characteristic absorption peaks related to the chemical structures of PVA, fibroin, and Ag-NPs, demonstrating good interactions between them. The contact angle of the PVA scaffolds decreased with the incorporation of fibroin and showed hydrophilic characteristics. In all concentrations, MG-63 cells on PVA/fibroin/Ag-NPs scaffolds had higher cell viability than PVA pristine. On day ten of culture, PVA18/SF/Ag-NPs showed the highest mineralization, observed by the alizarin red test. PVA10/SF/Ag-NPs presented the highest alkaline phosphatase activity after an incubation time of 37 h. The achievements indicate the potential of the nanofibers of PVA18/SF/Ag-NPs as a possible substitute for bone tissue engineering (BTE). Full article
(This article belongs to the Special Issue Polymer-Based Fibers and Composites for Biomedical Applications)
Show Figures

Figure 1

12 pages, 3702 KiB  
Article
Reinforcement of Calcium Phosphate Cement with Hybrid Silk Fibroin/Kappa-Carrageenan Nanofibers
by Fahimeh Roshanfar, Saeed Hesaraki, Alireza Dolatshahi-Pirouz, Mohsen Saeidi, Sara Leal-Marin, Birgit Glasmacher, Gorka Orive and Sajjad Khan Einipour
Biomedicines 2023, 11(3), 850; https://doi.org/10.3390/biomedicines11030850 - 10 Mar 2023
Cited by 9 | Viewed by 3297
Abstract
Calcium phosphate cements (CPCs) offer a promising solution for treating bone defects due to their osteoconductive, injectable, biocompatible, and bone replacement properties. However, their brittle nature restricts their utilization to non-load-bearing applications. In this study, the impact of hybrid silk fibroin (SF) and [...] Read more.
Calcium phosphate cements (CPCs) offer a promising solution for treating bone defects due to their osteoconductive, injectable, biocompatible, and bone replacement properties. However, their brittle nature restricts their utilization to non-load-bearing applications. In this study, the impact of hybrid silk fibroin (SF) and kappa-carrageenan (k-CG) nanofibers as reinforcements in CPC was investigated. The CPC composite was fabricated by incorporating electrospun nanofibers in 1, 3, and 5% volume fractions. The morphology, mineralization, mechanical properties, setting time, injectability, cell adhesion, and mineralization of the CPC composites were analyzed. The results demonstrated that the addition of the nanofibers improved the CPC mixture, leading to an increase in compressive strength (14.8 ± 0.3 MPa compared to 8.1 ± 0.4 MPa of the unreinforced CPC). Similar improvements were seen in the bending strength and work fracture (WOF). The MC3T3-E1 cell culture experiments indicated that cells attached well to the surfaces of all cement samples and tended to join their adjacent cells. Additionally, the CPC composites showed higher cell mineralization after a culture period of 14 days, indicating that the SF/k-CG combination has potential for applications as a CPC reinforcement and bone cell regeneration promoter. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Graphical abstract

21 pages, 7795 KiB  
Article
Silk Fibroin-Based Piezoelectric Sensor with Carbon Nanofibers for Wearable Health Monitoring Applications
by Senthil Kumar Rathinasamy, Rajagopal Maheswar and Josip Lorincz
Sensors 2023, 23(3), 1373; https://doi.org/10.3390/s23031373 - 26 Jan 2023
Cited by 18 | Viewed by 3775
Abstract
The continuous real-time monitoring of human health using biomedical sensing devices has recently become a promising approach to the realization of distant health monitoring. In this paper, the piezoelectric characteristics of the silk fibroin (SF) natural polymer were analyzed as the material used [...] Read more.
The continuous real-time monitoring of human health using biomedical sensing devices has recently become a promising approach to the realization of distant health monitoring. In this paper, the piezoelectric characteristics of the silk fibroin (SF) natural polymer were analyzed as the material used for obtaining sensing information in the application of distance health monitoring. To enhance the SF piezoelectricity, this paper presents the development of a novel SF-based sensor realized by combining SF with different carbon nanofiber (CNF) densities, and for such newly developed SF-based sensors comprehensive performance analyses have been performed. Versatile methods including the scanning electron microscope, Fourier transform infrared spectroscopy, Raman and X-ray diffraction measurements and impedance analysis were used to study the morphologic, mechanical and electrical properties of the developed SF-based sensor. The SF with CNF samples was analyzed for three different pressure loads (40 N, 60 N and 80 N) in 500 compression test cycles. The analyses thoroughly describe how combining natural polymer SF with different CNF densities impacts the piezoelectricity and mechanical strength of the proposed SF-based sensor. The developed piezoelectric SF-based sensors were further tested on humans in real medical applications to detect generated piezoelectric voltage in versatile body movements. The maximum piezoelectricity equal to 2.95 ± 0.03 V was achieved for the jumping movement, and the SF sample with a CNF density equal to 0.4% was tested. Obtained results also show that the proposed SF-based sensor has an appropriate piezoelectric sensitivity for each of the analyzed body movement types, and that the proposed SF-based sensor can be applied in real medical applications as a biomedical sensing device. The proposed SF-based sensor’s practical implementation is further confirmed by the results of cytotoxicity analyses, which show that the developed sensor has a non-toxic and biocompatible nature and can be efficiently used in skin contact for biomedical wearable health monitoring applications. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

21 pages, 5187 KiB  
Review
Biodegradable Electrospun Nanofiber Membranes as Promising Candidates for the Development of Face Masks
by Rujun Shen, Yunlong Guo, Shuaijie Wang, Ayikezi Tuerxun, Jiaqi He and Ye Bian
Int. J. Environ. Res. Public Health 2023, 20(2), 1306; https://doi.org/10.3390/ijerph20021306 - 11 Jan 2023
Cited by 18 | Viewed by 4302
Abstract
Aerosol particles, such as the widespread COVID-19 recently, have posed a great threat to humans. Combat experience has proven that masks can protect against viruses; however, the epidemic in recent years has caused serious environmental pollution from plastic medical supplies, especially masks. Degradable [...] Read more.
Aerosol particles, such as the widespread COVID-19 recently, have posed a great threat to humans. Combat experience has proven that masks can protect against viruses; however, the epidemic in recent years has caused serious environmental pollution from plastic medical supplies, especially masks. Degradable filters are promising candidates to alleviate this problem. Degradable nanofiber filters, which are developed by the electrospinning technique, can achieve superior filtration performance. This review focuses on the basic introduction to air filtration, the general aspects of face masks, and nanofibers. Furthermore, the progress of the state of art degradable electrospun nanofiber filters have been summarized, such as silk fibroin (SF), polylactic acid (PLA), chitosan, cellulose, and zein. Finally, the challenges and future development are highlighted. Full article
Show Figures

Figure 1

14 pages, 5089 KiB  
Article
Development of New Bio-Composite of PEO/Silk Fibroin Blends Loaded with Piezoelectric Material
by Hassan Fouad, Khalil Abdelrazek Khalil, Basheer A. Alshammari, Abdalla Abdal-hay and Nasser M. Abd El-salam
Polymers 2022, 14(19), 4209; https://doi.org/10.3390/polym14194209 - 7 Oct 2022
Cited by 8 | Viewed by 2917
Abstract
New bio-composite nanofibers composed of polyethylene oxide (PEO)/silk fibroin (SF)/barium titanate (BaTiO3) are introduced in this study. The SF solution was added to the PEO solution to form a PEO/SF blend with different weight percentages (5, 10, 15, 20 wt.%). The [...] Read more.
New bio-composite nanofibers composed of polyethylene oxide (PEO)/silk fibroin (SF)/barium titanate (BaTiO3) are introduced in this study. The SF solution was added to the PEO solution to form a PEO/SF blend with different weight percentages (5, 10, 15, 20 wt.%). The PEO/15 wt.% SF blend was selected to continue the experimental plan based on the optimum nanofiber morphology. Different wt.% of BaTiO3 particles (0.2, 0.4, 0.8, 1 wt.%) were added to the PEO/15 wt.% SF blend solution, and the suspensions obtained were introduced to an electrospinning device. The fabricated tissue was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy. The zeta potential of the solution and the piezoelectric performance of the fabricated tissue were characterized. A newly designed pizoTester was used to investigate piezoelectric properties. The results showed that a well-organized, smooth PEO/15 wt.% SF/0.2 wt.% BaTiO3 nanofiber composite with low bead contents was obtained. Improved properties and electrical coupling were achieved in the newly introduced material. Electrospun PEO/15 wt.% SF/0.2 wt.% BaTiO3 mats increased the output voltage (1150 mV) compared to pristine PEO and PEO/SF composite fibers (410 and 290 mV, respectively) upon applying 20 N force at 5 Hz frequency. The observed enhancement in piezoelectric properties suggests that the prepared composite could be a promising material in cardiac tissue engineering (CTE). Full article
Show Figures

Graphical abstract

23 pages, 3749 KiB  
Article
Curcumin Sustained Release with a Hybrid Chitosan-Silk Fibroin Nanofiber Containing Silver Nanoparticles as a Novel Highly Efficient Antibacterial Wound Dressing
by Parisa Heydari Foroushani, Erfan Rahmani, Iran Alemzadeh, Manouchehr Vossoughi, Mehrab Pourmadadi, Abbas Rahdar and Ana M. Díez-Pascual
Nanomaterials 2022, 12(19), 3426; https://doi.org/10.3390/nano12193426 - 29 Sep 2022
Cited by 71 | Viewed by 5397
Abstract
Drug loading in electrospun nanofibers has gained a lot of attention as a novel method for direct drug release in an injury site to accelerate wound healing. The present study deals with the fabrication of silk fibroin (SF)-chitosan (CS)-silver (Ag)-curcumin (CUR) nanofibers using [...] Read more.
Drug loading in electrospun nanofibers has gained a lot of attention as a novel method for direct drug release in an injury site to accelerate wound healing. The present study deals with the fabrication of silk fibroin (SF)-chitosan (CS)-silver (Ag)-curcumin (CUR) nanofibers using the electrospinning method, which facilitates the pH-responsive release of CUR, accelerates wound healing, and improves mechanical properties. Response surface methodology (RSM) was used to investigate the effect of the solution parameters on the nanofiber diameter and morphology. The nanofibers were characterized via Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), zeta potential, and Dynamic Light Scattering (DLS). CS concentration plays a crucial role in the physical and mechanical properties of the nanofibers. Drug loading and entrapment efficiencies improved from 13 to 44% and 43 to 82%, respectively, after the incorporation of Ag nanoparticles. The application of CS hydrogel enabled a pH-responsive release of CUR under acid conditions. The Minimum Inhibitory Concentration (MIC) assay on E. coli and S. aureus bacteria showed that nanofibers with lower CS concentration cause stronger inhibitory effects on bacterial growth. The nanofibers do not have any toxic effect on cell culture, as revealed by in vitro wound healing test on NIH 3T3 fibroblasts. Full article
Show Figures

Figure 1

Back to TopTop