Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = seleno-metabolites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3589 KB  
Article
Repurposing Glutathione Transferases: Directed Evolution Combined with Chemical Modification for the Creation of a Semisynthetic Enzyme with High Hydroperoxidase Activity
by Irene Axarli, Farid Ataya and Nikolaos E. Labrou
Antioxidants 2024, 13(1), 41; https://doi.org/10.3390/antiox13010041 - 25 Dec 2023
Cited by 4 | Viewed by 2642
Abstract
Glutathione peroxidases (GPXs) are antioxidant selenoenzymes, which catalyze the reduction of hydroperoxides via glutathione (GSH), providing protection to cells against oxidative stress metabolites. The present study aims to create an efficient semisynthetic GPX based on the scaffold of tau class glutathione transferase (GSTU). [...] Read more.
Glutathione peroxidases (GPXs) are antioxidant selenoenzymes, which catalyze the reduction of hydroperoxides via glutathione (GSH), providing protection to cells against oxidative stress metabolites. The present study aims to create an efficient semisynthetic GPX based on the scaffold of tau class glutathione transferase (GSTU). A library of GSTs was constructed via DNA shuffling, using three homologue GSTUs from Glycine max as parent sequences. The DNA library of the shuffled genes was expressed in E. coli and the catalytic activity of the shuffled enzymes was screened using cumene hydroperoxide (CuOOH) as substrate. A chimeric enzyme variant (named Sh14) with 4-fold enhanced GPX activity, compared to the wild-type enzyme, was identified and selected for further study. Selenocysteine (Sec) was substituted for the active-site Ser13 residue of the Sh14 variant via chemical modification. The GPX activity (kcat) and the specificity constant (kcatm) of the evolved seleno-Sh14 enzyme (SeSh14) was increased 177- and 2746-fold, respectively, compared to that of the wild-type enzyme for CuOOH. Furthermore, SeSh14 effectively catalyzed the reduction of hydrogen peroxide, an activity that is completely undetectable in all GSTs. Such an engineered GPX-like biocatalyst based on the GSTU scaffold might serve as a catalytic bioscavenger for the detoxification of hazardous hydroperoxides. Furthermore, our results shed light on the evolution of GPXs and their structural and functional link with GSTs. Full article
Show Figures

Figure 1

10 pages, 1975 KB  
Article
Intravenous Infusion of High Dose Selenite in End-Stage Cancer Patients: Analysis of Systemic Exposure to Selenite and Seleno-Metabolites
by Olof Breuer, Ola Brodin, Ali Razaghi, David Brodin, Bente Gammelgaard and Mikael Björnstedt
Biomedicines 2023, 11(2), 295; https://doi.org/10.3390/biomedicines11020295 - 20 Jan 2023
Cited by 2 | Viewed by 3159
Abstract
Cancer is one of the main causes of human death globally and novel chemotherapeutics are desperately required. As a simple selenium oxide, selenite is a very promising chemotherapeutic because of pronounced its dose-dependent tumor-specific cytotoxicity. We previously published a first-in-man systematic phase I [...] Read more.
Cancer is one of the main causes of human death globally and novel chemotherapeutics are desperately required. As a simple selenium oxide, selenite is a very promising chemotherapeutic because of pronounced its dose-dependent tumor-specific cytotoxicity. We previously published a first-in-man systematic phase I clinical trial in patients with cancer (from IV to end-stage) (the SECAR trial) showing that selenite is safe and tolerable with an unexpectable high maximum tolerated dose (MTD) and short half-life. In the present study, we analyzed the selenium species in plasma samples, from the patients participating in the SECAR trial and from various time points and dose cohorts using LC-ICP-MS. In conclusion, selenite, selenosugars, and 1–2 unidentified peaks that did not correspond to any standard, herein denoted ui-selenium, were detected in the plasma. However, trimethylated selenium (trimethylselenonoium) was not detected. The unidentified ui-selenium was eluting close to the selenium-containing amino acids (selenomethionine and selenocysteine) but was not part of a protein fraction. Our data demonstrate that the major metabolite detected was selenosugar. Furthermore, the identification of selenite even long after the administration is remarkable and unexpected. The kinetic analysis did not support that dosing per the body surface area would reduce interindividual variability of the systemic exposure in terms of trough concentrations. Full article
Show Figures

Figure 1

28 pages, 1666 KB  
Review
Seleno-Metabolites and Their Precursors: A New Dawn for Several Illnesses?
by Cristina Morán-Serradilla, Eduardo Angulo-Elizari, Andreina Henriquez-Figuereo, Carmen Sanmartín, Arun K. Sharma and Daniel Plano
Metabolites 2022, 12(9), 874; https://doi.org/10.3390/metabo12090874 - 16 Sep 2022
Cited by 21 | Viewed by 4502
Abstract
Selenium (Se) is an essential element for human health as it is involved in different physiological functions. Moreover, a great number of Se compounds can be considered potential agents in the prevention and treatment of some diseases. It is widely recognized that Se [...] Read more.
Selenium (Se) is an essential element for human health as it is involved in different physiological functions. Moreover, a great number of Se compounds can be considered potential agents in the prevention and treatment of some diseases. It is widely recognized that Se activity is related to multiple factors, such as its chemical form, dose, and its metabolism. The understanding of its complex biochemistry is necessary as it has been demonstrated that the metabolites of the Se molecules used to be the ones that exert the biological activity. Therefore, the aim of this review is to summarize the recent information about its most remarkable metabolites of acknowledged biological effects: hydrogen selenide (HSe/H2Se) and methylselenol (CH3SeH). In addition, special attention is paid to the main seleno-containing precursors of these derivatives and their role in different pathologies. Full article
(This article belongs to the Section Advances in Metabolomics)
Show Figures

Graphical abstract

14 pages, 1564 KB  
Article
Metabolomic Analysis of Human Astrocytes in Lipotoxic Condition: Potential Biomarker Identification by Machine Learning Modeling
by Daniel Báez Castellanos, Cynthia A. Martín-Jiménez, Andrés Pinzón, George E. Barreto, Guillermo Federico Padilla-González, Andrés Aristizábal, Martha Zuluaga and Janneth González Santos
Biomolecules 2022, 12(7), 986; https://doi.org/10.3390/biom12070986 - 15 Jul 2022
Cited by 6 | Viewed by 3967
Abstract
The association between neurodegenerative diseases (NDs) and obesity has been well studied in recent years. Obesity is a syndrome of multifactorial etiology characterized by an excessive accumulation and release of fatty acids (FA) in adipose and non-adipose tissue. An excess of FA generates [...] Read more.
The association between neurodegenerative diseases (NDs) and obesity has been well studied in recent years. Obesity is a syndrome of multifactorial etiology characterized by an excessive accumulation and release of fatty acids (FA) in adipose and non-adipose tissue. An excess of FA generates a metabolic condition known as lipotoxicity, which triggers pathological cellular and molecular responses, causing dysregulation of homeostasis and a decrease in cell viability. This condition is a hallmark of NDs, and astrocytes are particularly sensitive to it, given their crucial role in energy production and oxidative stress management in the brain. However, analyzing cellular mechanisms associated with these conditions represents a challenge. In this regard, metabolomics is an approach that allows biochemical analysis from the comprehensive perspective of cell physiology. This technique allows cellular metabolic profiles to be determined in different biological contexts, such as those of NDs and specific metabolic insults, including lipotoxicity. Since data provided by metabolomics can be complex and difficult to interpret, alternative data analysis techniques such as machine learning (ML) have grown exponentially in areas related to omics data. Here, we developed an ML model yielding a 93% area under the receiving operating characteristic (ROC) curve, with sensibility and specificity values of 80% and 93%, respectively. This study aimed to analyze the metabolomic profiles of human astrocytes under lipotoxic conditions to provide powerful insights, such as potential biomarkers for scenarios of lipotoxicity induced by palmitic acid (PA). In this work, we propose that dysregulation in seleno-amino acid metabolism, urea cycle, and glutamate metabolism pathways are major triggers in astrocyte lipotoxic scenarios, while increased metabolites such as alanine, adenosine, and glutamate are suggested as potential biomarkers, which, to our knowledge, have not been identified in human astrocytes and are proposed as candidates for further research and validation. Full article
(This article belongs to the Collection Metabolomics and Integrated Multi-Omics in Health and Disease)
Show Figures

Figure 1

12 pages, 1851 KB  
Article
The Gut Microbiome, Seleno-Compounds, and Acute Myocardial Infarction
by Fu-Chun Chiu, Chin-Feng Tsai, Pang-Shuo Huang, Ching-Yu Shih, Mong-Hsun Tsai, Juey-Jen Hwang, Yi-Chih Wang, Eric Y. Chuang, Chia-Ti Tsai and Sheng-Nan Chang
J. Clin. Med. 2022, 11(5), 1462; https://doi.org/10.3390/jcm11051462 - 7 Mar 2022
Cited by 15 | Viewed by 3156
Abstract
Background: Gut microbiome alterations might be considered a metabolic disorder. However, the relationship between the microbiome and acute myocardial infarction (AMI) has not been properly validated. Methods: The feces of 44 subjects (AMI: 19; control: 25) were collected for fecal genomic DNA extraction. [...] Read more.
Background: Gut microbiome alterations might be considered a metabolic disorder. However, the relationship between the microbiome and acute myocardial infarction (AMI) has not been properly validated. Methods: The feces of 44 subjects (AMI: 19; control: 25) were collected for fecal genomic DNA extraction. The variable region V3–V4 of the 16S rRNA gene was sequenced using the Illumina MiSeq platform. The metabolite amounts were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Results: The bacteria were more enriched in the AMI group both in the observed operational taxonomic units (OTUs) and faith phylogenetic diversity (PD) (p-value = 0.01 and <0.001 with 95% CI, individually). The Selenomonadales were less enriched in the AMI group at the family, genus, and species levels (all linear discriminant analysis (LDA) scores > 2). Seleno-compounds were more abundant in the AMI group at the family, genus, and species levels (all LDA scores > 2). Conclusions: This is the first study to demonstrate the association of Selenomonadales and seleno-compounds with the occurrence of AMI. Our findings provide an opportunity to identify a novel approach to prevent and treat AMI. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

8 pages, 647 KB  
Communication
Semisynthesis of Selenoauraptene
by Serena Fiorito, Francesco Epifano, Lorenzo Marchetti and Salvatore Genovese
Molecules 2021, 26(9), 2798; https://doi.org/10.3390/molecules26092798 - 10 May 2021
Cited by 3 | Viewed by 2726
Abstract
Selenium-containing compounds are gaining more and more interest due to their valuable and promising pharmacological properties, mainly as anticancer and antioxidant agents. Ebselen, the up to now only approved drugs, is well known to possess very good glutathione peroxidase mimicking effects. To date, [...] Read more.
Selenium-containing compounds are gaining more and more interest due to their valuable and promising pharmacological properties, mainly as anticancer and antioxidant agents. Ebselen, the up to now only approved drugs, is well known to possess very good glutathione peroxidase mimicking effects. To date, the most of efforts have been directed to build pure synthetic Se containing molecules, while less attention have been devoted to Se-based semisynthetic products resembling natural compounds like terpenes, polyphenols, and alkaloids. The aim of this short communication is to report the synthesis of the first example of a Se-phenylpropanoids, namely selenoauraptene, containing a selenogeranyl side chain in position 7 of the umbelliferone core. The key step was the Newman-Kwart rearrangement to obtain a selenocarbamate in which the Se atom was directly attached to umbelliferone (replacing its 7-OH function) followed by hydrolysis to get diumbelliferyl diselenide, which was finally easily converted to the desired Se-geranyl derivative in quite a good overall yield (28.5%). The synthesized adduct displayed a greater antioxidant and a radical scavenger in vitro activity than parent auraptene. The procedure we describe herein, to the best of our knowledge for the first time in the literature, represents an easy-to-handle method for the synthesis of a wide array of seleno analogues of naturally occurring biologically active oxyprenylated secondary metabolites. Full article
Show Figures

Figure 1

53 pages, 6433 KB  
Article
Rapid Identification of New Biomarkers for the Classification of GM1 Type 2 Gangliosidosis Using an Unbiased 1H NMR-Linked Metabolomics Strategy
by Benita C. Percival, Yvonne L. Latour, Cynthia J. Tifft and Martin Grootveld
Cells 2021, 10(3), 572; https://doi.org/10.3390/cells10030572 - 5 Mar 2021
Cited by 5 | Viewed by 3576
Abstract
Biomarkers currently available for the diagnosis, prognosis, and therapeutic monitoring of GM1 gangliosidosis type 2 (GM1T2) disease are mainly limited to those discovered in targeted proteomic-based studies. In order to identify and establish new, predominantly low-molecular-mass biomarkers for this disorder, we employed an [...] Read more.
Biomarkers currently available for the diagnosis, prognosis, and therapeutic monitoring of GM1 gangliosidosis type 2 (GM1T2) disease are mainly limited to those discovered in targeted proteomic-based studies. In order to identify and establish new, predominantly low-molecular-mass biomarkers for this disorder, we employed an untargeted, multi-analyte approach involving high-resolution 1H NMR analysis coupled to a range of multivariate analysis and computational intelligence technique (CIT) strategies to explore biomolecular distinctions between blood plasma samples collected from GM1T2 and healthy control (HC) participants (n = 10 and 28, respectively). The relationship of these differences to metabolic mechanisms underlying the pathogenesis of GM1T2 disorder was also investigated. 1H NMR-linked metabolomics analyses revealed significant GM1T2-mediated dysregulations in ≥13 blood plasma metabolites (corrected p < 0.04), and these included significant upregulations in 7 amino acids, and downregulations in lipoprotein-associated triacylglycerols and alanine. Indeed, results acquired demonstrated a profound distinctiveness between the GM1T2 and HC profiles. Additionally, employment of a genome-scale network model of human metabolism provided evidence that perturbations to propanoate, ethanol, amino-sugar, aspartate, seleno-amino acid, glutathione and alanine metabolism, fatty acid biosynthesis, and most especially branched-chain amino acid degradation (p = 10−12−10−5) were the most important topologically-highlighted dysregulated pathways contributing towards GM1T2 disease pathology. Quantitative metabolite set enrichment analysis revealed that pathological locations associated with these dysfunctions were in the order fibroblasts > Golgi apparatus > mitochondria > spleen ≈ skeletal muscle ≈ muscle in general. In conclusion, results acquired demonstrated marked metabolic imbalances and alterations to energy demand, which are consistent with GM1T2 disease pathogenesis mechanisms. Full article
(This article belongs to the Special Issue Lysosomal Storage Disorders)
Show Figures

Figure 1

15 pages, 3163 KB  
Article
Speciation of Selenium in Brown Rice Fertilized with Selenite and Effects of Selenium Fertilization on Rice Proteins
by Zhenying Hu, Yixin Cheng, Noriyuki Suzuki, Xiaoping Guo, Hua Xiong and Yasumitsu Ogra
Int. J. Mol. Sci. 2018, 19(11), 3494; https://doi.org/10.3390/ijms19113494 - 6 Nov 2018
Cited by 48 | Viewed by 5035
Abstract
Foliar Selenium (Se) fertilizer has been widely used to accumulate Se in rice to a level that meets the adequate intake level. The Se content in brown rice (Oryza sativa L.) was increased in a dose-dependent manner by the foliar application of [...] Read more.
Foliar Selenium (Se) fertilizer has been widely used to accumulate Se in rice to a level that meets the adequate intake level. The Se content in brown rice (Oryza sativa L.) was increased in a dose-dependent manner by the foliar application of sodium selenite as a fertilizer at concentrations of 25, 50, 75, and 100 g Se/ha. Selenite was mainly transformed to organic Se, that is, selenomethionine in rice. Beyond the metabolic capacity of Se in rice, inorganic Se also appeared. In addition, four extractable protein fractions in brown rice were analyzed for Se concentration. The Se concentrations in the glutelin and albumin fractions saturated with increasing Se concentration in the fertilizer compared with those in the globulin and prolamin fractions. The structural analyses by fluorescence spectroscopy, Fourier transform infrared spectrometry, and differential scanning calorimetry suggest that the secondary structure and thermostability of glutelin were altered by the Se treatments. These alterations could be due to the replacements of cysteine and methionine to selenocysteine and selenomethionine, respectively. These findings indicate that foliar fertilization of Se was effective in not only transforming inorganic Se to low-molecular-weight selenometabolites such as selenoamino acids, but also incorporating Se into general rice proteins, such as albumin, globulin glutelin, and prolamin, as selenocysteine and selenomethionine in place of cysteine and methionine, respectively. Full article
(This article belongs to the Special Issue Metallomics: Integrated Biosciences for Elements)
Show Figures

Graphical abstract

Back to TopTop