Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (214)

Search Parameters:
Keywords = seedling competition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7547 KiB  
Article
Raising pH Reduces Manganese Toxicity in Citrus grandis (L.) Osbeck by Efficient Maintenance of Nutrient Homeostasis to Enhance Photosynthesis and Growth
by Rong-Yu Rao, Wei-Lin Huang, Hui Yang, Qian Shen, Wei-Tao Huang, Fei Lu, Xin Ye, Lin-Tong Yang, Zeng-Rong Huang and Li-Song Chen
Plants 2025, 14(15), 2390; https://doi.org/10.3390/plants14152390 - 2 Aug 2025
Viewed by 211
Abstract
Manganese (Mn) excess and low pH often coexist in some citrus orchard soils. Little information is known about the underlying mechanism by which raising pH reduces Mn toxicity in citrus plants. ‘Sour pummelo’ (Citrus grandis (L.) Osbeck) seedlings were treated with 2 [...] Read more.
Manganese (Mn) excess and low pH often coexist in some citrus orchard soils. Little information is known about the underlying mechanism by which raising pH reduces Mn toxicity in citrus plants. ‘Sour pummelo’ (Citrus grandis (L.) Osbeck) seedlings were treated with 2 (Mn2) or 500 (Mn500) μM Mn at a pH of 3 (P3) or 5 (P5) for 25 weeks. Raising pH mitigated Mn500-induced increases in Mn, iron, copper, and zinc concentrations in roots, stems, and leaves, as well as nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, copper, iron, and zinc distributions in roots, but it mitigated Mn500-induced decreases in nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, and boron concentrations in roots, stems, and leaves, as well as nutrient imbalance. Raising pH mitigated Mn500-induced necrotic spots on old leaves, yellowing of young leaves, decreases in seedling growth, leaf chlorophyll concentration, and CO2 assimilation (ACO2), increase in root dry weight (DW)/shoot DW, and alterations of leaf chlorophyll a fluorescence (OJIP) transients and related indexes. Further analysis indicated that raising pH ameliorated Mn500-induced impairment of nutrient homeostasis, leaf thylakoid structure by iron deficiency and competition of Mn with magnesium, and photosynthetic electron transport chain (PETC), thereby reducing Mn500-induced declines in ACO2 and subsequent seedling growth. These results validated the hypothesis that raising pH reduced Mn toxicity in ‘Sour pummelo’ seedlings by (a) reducing Mn uptake, (b) efficient maintenance of nutrient homeostasis under Mn stress, (c) reducing Mn excess-induced impairment of thylakoid structure and PEPC and inhibition of chlorophyll biosynthesis, and (d) increasing ACO2 and subsequent seedling growth under Mn excess. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

30 pages, 1679 KiB  
Review
Advancing Circularity in Small-Scale Rural Aquaponics: Potential Routes and Research Needs
by Laura Silva, Francisco Javier Martinez-Cordero, Gösta Baganz, Daniela Baganz, Ariadne Hernández-Pérez, Eva Coronado and Maria Celia Portella
Resources 2025, 14(8), 119; https://doi.org/10.3390/resources14080119 - 23 Jul 2025
Viewed by 675
Abstract
Small-scale fisheries and aquaculture play a crucial role in securing food, income, and nutrition for millions, especially in the Global South. Rural small-scale aquaculture (SSA) is characterized by limited investment and technical training among farmers, diversification and dispersion of farms over large areas, [...] Read more.
Small-scale fisheries and aquaculture play a crucial role in securing food, income, and nutrition for millions, especially in the Global South. Rural small-scale aquaculture (SSA) is characterized by limited investment and technical training among farmers, diversification and dispersion of farms over large areas, reduced access to competitive markets for inputs and products, and family labor. Small-scale integrated circular aquaponic (ICAq) systems, in which systems’ component outputs are transformed into component inputs, have significant potential to increase circularity and promote economic development, especially in a rural context. We offer an integrated and comprehensive approach centered on aquaponics or aquaponic farming for small-scale aquaculture units. It aims to identify and describe a series of circular processes and causal links that can be implemented based on deep study in SSA and ICAq. Circular processes to treat by-products in ICAq include components like composting, vermicomposting, aerobic and anaerobic digestion, silage, and insect production. These processes can produce ICAq inputs such as seedling substrates, plant fertilizers, bioenergy, or feed ingredients. In addition, the plant component can supply therapeutic compounds. Further research on characterization of aquaponic components outputs and its quantifications, the impact of using circular inputs generated within the ICAq, and the technical feasibility and economic viability of circular processes in the context of SSA is needed. Full article
Show Figures

Figure 1

13 pages, 849 KiB  
Article
Beyond Pairwise Interactions: How Other Species Regulate Competition Between Two Plants?
by Wang-Xin Cheng, Wei Xue, Jie-Jie Jiao, Hao-Ming Yuan, Lin-Xuan He, Xiao-Mei Zhang, Tao Xu and Fei-Hai Yu
Plants 2025, 14(13), 2018; https://doi.org/10.3390/plants14132018 - 1 Jul 2025
Viewed by 261
Abstract
A plant species in a community often grows with some other plant species. While many studies have assessed interspecific interactions between two target plant species, few have considered the impacts of the other plant species (e.g., the third, fourth, and fifth plant species) [...] Read more.
A plant species in a community often grows with some other plant species. While many studies have assessed interspecific interactions between two target plant species, few have considered the impacts of the other plant species (e.g., the third, fourth, and fifth plant species) on these interactions. To assess the impacts, we grew one seedling of each of the five herbaceous plant species that are common in China (Cynodon dactylon, Plantago asiatica, Taraxacum mongolicum, Nepeta cataria, and Leonurus japonicus) alone (no competition) or with one seedling of one, two, three, or four of the other species. The presence of a neighbor plant generally reduced the growth of the target species, suggesting that the interspecific relationships were mostly competitive. The presence of other neighbor species (the third, fourth, and fifth species) could alter the interspecific interactions between two target species, but such effects varied depending on both the identity of the target species and the identity of the other species. Additionally, the effects of the third species depended little on the presence of the fourth and fifth species. We conclude that interspecific interactions between two plant species are commonly regulated by the presence of other species, facilitating species coexistence. However, our findings do not support the idea that the impacts of the fourth and fifth species on interactions among three plant species are common. This study highlights the complex interactions among multiple plant species within a community and also the importance of including these high-order interactions when modelling community dynamics and species coexistence. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

17 pages, 2562 KiB  
Article
Responses of Biomass and Allometric Growth Equations of Juvenile Mangrove Plants to Salinity, Flooding, and Aboveground Competition
by Kaijie Hu, Wei Wang, Wei Qian, Nong Sheng, Jiliang Cheng and Yanmei Xiong
Horticulturae 2025, 11(7), 712; https://doi.org/10.3390/horticulturae11070712 - 20 Jun 2025
Viewed by 375
Abstract
China has implemented large-scale mangrove restoration and afforestation initiatives in recent years. However, there has been a paucity of research on the growth of mangrove seedlings in a composite stress environment and the allometric growth equation of mangrove seedlings. To enhance juvenile mangrove [...] Read more.
China has implemented large-scale mangrove restoration and afforestation initiatives in recent years. However, there has been a paucity of research on the growth of mangrove seedlings in a composite stress environment and the allometric growth equation of mangrove seedlings. To enhance juvenile mangrove survival rates and develop precise carbon sequestration models, this study examines biomass accumulation patterns and allometric equation development under diverse environmental and biological conditions. A manipulative field experiment employed a three-factor full factorial design using seedlings from eight mangrove species. The experimental design incorporated three variables: salinity, flooding (environmental stressors), and aboveground interspecific competition (a biological factor). Following a two-year growth period, measurements of surviving seedlings’ basal diameter, plant height, and above- and belowground biomass were collected to assess growth responses and construct allometric models. Results indicated that high salinity reduced total mangrove biomass, whereas prolonged flooding increased tree height. Interspecific competition favored fast-growing species (e.g., Sonneratia caseolaris) while suppressing slow-growing counterparts (e.g., Avicennia marina). Synergistic effects between salinity and flooding influenced biomass and basal diameter, whereas salinity–flooding and salinity–competition interactions demonstrated antagonistic effects on tree height. High salinity, prolonged flooding, and competition elevated the proportion of aboveground biomass allocation. The results suggest that salinity stress and flooding stress were major growth-limiting factors for juvenile mangroves. Slow-growing species are not suitable to be mixed with fast-growing species in mangrove afforestation projects. Allometric models fitting for juvenile mangroves growing under different environmental factors were also developed. This study deepens our understanding of the growth of mangrove seedlings under composite stress conditions, provides effective tools for assessing the carbon sink potential of mangrove seedlings, and provides scientific guidance for future mangrove restoration projects. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

14 pages, 658 KiB  
Review
ROP Signaling in Plant Seed Germination Under Abiotic Stress
by Liuqin Zhang, Mingxuan Xu, Qingqing Li, Lei Hou and Mi Zhang
Seeds 2025, 4(2), 26; https://doi.org/10.3390/seeds4020026 - 27 May 2025
Viewed by 455
Abstract
Seed germination is a crucial phase where a plant embryo transitions from dormancy to active growth, emerging as a seedling. This intricate process is highly susceptible to environmental cues, particularly abiotic stress factors including drought, salinity, and temperature extremes, which can profoundly influence [...] Read more.
Seed germination is a crucial phase where a plant embryo transitions from dormancy to active growth, emerging as a seedling. This intricate process is highly susceptible to environmental cues, particularly abiotic stress factors including drought, salinity, and temperature extremes, which can profoundly influence both germination success and subsequent plant development. Among the various cellular components that modulate plant responses to these stresses, Rho of Plants (ROP) emerges as a pivotal regulator. Under abiotic stress, ROP signaling components integrate with the core abscisic acid (ABA) signaling pathway by regulating gene transcription and protein stability, modulating subcellular localization, converting protein activity, and engaging in competitive interactions. This review summarizes recent findings on roles of ROP signaling in regulating plant adaptive responses to abiotic stress, whilst explores potential involvement of ROPs in seed germination. This review summarizes the effects of ROP proteins and their effectors, such as GEF, on the seed germination process. It preliminarily elucidates the crosstalk mechanisms between these proteins and the ABA signaling pathway, thereby gaining a deeper understanding of the role of ROP signaling in regulating plant adaptive responses to abiotic stresses. Full article
Show Figures

Figure 1

17 pages, 1466 KiB  
Article
Regeneration Patterns in Cork Oak (Quercus suber L.) Stands: Insights from Transect and Cluster Sampling Inventory Designs
by Angelo Fierravanti and Teresa Fidalgo Fonseca
Forests 2025, 16(5), 751; https://doi.org/10.3390/f16050751 - 28 Apr 2025
Viewed by 522
Abstract
The resilience and regeneration of cork oak (Quercus suber L.) play a central role in sustaining the European oak landscape, particularly within the socio-economic and ecological frameworks of the Western Mediterranean. This species has a noticeable ability to withstand drought and temperature [...] Read more.
The resilience and regeneration of cork oak (Quercus suber L.) play a central role in sustaining the European oak landscape, particularly within the socio-economic and ecological frameworks of the Western Mediterranean. This species has a noticeable ability to withstand drought and temperature extremes. However, its natural regeneration is increasingly challenged by climate change and associated extreme weather events, as well as by competition among individuals for light, water, and nutrients. Monitoring this process in the field can be time-consuming, requiring the use of sampling techniques and the identification of appropriate inventory sampling design (ISD) schemes. Line transect (LT) and radial cluster (RC) inventory designs are widely used in ecological studies, botanical research, and plant species distribution assessments, as well as other environmental forestry studies. This research compares two inventory sampling designs (line transect vs. radial cluster) for inventorying and monitoring the dynamics of natural regeneration at the initial development stages of cork oak. In particular, this study evaluates the influences of inventory sampling design, time, and acorn density on the total living and dead seedlings over a two-year period, using the cork oak as a reference species in the Mediterranean climate of Northern Portugal. The results confirm the critical role of acorn availability in seedling regeneration dynamics within cork oak ecosystems and emphasize a temporal increase in the death of seedlings, markedly influenced by the day of year. The temporal component had a substantial impact on seedling mortality, which increased by 5.00‰ per day, meaning that one seedling died approximately every 200 days, whereas mortality spikes occur on specific days, suggesting temporal factors affecting seedling viability. The study also shows differences in regeneration estimates between the inventory designs. The line transect design records lower acorn density and seedlings than the radial cluster design. The results highlight an important but often overlooked source of variation in forest regeneration studies, emphasizing the need for careful consideration of inventory methods to ensure effective data collection and accurate representation of natural regeneration dynamics, ultimately supporting efforts to enhance cork oak regeneration and resilience against climate change and competitive pressures. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

23 pages, 4985 KiB  
Article
Genome-Wide Dissection of Novel QTLs and Genes Associated with Weed Competitiveness in Early-Backcross Selective Introgression-Breeding Populations of Rice (Oryza sativa L.)
by Kim Diane Nocito, Varunseelan Murugaiyan, Jauhar Ali, Ambika Pandey, Carlos Casal, Erik Jon De Asis and Niña Gracel Dimaano
Biology 2025, 14(4), 413; https://doi.org/10.3390/biology14040413 - 13 Apr 2025
Viewed by 1693
Abstract
The direct-seeded rice (DSR) system is poised to become the dominant rice cultivation method due to its advantages, including reduced water usage, less labor requirements, decreased greenhouse gas emissions, and improved adaptation to climate change. However, weeds, particularly jungle rice (Echinochloa colona [...] Read more.
The direct-seeded rice (DSR) system is poised to become the dominant rice cultivation method due to its advantages, including reduced water usage, less labor requirements, decreased greenhouse gas emissions, and improved adaptation to climate change. However, weeds, particularly jungle rice (Echinochloa colona), significantly hinder DSR and cause substantial yield losses. This study aimed to develop rice cultivars competitive against jungle rice through selective breeding, focusing on early seed germination (ESG) and seedling vigor (ESV). We utilized 181 early-backcross selective introgression breeding lines (EB-SILs) developed using Green Super Rice (GSR) technology by backcrossing Weed Tolerant Rice1 (WTR1) with three donor parents, Haoannong, Cheng Hui 448, and Y134. Using the tunable genotyping-by-sequencing (tGBS®, Data2Bio Technologies, Ames, IA, USA) method, we identified 3971 common single nucleotide polymorphisms (SNPs) that facilitated the mapping of 19 novel quantitative trait loci (QTLs) associated with weed competitiveness—eight linked to ESG traits and eleven to ESV traits. Notably, all QTLs were novel except qRPH1, linked to relative plant height at 14 and 21 days after sowing. Key QTLs were located on chromosomes 2, 3, 5, 6, 8, 9, 10, and 12. Candidate genes identified within these QTLs are implicated in the plant’s response to various abiotic and biotic stresses. Our findings enhance the understanding of the genetic basis for ESG and ESV traits critical for weed competitiveness, supporting marker-assisted and genomic selection approaches for breeding improved rice varieties. Furthermore, this research lays the groundwork for employing gene expression, cloning, and CRISPR editing strategies to combat jungle rice, with potential applications for other weed species and contributing to effective integrated weed management in the DSR system. Full article
Show Figures

Figure 1

15 pages, 3174 KiB  
Article
The Effects of Different Moso Bamboo Densities on the Physiological Growth of Indocalamus latifolius Cultivated in Moso Bamboo Forests
by Huijing Ni, Jiancheng Zhao and Zhenya Yang
Forests 2025, 16(4), 636; https://doi.org/10.3390/f16040636 - 5 Apr 2025
Cited by 1 | Viewed by 321
Abstract
Cultivating Indocalamus latifolius in moso bamboo (Phyllostachys edulis) forests is a technique in a compound economical and ecological agroforestry system. However, the impacts of different moso bamboo densities on the physiological growth of I. latifolius remain unclear. The aim of [...] Read more.
Cultivating Indocalamus latifolius in moso bamboo (Phyllostachys edulis) forests is a technique in a compound economical and ecological agroforestry system. However, the impacts of different moso bamboo densities on the physiological growth of I. latifolius remain unclear. The aim of this study was to elucidate the adaptation mechanism of I. latifolius to the environment in forests with different moso bamboo densities. One-year-old I. latifolius seedlings were planted in moso forests with four different densities (CK: 0 plants·ha−1; T1: 1050 plants·ha−1; T2: 2100 plants·ha−1; T3: 3150 plants·ha−1) for two years. The biomass and contents of nitrogen (N), phosphorus (P), potassium (K), starch (ST), and soluble sugars (SSs) in old leaves, new leaves, stems, rhizomes and roots of I. latifolius, as well as leaf functional traits [leaf length (LL), leaf width (LW), leaf thickness (LT), leaf area (LA), specific leaf area (SLA), and leaf tissue density (LTD)] and root morphology [root surface area (RSA), root length (RL), root diameter (RD), and specific root length (SRL)] were measured. With the increase in moso bamboo density, the biomass of various organs of I. latifolius showed a trend of first increasing and then decreasing, and all reached the highest level under treatment T1. Compared with the CK, treatments T1, T2, and T3 significantly increased the LL, LW, LT, LA, RL, RSA, RD, and length ratio of thicker roots (diameter > 2 mm) of I. latifolius, while significantly decreasing the SRL, SLA, and length ratio of finer roots (diameter ≤ 0.2 mm). Treatments T1, T2, and T3 significantly reduced the N content in the stems and rhizomes, the P content in the old leaves, and the SS content in the new leaves, and they increased the P content and K content in new leaves, stems, rhizomes, and roots; the N content in roots; and the starch contents in old leaves and new leaves. Treatment T1 significantly increased the N content in old leaves and the SS contents and the SS/ST of old leaves, roots, and rhizomes, and it decreased the N content in new leaves and the ST contents in roots, rhizomes and stems. Our results indicated that moso bamboo forests with low density can effectively promote the growth of I. latifolius in the forest. I. latifolius adapts to the shading and the root competition of moso bamboo by expanding the leaf area and promoting root growth. In this process, it supports the morphological plasticity of leaves and roots through the mechanisms of reabsorbing P and K and the directional transportation of photosynthetic products. Full article
Show Figures

Figure 1

17 pages, 4701 KiB  
Article
Core Mycorrhizal Fungi Promote Seedling Growth in Dendrobium officinale: An Important Medicinal Orchid
by Yi-Hua Wu, Xiang-Gui Chen, Neng-Qi Li, Tai-Qiang Li, Rengasamy Anbazhakan and Jiang-Yun Gao
Plants 2025, 14(7), 1024; https://doi.org/10.3390/plants14071024 - 25 Mar 2025
Cited by 1 | Viewed by 623
Abstract
The critically endangered orchid Dendrobium officinale, valued for its medicinal properties, depends on specific seedling-associated mycorrhizal fungi (SAMF) for successful early-stage seedling development. However, conservation efforts are often hindered by difficulties in obtaining suitable SAMF, leading to poor seedling establishment in both [...] Read more.
The critically endangered orchid Dendrobium officinale, valued for its medicinal properties, depends on specific seedling-associated mycorrhizal fungi (SAMF) for successful early-stage seedling development. However, conservation efforts are often hindered by difficulties in obtaining suitable SAMF, leading to poor seedling establishment in both natural and cultivated environments. In this study, we explored the growth-promoting effects of SAMF and evaluated the performances of synthetic fungal combinations. Our results demonstrated that mycorrhizal fungi, widely distributed across multiple habitats with high isolation frequencies, significantly promoted the growth of D. officinale, with specific fungi favoring different growth parameters. Tulasnella sp. TP-2 and TP-3 significantly improved stem diameter and plant height by 2.622 mm and 4.621 cm, while Tulasnella sp. TP-8 significantly increased tillering by a factor of 4.47. Additionally, Tulasnella sp. TP-11 and TP-13 markedly increased the number of new leaves (4.45) and new roots (2.688), respectively, identifying them as essential core OMFs for D. officinale seedlings. Contrary to expectations, synthetic fungal combinations composed of core orchid mycorrhizal fungi (core OMFs) did not exhibit synergistic growth-promoting effects. Instead, pronounced offset effects were observed, indicating that interactions between fungi may introduce competition or inhibition, limiting their collective ability to enhance plant growth. Our results confirmed that the core OMFs significantly promoted the growth of D. officinale seedlings. These core OMFs can serve as essential components in specialized microbial fertilizers for D. officinale, improving growth efficiency and yield, and supporting the sustainable development of the D. officinale industry. Full article
Show Figures

Figure 1

17 pages, 3435 KiB  
Article
High Propagule Pressure and Patchy Biotic Resistance Control the Local Invasion Process of the Tree Ligustrum lucidum in a Subtropical Forest of Uruguay
by Alejandro Brazeiro, Federico Haretche, Carolina Toranza and Alexandra Cravino
Plants 2025, 14(6), 873; https://doi.org/10.3390/plants14060873 - 11 Mar 2025
Viewed by 759
Abstract
The tree Ligustrum lucidum (W. T. Aiton, Oleaceae), native to East Asia (China), has become an aggressive invader of subtropical and temperate forests around the world. To understand how its local small-scale spread is controlled, we studied (48 plots of 4 m−2 [...] Read more.
The tree Ligustrum lucidum (W. T. Aiton, Oleaceae), native to East Asia (China), has become an aggressive invader of subtropical and temperate forests around the world. To understand how its local small-scale spread is controlled, we studied (48 plots of 4 m−2), in a subtropical forest of Uruguay, the distribution and survival of seedlings, saplings, and poles to assess the effects of dispersal from mother trees (distance), microsite type (forest stands defined by dominant species), and past control measures. The propagule pressure of L. lucidum, estimated through seedlings density, was between 100 and 1000 times higher than that of other species of the community and was concentrated around mother trees (<10 m of distance). Spatial variability of seedlings, saplings, and poles densities were explained by the interaction between distance to mother trees and forest stands. Significative lower densities were observed in the forest patches (stands) dominated by Jodina rhombifolia, and a field survival experiment confirmed lower survival of poles at Jodina stands, demonstrating that some resistance mechanism is operating there. We propose two biotic mechanisms of resistance: herbaceous competition and/or roots hemiparasitism by J. rhombifolia, reducing seedling and sapling survival. We concluded that a high propagule pressure, small-scale dispersal from mother trees, and patchy biotic resistance at Jodina stands control the local spread and domination process of the tree L. lucidum in the studied forest. Full article
(This article belongs to the Special Issue Interactions within Invasive Ecosystems)
Show Figures

Figure 1

27 pages, 3177 KiB  
Article
The Role of Mycorrhizal Fungi in the Inter and Intraspecific Competition of Nicotiana glauca and Vachellia gerrardii
by Abdelmalik M. Adam, Thobayet S. Alshahrani, Abdulaziz A. Alqarawi, Basharat A. Dar, Jahangir A. Malik and Ahmed M. Abd-ElGawad
Plants 2025, 14(6), 858; https://doi.org/10.3390/plants14060858 - 10 Mar 2025
Viewed by 765
Abstract
A competition experiment between Vachellia gerrardii and invasive Nicotiana glauca Graham was conducted to assess the impact of Arbuscular Mycorrhizal Fungi (AMF) symbiosis on the inter and intraspecific competition between the two species. Seedlings were established under mono and mixed plantations with different [...] Read more.
A competition experiment between Vachellia gerrardii and invasive Nicotiana glauca Graham was conducted to assess the impact of Arbuscular Mycorrhizal Fungi (AMF) symbiosis on the inter and intraspecific competition between the two species. Seedlings were established under mono and mixed plantations with different species proportions (3:1, 2:2, 1:3) and plant densities (1, 2, 3, and 4 plants/pot) for mixed and mono planting respectively, with and without AMF. The vegetative growth parameters (height, leaf area and number, total dry weight/plant, relative yield, relative yield total), roots characteristics (length, surface area, volume, tips number), competitive interaction (aggressivity), and physiological traits (chlorophyll a, chlorophyll b, photosynthesis, stomatal conductance) were measured to evaluate plant responses to AMF symbiosis and competition. The results revealed that AMF symbiosis significantly enhanced the vegetative parameters (leaf area, height, and total dry weight) in both species under mono and mixed plantations compared to plants without AMF. Under AMF treatment, in the interspecific competition, most vegetative and root parameters of N. glauca were higher than V. gerrardii. At inoculant and species proportions, the relative yield of N. glauca exceeded that for V. gerrardii; however, N. glauca was more aggressive towards V. gerrardii. N. glauca root indices were higher than V. gerrardii under inter and intraspecific competition. Simultaneously, for both species, in monoculture plantations, most parameters decreased as plant density increased, wherein the decrease was higher for plants grown without AMF. Photosynthesis increased in AMF treatment, particularly for N. glauca. In conclusion, AMF promoted the growth of invasive N. glauca more than native V. gerrardii, particularly in terms of the root system. Our results provide a critical perspective that the AMF has the potential to contribute and facilitate the invasion of N. glauca, as well as support it with a competitive advantage over V. gerrardii, thus highlighting its potential role in shaping plant–plant interaction in invaded habitats. Full article
(This article belongs to the Special Issue Ecology and Management of Invasive Plants—2nd Edition)
Show Figures

Figure 1

16 pages, 3638 KiB  
Article
Stress Increases Ecological Risk of Glufosinate-Resistant Transgene Located on Alien Chromosomes in Hybrids Between Transgenic Brassica napus and Wild Brassica juncea
by Zicheng Shao, Lingling Dai, Longnan Liu, Sheng Qiang and Xiaoling Song
Plants 2025, 14(4), 572; https://doi.org/10.3390/plants14040572 - 13 Feb 2025
Cited by 1 | Viewed by 615
Abstract
When glufosinate-resistant transgenic Brassica napus (transgene PAT located on C chromosome) were backcrossed with wild Brassica juncea, 50% of the progeny expressed PAT under favourable conditions. However, exposure to stress (drought, salt, flooding, and intraspecific competition) increased the proportion of plants expressing [...] Read more.
When glufosinate-resistant transgenic Brassica napus (transgene PAT located on C chromosome) were backcrossed with wild Brassica juncea, 50% of the progeny expressed PAT under favourable conditions. However, exposure to stress (drought, salt, flooding, and intraspecific competition) increased the proportion of plants expressing the PAT gene (r-e plants) by approximately 20% compared to those under unstressed conditions. In the self-pollinated progeny of the stressed plants, the proportion of r-e plants increased by a nearly 30% compared to that of the unstressed plants. Composite fitness was comparable between plants developed under drought stress at the seedling stage and those grown under favourable conditions. Abscisic acid (ABA) content and expression of the Repressor of Silencing 1 (ROS1) in leaves increased significantly after stress treatment in the progeny, with r-e plants exhibiting higher levels. Exogenous ABA treatment significantly up-regulated ROS1 expression in progeny leaves, and the ABA treatment of seeds increased the survival of progeny exposed to glufosinate by 15%. Results suggest that increasing ABA under stress may enhance the demethylation of PAT’s promoter by promoting ROS1 expression, thereby inhibiting transgene silencing of PAT, indicating that transgene located on the C chromosome of transgenic B. napus may pose a higher risk of gene flow to wild B. juncea under stress, especially drought stress. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

18 pages, 3527 KiB  
Article
Bacillus cabrialesii subsp. cabrialesii Strain TE5: A Promising Biological Control Bacterium Against the Causal Agent of Spot Blotch in Wheat
by Ixchel Campos-Avelar, Michelle Fabiela García Jaime, Pamela Helué Morales Sandoval, Fannie Isela Parra-Cota and Sergio de los Santos Villalobos
Plants 2025, 14(2), 209; https://doi.org/10.3390/plants14020209 - 13 Jan 2025
Viewed by 1422
Abstract
Strain TE5 was isolated from a wheat (Triticum turgidum L. subsp. durum) rhizosphere grown in a commercial field of wheat in the Yaqui Valley in Mexico. In this work, we present strain TE5 as a promising biological control agent against Bipolaris [...] Read more.
Strain TE5 was isolated from a wheat (Triticum turgidum L. subsp. durum) rhizosphere grown in a commercial field of wheat in the Yaqui Valley in Mexico. In this work, we present strain TE5 as a promising biological control agent against Bipolaris sorokiniana. First, after its genome sequencing through Illumina NovaSeq, this strain showed a genome size of 4,262,927 bp, with a 43.74% G + C content, an N50 value of 397,059 bp, an L50 value of 4 bp, and 41 contigs (>500 bp). Taxonomical affiliation was carried out by using overall genome relatedness indexes (OGRIs) and the construction of a phylogenomic tree based on the whole genome. The results indicated that strain TE5 identifies with Bacillus cabrialesii subsp. cabrialesii. Genomic annotation using Rapid Annotation Using Subsystems Technology (RAST) and Rapid Prokaryotic Genome Annotation (Prokka) indicated the presence of 4615 coding DNA sequences (CDSs) distributed across 330 subsystems, which included gene families associated with biocontrol, stress response, and iron competition. Furthermore, when the antiSMASH 7.1 platform was used for genome mining, the results indicated the presence of seven putative biosynthetic gene clusters related to the production of biocontrol metabolites, namely subtilosin A, bacillibactin, fengycin, bacillaene, bacilysin, surfactin, and rhizocticin A. Moreover, the antifungal activity of strain TE5 and its cell-free extract (CFE) was evaluated against Bipolaris sorokiniana, an emergent wheat pathogen. The results of in vitro dual confrontation showed fungal growth inhibition of 67% by strain TE5. Additionally, its CFE almost completely inhibited (93%) the growth of the studied phytopathogenic fungus on liquid media. Further observations of the impact of these bacterial metabolites on fungal spore germination exhibited inhibition of fungal spores through degrading the germinative hypha, avoiding mycelium development. Finally, the protective effect of strain TE5 against Bipolaris sorokiniana was evaluated for wheat seedlings. The results showed a significant decrease (83%) in disease severity in comparison with the plant infection without inoculation of the biological control agent. Thus, this work proposes Bacillus cabrialesii subsp. cabrialesii strain TE5 as a promising biological control agent against the wheat pathogen Bipolaris sorokiniana while suggesting lipopeptides as the potential mode of action, together with plant growth and defense stimulation. Full article
(This article belongs to the Special Issue Occurrence and Control of Plant Bacterial Diseases)
Show Figures

Figure 1

17 pages, 2897 KiB  
Article
Monitoring the Concentrations of Na, Mg, Ca, Cu, Fe, and K in Sargassum fusiforme at Different Growth Stages by NIR Spectroscopy Coupled with Chemometrics
by Sisi Wei, Jing Huang, Ying Niu, Haibin Tong, Laijin Su, Xu Zhang, Mingjiang Wu and Yue Yang
Foods 2025, 14(1), 122; https://doi.org/10.3390/foods14010122 - 3 Jan 2025
Viewed by 1390
Abstract
Sargassum fusiforme, an edible seaweed, plays a crucial role in our daily lives by providing essential nutrients, including minerals, to the human body. The detection of mineral content during different growth stages of S. fusiforme benefits the goals of ensuring product quality, [...] Read more.
Sargassum fusiforme, an edible seaweed, plays a crucial role in our daily lives by providing essential nutrients, including minerals, to the human body. The detection of mineral content during different growth stages of S. fusiforme benefits the goals of ensuring product quality, meeting diverse consumer needs, and achieving quality classification. Currently, the determination of minerals in S. fusiforme primarily relies on inductively coupled plasma mass spectrometry and other methods, which are time-consuming and labor-intensive. Thus, a rapid and convenient method was developed for the determination of six minerals (i.e., Na, Mg, Ca, Cu, Fe, and K) in S. fusiforme via near-infrared (NIR) spectroscopy based on chemometrics. This study investigated the variations in minerals in S. fusiforme from different growth stages. The effects of four spectral pretreatment methods and three wavelength selection methods, including the synergy interval partial least squares (SI-PLS) algorithm, genetic algorithm (GA), and competitive adaptive reweighted sampling method (CARS) on the model optimization, were evaluated. Superior CARS-PLS models were established for Na, Mg, Ca, Cu, Fe, and K with root mean square error of prediction (RMSEP) values of 0.8196 × 103 mg kg−1, 0.4370 × 103 mg kg−1, 1.544 × 103 mg kg−1, 0.9745 mg kg−1, 49.88 mg kg−1, and 7.762 × 103 mg kg−1, respectively, and coefficient of determination of prediction (RP2) values of 0.9787, 0.9371, 0.9913, 0.9909, 0.9874, and 0.9265, respectively. S. fusiforme demonstrated higher levels of Mg and Ca at the seedling stage and lower levels of Cu and Fe at the maturation stage. Additionally, S. fusiforme exhibited higher Na and lower K at the growth stage. NIR combined with CARS-PLS is a potential alternative for monitoring the concentrations of minerals in S. fusiforme at different growth stages, aiding in the convenient evaluation and further grading of the quality of S. fusiforme. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

15 pages, 2566 KiB  
Article
Impact of Year and Genotype on Benzoxazinoids and Their Microbial Metabolites in the Rhizosphere of Early-Vigour Wheat Genotypes in Southern Australia
by Paul A. Weston, Shahnaj Parvin, Pieter-W. Hendriks, Saliya Gurusinghe, Greg J. Rebetzke and Leslie A. Weston
Plants 2025, 14(1), 90; https://doi.org/10.3390/plants14010090 - 31 Dec 2024
Cited by 1 | Viewed by 702
Abstract
Wheat (Triticum aestivum) is grown on more arable acreage than any other food crop and has been well documented to produce allelochemicals. Wheat allelochemicals include numerous benzoxazinoids and their microbially transformed metabolites that actively suppress growth of weed seedlings. Production and [...] Read more.
Wheat (Triticum aestivum) is grown on more arable acreage than any other food crop and has been well documented to produce allelochemicals. Wheat allelochemicals include numerous benzoxazinoids and their microbially transformed metabolites that actively suppress growth of weed seedlings. Production and subsequent release of these metabolites by commercial wheat cultivars, however, has not yet been targeted by focussed breeding programmes seeking to develop more competitive crops. Recently, the Commonwealth Scientific and Industrial Organisation (CSIRO), through an extensive recurrent selection programme investment, released numerous early-vigour wheat genotypes for commercial use, but the physiological basis for their improved vigour is under investigation. In the current study, we evaluated several early-vigour genotypes alongside common commercial and heritage wheat cultivars to assess the impact of improved early vigour on the production and release of targeted benzoxazinoids by field-grown wheat roots over a two-year period. Using UPLC coupled with triple quadrupole mass spectrometry (LC-MS QQQ), we quantified common wheat benzoxazinoids and their microbially produced metabolites (aminophenoxazinones) in soil collected from the rhizosphere and rhizoplane of wheat plants over two growing seasons in the Riverina region of New South Wales, Australia. The benzoxazolinone MBOA and several aminophenoxazinones were readily detected in soil samples, but actual soil concentrations differed greatly between years and among genotypes. In contrast to 2019, the concentration of aminophenoxazinones in wheat rhizosphere soil was significantly elevated in 2020, a year receiving adequate rainfall for optimal wheat growth. Aminophenoxazinones were detected in the rhizosphere of early-vigour genotypes and also parental lines exhibiting weed suppression, suggesting that improved early vigour and subsequent weed competitiveness may be related to increased root exudation and production of microbial metabolites in addition to changes in canopy architecture or other root-related early-vigour traits. As previously reported, MBOA was detected frequently in both the rhizoplane and rhizosphere of wheat. Depending on the year and genotype, we also observed enhanced biotransformation of these metabolites to several microbially transformed aminophenoxazinones in the rhizosphere of many of the evaluated genotypes. We are now investigating the role of early-vigour traits, including early canopy closure and biomass accumulation upon improved competitive ability of wheat, which will eventually result in more cost-effective weed management. Full article
Show Figures

Figure 1

Back to TopTop