Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,088)

Search Parameters:
Keywords = seed germination rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5479 KiB  
Article
Assessment of Three Provenances of Juglans neotropica Diels to Identify Optimal Seed Sources in the Northern Ecuadorian Andes
by Jorge-Luis Ramírez-López, Mario Añazco, Hugo Vallejos, Carlos Arcos and Kelly Estrada
Int. J. Plant Biol. 2025, 16(3), 87; https://doi.org/10.3390/ijpb16030087 (registering DOI) - 6 Aug 2025
Abstract
Identifying optimal seed sources is critical for the propagation and restoration of Juglans neotropica Diels in the northern Ecuadorian Andes, where populations are declining due to habitat loss and overexploitation. This study evaluated the seed quality and germination performance of Juglans neotropica from [...] Read more.
Identifying optimal seed sources is critical for the propagation and restoration of Juglans neotropica Diels in the northern Ecuadorian Andes, where populations are declining due to habitat loss and overexploitation. This study evaluated the seed quality and germination performance of Juglans neotropica from three ecologically distinct provenances: a natural regeneration site (Cuyuja), a pure plantation (Natabuela), and an agroforestry system (Pimampiro). Five phenotypically superior trees were selected from each site, and germination was assessed under controlled nursery conditions over a 150-day period using a completely randomized design. Initial viability tests confirmed the physiological integrity of the seeds across all provenances. Germination onset ranged from day 55 to day 73, with significant differences in germination percentage, speed, and uniformity. The agroforestry provenance showed the highest germination rate (69%) and superior performance in all physiological indices, while natural regeneration had the lowest (15%). Post-trial viability assessments indicated that a substantial proportion of non-germinated seeds from Cuyuja remained dormant or deteriorated. These findings underscore the role of agroforestry systems in enhancing seed physiological quality and support their prioritization for large-scale propagation and ecological restoration initiatives involving Juglans neotropica. Full article
(This article belongs to the Section Plant Reproduction)
Show Figures

Graphical abstract

20 pages, 4055 KiB  
Article
Biphasic Salt Effects on Lycium ruthenicum Germination and Growth Linked to Carbon Fixation and Photosynthesis Gene Expression
by Xinmeng Qiao, Ruyuan Wang, Lanying Liu, Boya Cui, Xinrui Zhao, Min Yin, Pirui Li, Xu Feng and Yu Shan
Int. J. Mol. Sci. 2025, 26(15), 7537; https://doi.org/10.3390/ijms26157537 - 4 Aug 2025
Abstract
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been [...] Read more.
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been proposed as a viable strategy. In the study, we investigated the physiological and molecular responses of Lycium ruthenicum Murr. to varying NaCl concentrations. Results revealed a concentration-dependent dual effect: low NaCl levels significantly promoted seed germination, while high concentrations exerted strong inhibitory effects. To elucidate the mechanisms underlying these divergent responses, a combined analysis of metabolomics and transcriptomics was applied to identify key metabolic pathways and genes. Notably, salt stress enhanced photosynthetic efficiency through coordinated modulation of ribulose 5-phosphate and erythrose-4-phosphate levels, coupled with the upregulation of critical genes encoding RPIA (Ribose 5-phosphate isomerase A) and RuBisCO (Ribulose-1,5-bisphosphate carboxylase/oxygenase). Under low salt stress, L. ruthenicum maintained intact cellular membrane structures and minimized oxidative damage, thereby supporting germination and early growth. In contrast, high salinity severely disrupted PS I (Photosynthesis system I) functionality, blocking energy flow into this pathway while simultaneously inducing membrane lipid peroxidation and triggering pronounced cellular degradation. This ultimately suppressed seed germination rates and impaired root elongation. These findings suggested a mechanistic framework for understanding L. ruthenicum adaptation under salt stress and pointed out a new way for breeding salt-tolerant crops and understanding the mechanism. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 17592 KiB  
Article
Functional Identification of Acetyl-CoA C-Acetyltransferase Gene from Fritillaria unibracteata
by Zichun Ma, Qiuju An, Xue Huang, Hongting Liu, Feiying Guo, Han Yan, Jiayu Zhou and Hai Liao
Horticulturae 2025, 11(8), 913; https://doi.org/10.3390/horticulturae11080913 (registering DOI) - 4 Aug 2025
Abstract
Fritillaria unibracteata is a rare and endangered medicinal plant in the Liliaceae family, whose bulbs have been used in traditional Chinese traditional medicine for over 2000 years. The mevalonate (MVA) pathway is involved in the growth, development, response to environmental stress, and active [...] Read more.
Fritillaria unibracteata is a rare and endangered medicinal plant in the Liliaceae family, whose bulbs have been used in traditional Chinese traditional medicine for over 2000 years. The mevalonate (MVA) pathway is involved in the growth, development, response to environmental stress, and active ingredient production of plants; however, the functional characterization of MVA-pathway genes in the Liliaceae family remains poorly documented. In this study, an Acetyl-CoA C-acetyltransferase gene (FuAACT) was first cloned from F. unibracteata. It exhibited structural features of the thiolase family and showed the highest sequence identity with the Dioscorea cayenensis homolog. The Km, Vmax, and Kcat of the recombinant FuAACT were determined to be 3.035 ± 0.215 μM, 0.128 ± 0.0058 μmol/(min·mg), and 1.275 ± 0.0575 min−1, respectively. The optimal catalytic conditions for FuAACT were ascertained to be 30 °C and pH 8.9. It was stable below 50 °C. His361 was confirmed to be a key amino acid residue to enzymatic catalysis by site-directed mutagenesis. Subsequent subcellular localization experiments demonstrated that FuAACT was localized in chloroplasts and cytoplasm. FuAACT-overexpressing transgenic Arabidopsis thaliana plants showed higher drought tolerance than wild-type plants. This phenotypic difference was corroborated by significant differences in seed germination rate, lateral root number, plant height, and leaf number (p < 0.05). Furthermore, the FuAACT transgenic plants resulted in the formation of a more developed fibrous root system. These results indicated that the FuAACT gene revealed substantial biological activity in vitro and in vivo, hopefully providing the basis for its further research and application in liliaceous ornamental and medicinal plants. Full article
(This article belongs to the Special Issue Tolerance of Horticultural Plants to Abiotic Stresses)
Show Figures

Figure 1

15 pages, 3854 KiB  
Article
PVC Inhibits Radish (Raphanus sativus L.) Seedling Growth by Interfering with Plant Hormone Signal Transduction and Phenylpropanoid Biosynthesis
by Lisi Jiang, Zirui Liu, Wenyuan Li, Yangwendi Yang, Zirui Yu, Jiajun Fan, Lixin Guo, Chang Guo and Wei Fu
Horticulturae 2025, 11(8), 896; https://doi.org/10.3390/horticulturae11080896 (registering DOI) - 3 Aug 2025
Viewed by 210
Abstract
Polyvinyl chloride (PVC) is commonly employed as mulch in agriculture to boost crop yields. However, its toxicity is often overlooked. Due to its chemical stability, resistance to degradation, and the inadequacy of the recycling system, PVC tends to persist in farm environments, where [...] Read more.
Polyvinyl chloride (PVC) is commonly employed as mulch in agriculture to boost crop yields. However, its toxicity is often overlooked. Due to its chemical stability, resistance to degradation, and the inadequacy of the recycling system, PVC tends to persist in farm environments, where it can decompose into microplastics (MPs) or nanoplastics (NPs). The radish (Raphanus sativus L.) was chosen as the model plant for this study to evaluate the underlying toxic mechanisms of PVC NPs on seedling growth through the integration of multi-omics approaches with oxidative stress evaluations. The results indicated that, compared with the control group, the shoot lengths in the 5 mg/L and 150 mg/L treatment groups decreased by 33.7% and 18.0%, respectively, and the root lengths decreased by 28.3% and 11.3%, respectively. However, there was no observable effect on seed germination rates. Except for the peroxidase (POD) activity in the 150 mg/L group, all antioxidant enzyme activities and malondialdehyde (MDA) levels were higher in the treated root tips than in the control group. Both transcriptome and metabolomic analysis profiles showed 2075 and 4635 differentially expressed genes (DEGs) in the high- and low-concentration groups, respectively, and 1961 metabolites under each treatment. PVC NPs predominantly influenced seedling growth by interfering with plant hormone signaling pathways and phenylpropanoid production. Notably, the reported toxicity was more evident at lower concentrations. This can be accounted for by the plant’s “growth-defense trade-off” strategy and the manner in which nanoparticles aggregate. By clarifying how PVC NPs coordinately regulate plant stress responses via hormone signaling and phenylpropanoid biosynthesis pathways, this research offers a scientific basis for assessing environmental concerns related to nanoplastics in agricultural systems. Full article
(This article belongs to the Special Issue Stress Physiology and Molecular Biology of Vegetable Crops)
Show Figures

Figure 1

21 pages, 4076 KiB  
Article
Tissue Paper-Based Hydrogels for Soil Water Maintenance and Nitrogen Release
by Ana Carla Kuneski, Hima Haridevan, Elena Ninkovic, Ena McLeary, Darren Martin and Gunnar Kirchhof
Gels 2025, 11(8), 599; https://doi.org/10.3390/gels11080599 - 1 Aug 2025
Viewed by 178
Abstract
Hydrogels are widely known for their ability to increase soil water retention and for their potential slow nutrient release mechanism. They have been constantly improved to meet the growing demand for sustainability in agriculture. Research focused on the development of biodegradable hydrogels, produced [...] Read more.
Hydrogels are widely known for their ability to increase soil water retention and for their potential slow nutrient release mechanism. They have been constantly improved to meet the growing demand for sustainability in agriculture. Research focused on the development of biodegradable hydrogels, produced from industrial cellulose waste, are an ecological and efficient alternative soil ameliorant for the improvement of agricultural land. The objective of this study was to evaluate the impacts of two types of hydrogel (processed in a glass reactor versus a twin-screw extruder) on soils with different textures (clay and sandy loam), testing their water retention capacity, nitrogen leaching, and effects on seed germination. The methodology included the evaluation of water retention capacity at different pressures with different hydrogel addition rates in the soil, leaching tests in columns filled with soil and hydrogel layers, and germination tests of sorghum and corn. The results indicated that the addition of hydrogel significantly improved water retention, especially in sandy loam soils. The hydrogels also reduced nitrogen leaching, acting as nitrification inhibitors and limiting the conversion of ammonium to nitrate, with greater effectiveness in clayey soils. In the tested formulations, it was observed that the hydrogel doses applied to the columns favored nitrogen retention in the region close to the roots, directly influencing the initial stages of germination. This behavior highlights the potential of hydrogels as tools for directing nutrients in the soil profile, indicating that adjustments to the C:N ratio, nutrient release rate, and applied doses can optimize their application for different crops. Full article
Show Figures

Figure 1

16 pages, 1659 KiB  
Article
Ricinus communis L. Leaf Extracts as a Sustainable Alternative for Weed Management
by Aline Mazoy Lopes, Lucas Kila Ribeiro, Maurício Ricardo de Melo Cogo, Lucas Mironuk Frescura, Marcelo Barcellos da Rosa, Alex Schulz, Flávio Dias Mayer, Ederson Rossi Abaide, Marcus Vinícius Tres and Giovani Leone Zabot
Sustainability 2025, 17(15), 6942; https://doi.org/10.3390/su17156942 - 30 Jul 2025
Viewed by 187
Abstract
Weeds pose a significant challenge to agricultural productivity, requiring control strategies that are both effective and environmentally sustainable. Therefore, this study evaluated the inhibitory potential of aqueous extracts from Ricinus communis L. leaves to manage the weeds Oryza sativa L. (weedy rice) and [...] Read more.
Weeds pose a significant challenge to agricultural productivity, requiring control strategies that are both effective and environmentally sustainable. Therefore, this study evaluated the inhibitory potential of aqueous extracts from Ricinus communis L. leaves to manage the weeds Oryza sativa L. (weedy rice) and Cyperus ferax. Extracts were obtained through pressurized liquid extraction using water as the solvent. Bioassays were conducted during pre- and post-emergence stages by foliar spraying 15 and 30 days after sowing (DAS). The effect of extraction time (1–30 min) on inhibitory efficacy was also assessed. Chemical profiles of the extracts were characterized using high-performance liquid chromatography. The extracts significantly inhibited seed germination, with suppression rates reaching 92.7%. Plant growth was also diminished, particularly with earlier treatments (at 15 DAS), resulting in reductions of up to 32% and 53% in shoot length, and 69% and 73% in total dry mass for O. sativa L. and C. ferax, respectively. Mortality rates of O. sativa L. and C. ferax reached 64% and 58%, respectively. Phenolic compounds were identified in the extracts, and higher concentrations were observed at shorter extraction times. These findings underscore the potential of R. communis L. leaf extracts as an ecologically sustainable alternative for weed management, providing an effective and natural approach that may reduce reliance on synthetic herbicides and mitigate their environmental impact. Full article
Show Figures

Figure 1

26 pages, 11108 KiB  
Article
Warming in the Maternal Environment Alters Seed Performance and Genetic Diversity of Stylosanthes capitata, a Tropical Legume Forage
by Priscila Marlys Sá Rivas, Fernando Bonifácio-Anacleto, Ivan Schuster, Carlos Alberto Martinez and Ana Lilia Alzate-Marin
Genes 2025, 16(8), 913; https://doi.org/10.3390/genes16080913 (registering DOI) - 30 Jul 2025
Viewed by 321
Abstract
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to [...] Read more.
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to warming and elevated CO2 on progeny physiology, genetic diversity, and population structure in Stylosanthes capitata, a resilient forage legume native to Brazil. Methods: Maternal plants were cultivated under controlled treatments, including ambient conditions (control), elevated CO2 at 600 ppm (eCO2), elevated temperature at +2 °C (eTE), and their combined exposure (eTEeCO2), within a Trop-T-FACE field facility (Temperature Free-Air Controlled Enhancement and Free-Air Carbon Dioxide Enrichment). Seed traits (seeds per inflorescence, hundred-seed mass, abortion, non-viable seeds, coat color, germination at 32, 40, 71 weeks) and abnormal seedling rates were quantified. Genetic diversity metrics included the average (A) and effective (Ae) number of alleles, observed (Ho) and expected (He) heterozygosity, and inbreeding coefficient (Fis). Population structure was assessed using Principal Coordinates Analysis (PCoA), Analysis of Molecular Variance (AMOVA), number of migrants per generation (Nm), and genetic differentiation index (Fst). Two- and three-way Analysis of Variance (ANOVA) were used to evaluate factor effects. Results: Compared to control conditions, warming increased seeds per inflorescence (+46%), reduced abortion (−42.9%), non-viable seeds (−57%), and altered coat color. The germination speed index (GSI +23.5%) and germination rate (Gr +11%) improved with warming; combined treatments decreased germination time (GT −9.6%). Storage preserved germination traits, with warming enhancing performance over time and reducing abnormal seedlings (−54.5%). Conversely, elevated CO2 shortened GSI in late stages, impairing germination efficiency. Warming reduced Ae (−35%), He (−20%), and raised Fis (maternal 0.50, progeny 0.58), consistent with the species’ mixed mating system; A and Ho were unaffected. Allele frequency shifts suggested selective pressure under eTE. Warming induced slight structure in PCoA, and AMOVA detected 1% (maternal) and 9% (progeny) variation. Fst = 0.06 and Nm = 3.8 imply environmental influence without isolation. Conclusions: Warming significantly shapes seed quality, reproductive success, and genetic diversity in S. capitata. Improved reproduction and germination suggest adaptive advantages, but higher inbreeding and reduced diversity may constrain long-term resilience. The findings underscore the need for genetic monitoring and broader genetic bases in cultivars confronting environmental stressors. Full article
(This article belongs to the Special Issue Genetics and Breeding of Forage)
Show Figures

Graphical abstract

18 pages, 3095 KiB  
Article
Investigating Seed Germination, Seedling Growth, and Enzymatic Activity in Onion (Allium cepa) Under the Influence of Plasma-Treated Water
by Sabnaj Khanam, Young June Hong, Eun Ha Choi and Ihn Han
Int. J. Mol. Sci. 2025, 26(15), 7256; https://doi.org/10.3390/ijms26157256 - 27 Jul 2025
Viewed by 340
Abstract
Seed germination and early seedling growth are pivotal stages that define crop establishment and yield potential. Conventional agrochemicals used to improve these processes often raise environmental concerns, highlighting the need for sustainable alternatives. In this study, we demonstrated that water treated with cylindrical [...] Read more.
Seed germination and early seedling growth are pivotal stages that define crop establishment and yield potential. Conventional agrochemicals used to improve these processes often raise environmental concerns, highlighting the need for sustainable alternatives. In this study, we demonstrated that water treated with cylindrical dielectric barrier discharge (c-DBD) plasma, enriched with nitric oxide (NO) and reactive nitrogen species (RNS), markedly enhanced onion (Allium cepa) seed germination and seedling vigor. The plasma-treated water (PTW) promoted rapid imbibition, broke dormancy, and accelerated germination rates beyond 98%. Seedlings irrigated with PTW exhibited significantly increased biomass, root and shoot length, chlorophyll content, and antioxidant enzyme activities, accompanied by reduced lipid peroxidation. Transcriptomic profiling revealed that PTW orchestrated a multifaceted regulatory network by upregulating gibberellin biosynthesis genes (GA3OX1/2), suppressing abscisic acid signaling components (ABI5), and activating phenylpropanoid metabolic pathways (PAL, 4CL) and antioxidant defense genes (RBOH1, SOD). These molecular changes coincided with elevated NO2 and NO3 levels and finely tuned hydrogen peroxide dynamics, underpinning redox signaling crucial for seed activation and stress resilience. Our findings establish plasma-generated NO-enriched water as an innovative, eco-friendly technology that leverages redox and hormone crosstalk to stimulate germination and early growth, offering promising applications in sustainable agriculture. Full article
(This article belongs to the Special Issue Plasma-Based Technologies for Food Safety and Health Enhancement)
Show Figures

Figure 1

24 pages, 8553 KiB  
Article
DO-MDS&DSCA: A New Method for Seed Vigor Detection in Hyperspectral Images Targeting Significant Information Loss and High Feature Similarity
by Liangquan Jia, Jianhao He, Jinsheng Wang, Miao Huan, Guangzeng Du, Lu Gao and Yang Wang
Agriculture 2025, 15(15), 1625; https://doi.org/10.3390/agriculture15151625 - 26 Jul 2025
Viewed by 371
Abstract
Hyperspectral imaging for seed vigor detection faces the challenges of handling high-dimensional spectral data, information loss after dimensionality reduction, and low feature differentiation between vigor levels. To address the above issues, this study proposes an improved dynamic optimize MDS (DO-MDS) dimensionality reduction algorithm [...] Read more.
Hyperspectral imaging for seed vigor detection faces the challenges of handling high-dimensional spectral data, information loss after dimensionality reduction, and low feature differentiation between vigor levels. To address the above issues, this study proposes an improved dynamic optimize MDS (DO-MDS) dimensionality reduction algorithm based on multidimensional scaling transformation. DO-MDS better preserves key features between samples during dimensionality reduction. Secondly, a dual-stream spectral collaborative attention (DSCA) module is proposed. The DSCA module adopts a dual-modal fusion approach combining global feature capture and local feature enhancement, deepening the characterization capability of spectral features. This study selected commonly used rice seed varieties in Zhejiang Province and constructed three individual spectral datasets and a mixed dataset through aging, spectral acquisition, and germination experiments. The experiments involved using the DO-MDS processed datasets with a convolutional neural network embedded with the DSCA attention module, and the results demonstrate vigor discrimination accuracy rates of 93.85%, 93.4%, and 96.23% for the Chunyou 83, Zhongzao 39, and Zhongzu 53 datasets, respectively, achieving 94.8% for the mixed dataset. This study provides effective strategies for spectral dimensionality reduction in hyperspectral seed vigor detection and enhances the differentiation of spectral information for seeds with similar vigor levels. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

25 pages, 4453 KiB  
Article
Regulatory Mechanisms of Exogenous Gibberellin on Seed Germination and Transcriptomic Responses in Lomatogonium rotatum
by Kefan Cao, Yingtong Mu, Sihai Lu and Yanyan Zhao
Genes 2025, 16(8), 878; https://doi.org/10.3390/genes16080878 - 26 Jul 2025
Viewed by 280
Abstract
Gibberellins (GAs) are essential phytohormones that regulate seed dormancy release and germination. Lomatogonium rotatum (L.) Fries ex Nym is a traditional medicinal plant whose seed germination is often hindered by physiological dormancy. In this study, we systematically investigated the effects of exogenous GA [...] Read more.
Gibberellins (GAs) are essential phytohormones that regulate seed dormancy release and germination. Lomatogonium rotatum (L.) Fries ex Nym is a traditional medicinal plant whose seed germination is often hindered by physiological dormancy. In this study, we systematically investigated the effects of exogenous GA3 on the seed germination of L. rotatum and elucidated the underlying molecular regulatory mechanisms via transcriptomic analysis. GA3 treatment (500 mg/L for 24 h) significantly improved the germination rate, vigor index, and other germination traits. RNA-seq analysis identified time-dependent transcriptional changes in GA3-treated seeds across three developmental stages (24 h, 72 h, and 96 h). KEGG enrichment and K-means clustering revealed dynamic actiSvation of hormonal signaling, secondary metabolism, and DNA replication pathways. WGCNA uncovered two hormone-responsive co-expression modules (Red and Lightcyan) corresponding to early and late stages of germination, respectively. Key genes related to ABA and GA biosynthesis and signal transduction showed phase-specific expression, highlighting the coordinated hormonal regulation during seed germination. Our findings provide new insights into the molecular basis of GA3-regulated seed germination and offer theoretical support for the cultivation and utilization of L. rotatum. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

12 pages, 1597 KiB  
Article
Effects of Anthropogenic Vibratory Noise on Plant Development and Herbivory
by Estefania Velilla, Laura Bellato, Eleanor Collinson and Wouter Halfwerk
Acoustics 2025, 7(3), 45; https://doi.org/10.3390/acoustics7030045 - 25 Jul 2025
Viewed by 289
Abstract
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects [...] Read more.
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects plant development and, consequently, plant–insect interactions. Here, we examine the impact of windmill-like vibrational noise on the growth of Pisum sativum and its full-factorial interaction with the generalist herbivore Spodoptera exigua. Plants were exposed to either high or low vibrational noise from seed germination to the seed production stage. We recorded germination, flowering, fruiting time, and daily shoot length. Additionally, we measured herbivory intensity by Spodoptera exigua caterpillars placed on a subset of plants. Plants exposed to high vibrational noise grew significantly faster and taller than those in the low-noise treatment. Additionally, we found a marginally significant trend for earlier flowering in plants exposed to high noise. We did not find a significant effect of vibrational noise on herbivory. Our results suggest that underground vibrational noise can influence plant growth rates, which may potentially have ecological and agricultural implications. Faster growth may alter interspecific competition and shift trade-offs between growth and defense. Understanding these effects is important in assessing the broader ecological consequences of renewable energy infrastructure. Full article
Show Figures

Figure 1

19 pages, 847 KiB  
Article
Ichu Valorization by Pleurotus spp. Cultivation and Potential of the Residual Substrate as a Biofertilizer
by Richard Solórzano, Luis Dionisio, Lyana Burga, Rosario Javier-Astete, Cinthia Quispe-Apaza, Persing Oscco and Luis Johnson
Sustainability 2025, 17(15), 6695; https://doi.org/10.3390/su17156695 - 23 Jul 2025
Viewed by 380
Abstract
The high-Andean grass Jarava ichu (Poaceae) plays a vital role in water regulation and aquifer recharge. However, its limited use is often linked to forest fires, highlighting the need for sustainable alternatives. Therefore, this study aims to explore the valorization of ichu as [...] Read more.
The high-Andean grass Jarava ichu (Poaceae) plays a vital role in water regulation and aquifer recharge. However, its limited use is often linked to forest fires, highlighting the need for sustainable alternatives. Therefore, this study aims to explore the valorization of ichu as a substrate for the cultivation of Pleurotus spp. (P. citrinopileatus, P. djamor, and P. ostreatus) and to evaluate the potential of the residual substrate as a biofertilizer, offering an ecological alternative to grassland burning in the Peruvian Andes. Samples of ichu from the district of Tomás (Lima, Peru) were used as culture substrate, analyzing productivity indicators such as crop cycle (CC), biological efficiency (BE), and production rate (PR), together with the nutritional profile of the fungi and the chemical properties of the residual substrate. The results showed an average biological efficiency of 19.8%, with no significant differences (p > 0.05) in CC, BE, or PR among the species, confirming the viability of ichu as a substrate. The fungi presented a high protein content (24.1–30.41% on a dry basis), highlighting its nutritional value. In addition, the residual substrate exhibited elevated levels of phosphorus (795.9–1296.9 ppm) and potassium (253.1–291.3 ppm) compared to raw ichu (0.11–7.77 ppm for both nutrients). Germination tests on radish seeds showed rates between 80% and 100%, without inhibition, supporting its potential as a biofertilizer. This study demonstrates the double potential of ichu as a substrate for the sustainable production of edible mushrooms of high nutritional value and as a source of biofertilizers. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

18 pages, 1182 KiB  
Article
Effects of Remote Barley Seed Treatment with Weak Non-Thermal Pulsed Electromagnetic Fields on Plant Development and Yields
by Igor F. Turkanov, Elena V. Bondarchuk, Valery G. Gryaznov, Ekaterina A. Galkina, Alexey Yu. Guzenko, Vladimir G. Zainullin, Elena G. Kozar and Irina M. Kaigorodova
Seeds 2025, 4(3), 35; https://doi.org/10.3390/seeds4030035 - 18 Jul 2025
Viewed by 380
Abstract
Numerous scientific studies have confirmed the effectiveness of seed bioactivation using electromagnetic fields (EMFs) in agriculture. This article presents the results of the remote application of an EMF TOR device in the cultivation of barley Hordeum vulgare L. Laboratory studies and field tests [...] Read more.
Numerous scientific studies have confirmed the effectiveness of seed bioactivation using electromagnetic fields (EMFs) in agriculture. This article presents the results of the remote application of an EMF TOR device in the cultivation of barley Hordeum vulgare L. Laboratory studies and field tests were conducted, showing a positive effect on the growth and development of plants both when treating dry seeds before sowing and when treating sown seeds in the field. The optimal time period for EMF treatment was determined: treating air-dried seeds with EMFs before sowing for 10–15 min increased germination by 5–18% and the growth rate of seedlings by 2–3 times. The maximum observed effect occurred during the treatment period from 7:00 to 11:00. As a result of changing the balance of phytohormones, the further stimulation of the root system and the assimilation surface of plants was noted due to a 1.5-fold increase in the content of auxins. The density of productive stems, ear length, seed set, and 1000 seed weight increased, which ultimately led to an increase in yield by more than 10% and, in some varieties, to a decrease in the protein content in grains compared to the control variant (by 3–22%), bringing them closer to brewing conditions. Full article
Show Figures

Figure 1

24 pages, 3120 KiB  
Article
Asymbiotic Seed Germination and In Vitro Propagation of the Thai Rare Orchid Species; Eulophia bicallosa (D.Don) P.F.Hunt & Summerh.
by Thanakorn Wongsa, Jittra Piapukiew, Kanlaya Kuenkaew, Chatchaya Somsanook, Onrut Sapatee, Julaluk Linjikao, Boworn Kunakhonnuruk and Anupan Kongbangkerd
Plants 2025, 14(14), 2212; https://doi.org/10.3390/plants14142212 - 17 Jul 2025
Viewed by 375
Abstract
An efficient in vitro propagation protocol for Eulophia bicallosa was developed using asymbiotic seed germination and protocorm proliferation. The effect of light on seed germination and development was evaluated on Vacin and Went (VW) medium under five conditions: darkness, white, green, red, and [...] Read more.
An efficient in vitro propagation protocol for Eulophia bicallosa was developed using asymbiotic seed germination and protocorm proliferation. The effect of light on seed germination and development was evaluated on Vacin and Went (VW) medium under five conditions: darkness, white, green, red, and blue light for 24 weeks. Blue and red light significantly accelerated seed development, allowing progression to stage 5 within 24 weeks. For protocorm proliferation, six semi-solid culture media were tested. Half-strength Murashige and Skoog (½MS) medium yielded the best results after 8 weeks, producing the highest numbers of shoots (1.0), leaves (1.1), and roots (4.2) per protocorm, with 100% survival. The effects of organic additives were also evaluated using coconut water and potato extract. A combination of 200 mL L−1 coconut water and 50 g L−1 potato extract enhanced shoot formation (1.7 shoots), while 150 mL L−1 coconut water with 50 g L−1 potato extract increased both leaf (1.9) and root (8.8) numbers. The effects of cytokinins (benzyladenine (BA), kinetin (6-furfurylaminopurine), and thidiazuron (TDZ)) and auxins (indole-3-acetic acid (IAA), α-naphthalene acetic acid (NAA), indole-3-butyric acid (IBA), and 2,4-dichlorophenoxyacetic acid (2,4-D)) were investigated using ½MS medium supplemented with each plant growth regulator individually at concentrations of 0, 0.1, 0.5, 1.0, and 2.0 mg L−1. Among the cytokinins, 0.1 mg L−1 BA produced the highest survival rate (96%), while 1.0 mg L−1 BA induced the greatest shoot formation (93%, 2.3 shoots). Among the auxins, 0.1 mg L−1 IAA resulted in the highest survival (96%), and 1.0 mg L−1 IAA significantly enhanced root induction (4.2 roots per protocorm). Acclimatization in pots containing a 1:1:1 (v/v) mixture of pumice, sand, and soil resulted in 100% survival. This protocol provides a reliable and effective approach for the mass propagation and ex situ conservation of E. bicallosa. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

20 pages, 2609 KiB  
Article
Priming ‘Santa Isabel’ Pea (Pisum sativum L.) Seeds with NaCl and H2O2 as a Strategy to Promote Germination
by Javier Giovanni Álvarez-Herrera, Julián Stiven Lozano and Oscar Humberto Alvarado-Sanabria
Seeds 2025, 4(3), 34; https://doi.org/10.3390/seeds4030034 - 17 Jul 2025
Viewed by 244
Abstract
Peas possess significant nutritional properties due to their high protein levels, carbohydrates, fiber, and vitamins. Increased climate variability can lead to water stress in crops like peas. Therefore, priming plants through seed priming is a technique that has proven effective as a pre-conditioning [...] Read more.
Peas possess significant nutritional properties due to their high protein levels, carbohydrates, fiber, and vitamins. Increased climate variability can lead to water stress in crops like peas. Therefore, priming plants through seed priming is a technique that has proven effective as a pre-conditioning method for plants to cope with more severe future stresses. Different doses and soaking times of ‘Santa Isabel’ pea seeds in NaCl and H2O2 were evaluated to enhance and promote germination. Two experiments were conducted under controlled conditions (average temperature 15.8 °C) through a completely randomized design with a 4 × 3 factorial arrangement, comprising 12 treatments in each trial. In the first trial, NaCl doses (0, 50, 100, or 150 mM) and the soaking time of the seeds in NaCl (12, 24, or 36 h) were examined. In the second trial, H2O2 doses (0, 20, 40, or 60 mM) were tested with the same imbibition times. The 50 mM NaCl dose at 24 h demonstrated the best values for germination rate index, mean germination time, germination rate (GR), and germination potential (GP). Seed imbibition for 24 h in NaCl, as well as in H2O2, is the ideal time to achieve the best GR and GP. The dry mass of leaf and stipule recorded the highest values with a 60 mM dose of H2O2 and 24 h of imbibition. An application of 150 mM NaCl resulted in the highest values of germinated seed dry mass, while causing lower dry mass in roots, stems, leaves, and stipules; however, it maintained similar total dry mass values. Full article
Show Figures

Figure 1

Back to TopTop