Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (371)

Search Parameters:
Keywords = secondary structural framework

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1689 KiB  
Review
Photocatalytic Degradation of Microplastics in Aquatic Environments: Materials, Mechanisms, Practical Challenges, and Future Perspectives
by Yelriza Yeszhan, Kalampyr Bexeitova, Samgat Yermekbayev, Zhexenbek Toktarbay, Jechan Lee, Ronny Berndtsson and Seitkhan Azat
Water 2025, 17(14), 2139; https://doi.org/10.3390/w17142139 - 18 Jul 2025
Abstract
Due to its persistence and potential negative effects on ecosystems and human health, microplastic pollution in aquatic environments has become a major worldwide concern. Photocatalytic degradation is a sustainable manner to degrade microplastics to non-toxic by-products. In this review, comprehensive discussion focuses on [...] Read more.
Due to its persistence and potential negative effects on ecosystems and human health, microplastic pollution in aquatic environments has become a major worldwide concern. Photocatalytic degradation is a sustainable manner to degrade microplastics to non-toxic by-products. In this review, comprehensive discussion focuses on the synergistic effects of various photocatalytic materials including TiO2, ZnO, WO3, graphene oxide, and metal–organic frameworks for producing heterojunctions and involving multidimensional nanostructures. Such mechanisms can include the generation of reactive oxygen species and polymer chain scission, which can lead to microplastic breakdown and mineralization. The advancements of material modifications in the (nano)structure of photocatalysts, doping, and heterojunction formation methods to promote UV and visible light-driven photocatalytic activity is discussed in this paper. Reactor designs, operational parameters, and scalability for practical applications are also reviewed. Photocatalytic systems have shown a lot of development but are hampered by shortcomings which include a lack of complete mineralization and production of intermediary secondary products; variability in performance due to the fluctuation in the intensity of solar light, limited UV light, and environmental conditions such as weather and the diurnal cycle. Future research involving multifunctional, environmentally benign photocatalytic techniques—e.g., doped composites or composite-based catalysts that involve adsorption, photocatalysis, and magnetic retrieval—are proposed to focus on the mechanism of utilizing light effectively and the environmental safety, which are necessary for successful operational and industrial-scale remediation. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 2991 KiB  
Review
Bracts, Buds, and Biases: Uncovering Gaps in Trichome Density Quantification and Cannabinoid Concentration in Cannabis sativa L.
by Thaís Alberti, Fardad Didaran, Shiksha Sharma, Rodrigo De Sarandy Raposo, Andre A. Diatta, Marcelo Maraschin and Jose F. Da Cunha Leme Filho
Plants 2025, 14(14), 2220; https://doi.org/10.3390/plants14142220 - 18 Jul 2025
Abstract
Trichomes in cannabis (Cannabis sativa L.) are specialized structures responsible for cannabinoid and terpene biosynthesis, making their density a critical parameter for both research and industrial applications. However, consistent trichome density assessment remains challenging due to anatomical variability and the absence of [...] Read more.
Trichomes in cannabis (Cannabis sativa L.) are specialized structures responsible for cannabinoid and terpene biosynthesis, making their density a critical parameter for both research and industrial applications. However, consistent trichome density assessment remains challenging due to anatomical variability and the absence of standardized methodologies. This review critically examines the existing literature on trichome quantification across key floral structures—such as bracts, sugar leaves, calyxes, and the main cola—to identify the most reliable sites and practices for accurate evaluation. Evidence suggests that bracts represent the most consistent sampling unit, given their homogeneous trichome distribution and elevated cannabinoid concentration. Whilst sugar leaves and calyxes are also frequently analyzed, their morphological variability requires cautious interpretation. Furthermore, trichome shape, size, maturity, and vegetal surface expansion/shrinkage during stress must be considered when correlating density with secondary metabolite production. We also highlight the advantages of using more than only one floral structure and integrating microscopic imaging and software-assisted analysis to enhance reproducibility and accuracy. By synthesizing current methodologies and proposing pathways for standardization, this review aims to support more robust trichome assessment protocols, ultimately improving cannabinoid yield optimization, quality control, broader cannabis research frameworks, and an important aesthetic parameter for consumers. Future research efforts should focus on advancing imaging methodologies and optimizing sampling protocols to further improve the precision and reproducibility of trichome density and cannabinoid analyses. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

23 pages, 20063 KiB  
Article
The Genesis of a Thin-Bedded Beach-Bar System Under the Strike-Slip Extensional Tectonic Framework: A Case Study in the Bohai Bay Basin
by Jing Wang, Youbin He, Hua Li, Bin Feng, Zhongxiang Zhao, Xing Yu and Xiangyang Hou
Appl. Sci. 2025, 15(14), 7964; https://doi.org/10.3390/app15147964 - 17 Jul 2025
Viewed by 43
Abstract
The lower sub-member of Member 2, Dongying Formation (Paleogene) in the HHK Depression hosts an extensively developed thin-bedded beach-bar system characterized by favorable source rock conditions and reservoir properties, indicating significant hydrocarbon exploration potential. Integrating drilling cores, wireline log interpretations, three-dimensional seismic data, [...] Read more.
The lower sub-member of Member 2, Dongying Formation (Paleogene) in the HHK Depression hosts an extensively developed thin-bedded beach-bar system characterized by favorable source rock conditions and reservoir properties, indicating significant hydrocarbon exploration potential. Integrating drilling cores, wireline log interpretations, three-dimensional seismic data, geochemical analyses, and palynological data, this study investigates the sedimentary characteristics, sandbody distribution patterns, controlling factors, and genetic model of this lacustrine beach-bar system. Results reveal the following: (1) widespread thin-bedded beach-bar sandbodies dominated by fine-grained sandstones and siltstones, exhibiting wave ripples and low-angle cross-bedding; (2) two vertical stacking patterns, Type A, thick mudstone intervals intercalated with laterally continuous thin sandstone layers, and Type B, composite sandstones comprising thick sandstone units overlain by thin sandstone beds, both demonstrating significant lateral continuity; (3) three identified microfacies: bar-core, beach-core, and beach-margin facies; (4) key controls on sandbody development: paleoenvironmental evolution establishing the depositional framework, secondary fluctuations modulating depositional processes, strike-slip extensional tectonics governing structural zonation, paleobathymetry variations and paleotopography controlling distribution loci, and provenance clastic influx regulating scale and enrichment (confirmed by detrital zircon U-Pb dating documenting a dual provenance system). Collectively, these findings establish a sedimentary model for a thin-bedded beach-bar system under the strike-slip extensional tectonic framework. Full article
(This article belongs to the Special Issue Advances in Reservoir Geology and Exploration and Exploitation)
Show Figures

Figure 1

18 pages, 11724 KiB  
Article
Hydrogen–Rock Interactions in Carbonate and Siliceous Reservoirs: A Petrophysical Perspective
by Rami Doukeh, Iuliana Veronica Ghețiu, Timur Vasile Chiș, Doru Bogdan Stoica, Gheorghe Brănoiu, Ibrahim Naim Ramadan, Ștefan Alexandru Gavrilă, Marius Gabriel Petrescu and Rami Harkouss
Appl. Sci. 2025, 15(14), 7957; https://doi.org/10.3390/app15147957 - 17 Jul 2025
Viewed by 92
Abstract
Underground hydrogen storage (UHS) in carbonate and siliceous formations presents a promising solution for managing intermittent renewable energy. However, experimental data on hydrogen–rock interactions under representative subsurface conditions remain limited. This study systematically investigates mineralogical and petrophysical alterations in dolomite, calcite-rich limestone, and [...] Read more.
Underground hydrogen storage (UHS) in carbonate and siliceous formations presents a promising solution for managing intermittent renewable energy. However, experimental data on hydrogen–rock interactions under representative subsurface conditions remain limited. This study systematically investigates mineralogical and petrophysical alterations in dolomite, calcite-rich limestone, and quartz-dominant siliceous cores subjected to high-pressure hydrogen (100 bar, 70 °C, 100 days). Distinct from prior research focused on diffraction peak shifts, our analysis prioritizes quantitative changes in mineral concentration (%) as a direct metric of reactivity and structural integrity, offering more robust insights into long-term storage viability. Hydrogen exposure induced significant dolomite dissolution, evidenced by reduced crystalline content (from 12.20% to 10.53%) and accessory phase loss, indicative of partial decarbonation and ankerite-like formation via cation exchange. Conversely, limestone exhibited more pronounced carbonate reduction (vaterite from 6.05% to 4.82% and calcite from 2.35% to 0%), signaling high reactivity, mineral instability, and potential pore clogging from secondary precipitation. In contrast, quartz-rich cores demonstrated exceptional chemical inertness, maintaining consistent mineral concentrations. Furthermore, Brunauer–Emmett–Teller (BET) surface area and Barrett–Joyner–Halenda (BJH) pore distribution analyses revealed enhanced porosity and permeability in dolomite (pore volume increased >10×), while calcite showed declining properties and quartz showed negligible changes. SEM-EDS supported these trends, detailing Fe migration and textural evolution in dolomite, microfissuring in calcite, and structural preservation in quartz. This research establishes a unique experimental framework for understanding hydrogen–rock interactions under reservoir-relevant conditions. It provides crucial insights into mineralogical compatibility and structural resilience for UHS, identifying dolomite as a highly promising host and highlighting calcitic rocks’ limitations for long-term hydrogen containment. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

25 pages, 4626 KiB  
Article
Study on Evolution Mechanism of Agricultural Trade Network of RCEP Countries—Complex System Analysis Based on the TERGM Model
by Shasha Ding, Li Wang and Qianchen Zhou
Systems 2025, 13(7), 593; https://doi.org/10.3390/systems13070593 - 16 Jul 2025
Viewed by 168
Abstract
The agricultural products trade network is essentially a complex adaptive system formed by nonlinear interactions between countries. Based on the complex system theory, this study reveals the dynamic self-organization law of the RCEP regional agricultural products trade network by using the panel data [...] Read more.
The agricultural products trade network is essentially a complex adaptive system formed by nonlinear interactions between countries. Based on the complex system theory, this study reveals the dynamic self-organization law of the RCEP regional agricultural products trade network by using the panel data of RCEP agricultural products export trade from 2000 to 2023, combining social network analysis (SNA) and the temporal exponential random graph model (TERGM). The results show the following: (1) The RCEP agricultural products trade network presents a “core-edge” hierarchical structure, with China as the core hub to drive regional resource integration and ASEAN countries developing into secondary core nodes to deepen collaborative dependence. (2) The “China-ASEAN-Japan-Korea “riangle trade structure is formed under the RCEP framework, and the network has the characteristics of a “small world”. The leading mode of South–South trade promotes the regional economic order to shift from the traditional vertical division of labor to multiple coordination. (3) The evolution of trade network system is driven by multiple factors: endogenous reciprocity and network expansion are the core structural driving forces; synergistic optimization of supply and demand matching between economic and financial development to promote system upgrading; geographical proximity and cultural convergence effectively reduce transaction costs and enhance system connectivity, but geographical distance is still the key system constraint that restricts the integration of marginal countries. This study provides a systematic and scientific analytical framework for understanding the resilience mechanism and structural evolution of regional agricultural trade networks under global shocks. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

33 pages, 4016 KiB  
Article
Integrated Deep Learning Framework for Cardiac Risk Stratification and Complication Analysis in Leigh’s Disease
by Md Aminul Islam, Jayasree Varadarajan, Md Abu Sufian, Bhupesh Kumar Mishra and Md Ruhul Amin Rasel
Cardiogenetics 2025, 15(3), 19; https://doi.org/10.3390/cardiogenetics15030019 - 15 Jul 2025
Viewed by 115
Abstract
Background: Leigh’s Disease is a rare mitochondrial disorder primarily affecting the central nervous system, with frequent secondary cardiac manifestations such as hypertrophic and dilated cardiomyopathies. Early detection of cardiac complications is crucial for patient management, but manual interpretation of cardiac MRI is labour-intensive [...] Read more.
Background: Leigh’s Disease is a rare mitochondrial disorder primarily affecting the central nervous system, with frequent secondary cardiac manifestations such as hypertrophic and dilated cardiomyopathies. Early detection of cardiac complications is crucial for patient management, but manual interpretation of cardiac MRI is labour-intensive and subject to inter-observer variability. Methodology: We propose an integrated deep learning framework using cardiac MRI to automate the detection of cardiac abnormalities associated with Leigh’s Disease. Four CNN architectures—Inceptionv3, a custom 3-layer CNN, DenseNet169, and EfficientNetB2—were trained on preprocessed MRI data (224 × 224 pixels), including left ventricular segmentation, contrast enhancement, and gamma correction. Morphological features (area, aspect ratio, and extent) were also extracted to aid interpretability. Results: EfficientNetB2 achieved the highest test accuracy (99.2%) and generalization performance, followed by DenseNet169 (98.4%), 3-layer CNN (95.6%), and InceptionV3 (94.2%). Statistical morphological analysis revealed significant differences in cardiac structure between Leigh’s and non-Leigh’s cases, particularly in area (212,097 vs. 2247 pixels) and extent (0.995 vs. 0.183). The framework was validated using ROC (AUC = 1.00), Brier Score (0.000), and cross-validation (mean sensitivity = 1.000, std = 0.000). Feature embedding visualisation using PCA, t-SNE, and UMAP confirmed class separability. Grad-CAM heatmaps localised relevant myocardial regions, supporting model interpretability. Conclusions: Our deep learning-based framework demonstrated high diagnostic accuracy and interpretability in detecting Leigh’s disease-related cardiac complications. Integrating morphological analysis and explainable AI provides a robust and scalable tool for early-stage detection and clinical decision support in rare diseases. Full article
Show Figures

Figure 1

20 pages, 27282 KiB  
Article
Advancing Sustainability and Heritage Preservation Through a Novel Framework for the Adaptive Reuse of Mediterranean Earthen Houses
by Ihab Khalil and Doğa Üzümcüoğlu
Sustainability 2025, 17(14), 6447; https://doi.org/10.3390/su17146447 - 14 Jul 2025
Viewed by 174
Abstract
Adaptive reuse of Mediterranean earthen houses offers a unique opportunity to fuse heritage preservation with sustainable development. This study introduces a comprehensive, sustainability-driven framework that reimagines these vernacular structures as culturally rooted and socially inclusive assets for contemporary living. Moving beyond conventional restoration, [...] Read more.
Adaptive reuse of Mediterranean earthen houses offers a unique opportunity to fuse heritage preservation with sustainable development. This study introduces a comprehensive, sustainability-driven framework that reimagines these vernacular structures as culturally rooted and socially inclusive assets for contemporary living. Moving beyond conventional restoration, the proposed framework integrates environmental, socio-cultural, and economic sustainability across six core dimensions: ecological performance and material conservation, respectful functional transformation, structural resilience, cultural continuity and community engagement, adaptive flexibility, and long-term economic viability. Four geographically and culturally diverse case studies—Alhambra in Spain, Ghadames in Libya, the UCCTEA Chamber of Architects Main Building in North Cyprus, and Sheikh Hilal Beehive Houses in Syria—serve as testbeds to examine how earthen heritage can be reactivated in sustainable and context-sensitive ways. Through qualitative analysis, including architectural surveys, visual documentation, and secondary data, the study identifies both embedded sustainable qualities and persistent barriers, such as structural fragility, regulatory constraints, and socio-economic disconnects. By synthesizing theoretical knowledge with real-world applications, the proposed framework offers a replicable model for policymakers, architects, and conservationists aiming to bridge tradition and innovation. This research highlights adaptive reuse as a practical and impactful strategy for extending the life of heritage buildings, enhancing environmental performance, and supporting community-centered cultural regeneration across the Mediterranean region. Full article
Show Figures

Figure 1

13 pages, 219 KiB  
Article
Teachers’ Understanding of Implementing Inclusion in Mainstream Classrooms in Rural Areas
by Medwin Dikwanyane Sepadi
Educ. Sci. 2025, 15(7), 889; https://doi.org/10.3390/educsci15070889 - 11 Jul 2025
Viewed by 150
Abstract
This study explores teachers’ understanding and implementation of inclusive education in a rural mainstream secondary school in Limpopo Province, South Africa. Grounded in the inclusive pedagogy framework, the research employed a qualitative approach, combining classroom observations and semi-structured interviews with three purposively selected [...] Read more.
This study explores teachers’ understanding and implementation of inclusive education in a rural mainstream secondary school in Limpopo Province, South Africa. Grounded in the inclusive pedagogy framework, the research employed a qualitative approach, combining classroom observations and semi-structured interviews with three purposively selected teachers. Findings revealed a significant disconnect between teachers’ conceptual support for inclusion and their classroom practices, which remained largely traditional and undifferentiated. Teachers expressed narrow or fragmented understandings of inclusion, often equating it solely with disability integration, and cited systemic barriers such as overcrowding, rigid curricula, and inadequate training as key challenges. Despite emotional discomfort and pedagogical insecurity, participants demonstrated a willingness to adopt inclusive strategies if provided with contextualised professional development and systemic support. The study underscores the need for strengthened pre-service and in-service teacher training, curriculum flexibility, and resource provision to bridge the policy-practice gap in rural inclusive education. Recommendations include collaborative learning communities, stakeholder engagement, and further research to advance equitable implementation. Full article
25 pages, 4620 KiB  
Review
Network Pharmacology as a Tool to Investigate the Antioxidant and Anti-Inflammatory Potential of Plant Secondary Metabolites—A Review and Perspectives
by Anna Merecz-Sadowska, Arkadiusz Sadowski, Hanna Zielińska-Bliźniewska, Karolina Zajdel and Radosław Zajdel
Int. J. Mol. Sci. 2025, 26(14), 6678; https://doi.org/10.3390/ijms26146678 - 11 Jul 2025
Viewed by 182
Abstract
Plant secondary metabolites possess significant antioxidant and anti-inflammatory properties, but their complex polypharmacological mechanisms remain poorly understood. Network pharmacology has emerged as a powerful systems-level approach for investigating multi-target interactions of natural products. This review systematically analyzes network pharmacology applications in elucidating the [...] Read more.
Plant secondary metabolites possess significant antioxidant and anti-inflammatory properties, but their complex polypharmacological mechanisms remain poorly understood. Network pharmacology has emerged as a powerful systems-level approach for investigating multi-target interactions of natural products. This review systematically analyzes network pharmacology applications in elucidating the antioxidant and anti-inflammatory mechanisms of plant metabolites, evaluating concordance between computational predictions and experimental validation. A comprehensive literature search was conducted across major databases (2015–2025), focusing on network pharmacology studies with experimental validation. Analysis revealed remarkable convergence toward common molecular mechanisms, despite diverse chemical structures. For antioxidant activities, the Nrf2/KEAP1/ARE pathway emerged as the most frequently validated mechanism, along with PI3K/AKT, MAPK, and NF-κB signaling. Anti-inflammatory mechanisms consistently involved NF-κB, MAPK, and PI3K/AKT pathways. Key targets, including AKT1, TNF-α, COX-2, NFKB1, and RELA, were repeatedly identified. Flavonoids, phenolic acids, and terpenoids dominated as bioactive compounds. Molecular docking studies supported predicted interactions, with experimental validation showing good concordance for pathway modulation and cytokine regulation. Network pharmacology provides a valuable framework for investigating the complex bioactivities of plant metabolites. The convergence toward common regulatory hubs suggests that natural compounds achieve protective effects by modulating central nodes that integrate redox balance and inflammatory responses. Despite limitations, including database dependency, integrating network pharmacology with experimental validation accelerates mechanistic understanding in natural-product drug discovery. Full article
Show Figures

Figure 1

28 pages, 2304 KiB  
Review
Developing a Standardized Materials Passport Framework to Unlock the Full Circular Potential in the Construction Industry
by Helapura Nuwanshi Yasodara Senarathne, Nilmini Pradeepika Weerasinghe and Guomin Zhang
Sustainability 2025, 17(14), 6337; https://doi.org/10.3390/su17146337 - 10 Jul 2025
Viewed by 194
Abstract
Addressing resource depletion and minimizing construction waste requires closing the material loop through circular economy practices. However, the lack of comprehensive material information remains a significant barrier. The materials passport (MP) has become an essential tool for documenting material properties and dynamically updating [...] Read more.
Addressing resource depletion and minimizing construction waste requires closing the material loop through circular economy practices. However, the lack of comprehensive material information remains a significant barrier. The materials passport (MP) has become an essential tool for documenting material properties and dynamically updating information throughout its lifecycle. Despite recent advancements, existing MP frameworks remain static and lack a holistic approach, limiting their effectiveness in assessing material quality and supporting high-value recovery and reuse. As a result, the industry remains reluctant to adopt secondary materials due to concerns about their performance and quality in structural applications where assurance of reliability is essential. Therefore, this study aims to address this gap by (1) defining the conceptual boundary of the MP framework by examining current MP practices, key functions, and existing limitations and (2) developing a standardized framework using concrete as demonstration material. An extensive literature review was conducted to define the conceptual boundary. Literature and relevant standards were reviewed to identify essential attributes. The study identified three core MP functions, including material tracking and management, circularity assessment, and sustainability assessment, while proposing an additional function of quality assessment. These four functions collectively informed the development of a unique standardized and holistic MP framework. Thus, this study contributes by enabling practitioners to make quality-based, data-driven decisions that support the effective secondary use of materials. Full article
Show Figures

Figure 1

13 pages, 1184 KiB  
Case Report
Reconceptualizing Pediatric Strabismus as a Condition Rooted in Sensory Processing Disorder: A Novel Case-Based Hypothesis
by Mirjana Bjeloš, Ana Ćurić, Mladen Bušić, Katja Rončević and Adrian Elabjer
Children 2025, 12(7), 904; https://doi.org/10.3390/children12070904 - 9 Jul 2025
Viewed by 166
Abstract
Background/Objectives: A direct link between sensory processing disorder (SPD) and strabismus has not been systematically investigated, though prior studies suggest sensory modulation may influence visual behaviors. Traditional approaches view strabismus through a binary lens—either normal or pathological motor deviation. This report presents a [...] Read more.
Background/Objectives: A direct link between sensory processing disorder (SPD) and strabismus has not been systematically investigated, though prior studies suggest sensory modulation may influence visual behaviors. Traditional approaches view strabismus through a binary lens—either normal or pathological motor deviation. This report presents a proof-of-concept case suggesting strabismus may represent a neurobehavioral manifestation of sensory processing imbalance, rooted within the broader framework of SPD. Methods: We report a pediatric case marked by episodic monocular eye closure triggered by environmental stimuli, without identifiable ophthalmologic or neurologic pathology. The child’s symptoms were most consistent with sensory over-responsivity (SOR), a subtype of SPD, manifesting as stimulus-bound monocular eye closure and secondary self-regulatory behaviors. Results: We propose the Fusion Dysregulation Hypothesis, suggesting that exotropia and esotropia represent opposing outcomes along a continuum of sensory connectivity: exotropia arising from neural underwiring (hyporesponsivity and fusion instability), and esotropia from overwiring (hyperresponsivity and excessive fusion drive). Our case, marked by sensory hyperresponsivity, showed frequent monocular eye closure that briefly disrupted but did not impair fusion. This suggests an “overwired” binocular system maintaining single vision despite sensory triggers. In early-onset esotropia, such overconnectivity may become maladaptive, leading to sustained convergence. Conversely, autism spectrum disorder, typically associated with hypoconnectivity, may predispose to exotropia through reduced fusion maintenance. Conclusions: These findings highlight the need for interdisciplinary evaluation. We advocate for structured sensory profiling in children presenting with strabismus and, conversely, for ophthalmologic assessment in those diagnosed with SPD. While our findings remain preliminary, they support a bidirectional screening approach and suggest that sensory modulation may play a previously under-recognized role in the spectrum of pediatric strabismus presentations. Full article
Show Figures

Figure 1

12 pages, 383 KiB  
Article
Public Opinion Study on School Health Education Programs: Family Needs Assessment Study
by Hacer Efe and Ünsal Umdu Topsakal
Int. J. Environ. Res. Public Health 2025, 22(7), 1088; https://doi.org/10.3390/ijerph22071088 - 8 Jul 2025
Viewed by 204
Abstract
Health education programs are important interventions aimed at the acquisition of health knowledge and behaviors that are necessary throughout the lives of individuals of all ages. Considering the importance of health education in structuring the health of the society, it is very important [...] Read more.
Health education programs are important interventions aimed at the acquisition of health knowledge and behaviors that are necessary throughout the lives of individuals of all ages. Considering the importance of health education in structuring the health of the society, it is very important that health education responds to the needs of society and meets its expectations. At this point, public health is protected by providing access to families and communities through health education. In this context, a needs analysis study was conducted with families (students and parents) to establish a health education framework. The study group consisted of 289 volunteer primary and secondary school students and 60 parents who agreed to participate in the study. Semi-structured interviews were conducted with students and parents using a descriptive approach. The needs analysis form prepared by the researchers was used in the interviews and content analysis was applied to the obtained data. The qualitative data obtained from the analyses were interpreted. As a result of the study, it was found that families have expectations and needs in first aid and daily life behaviors (nutrition, hygiene, oral health and diseases) in school health education, and accordingly, school health education can be focused on these specified areas. The fact that families found health knowledge insufficient and considered health education important emphasizes the importance of the knowledge provided by health education and the results. The family health education views obtained in the study can be used in future studies to improve family health behaviors and community health. In addition, family-based school health education can be disseminated with contemporary interventions. Full article
Show Figures

Figure 1

20 pages, 4177 KiB  
Article
Joint Entity–Relation Extraction for Knowledge Graph Construction in Marine Ranching Equipment
by Du Chen, Zhiwu Gao, Sirui Li, Xuruixue Guo, Yaqi Wu, Haiyu Zhang and Delin Zhang
Appl. Sci. 2025, 15(13), 7611; https://doi.org/10.3390/app15137611 - 7 Jul 2025
Viewed by 254
Abstract
The construction of marine ranching is a crucial component of China’s Blue Granary strategy, yet the fragmented knowledge system in marine ranching equipment impedes intelligent management and operational efficiency. This study proposes the first knowledge graph (KG) framework tailored for marine ranching equipment, [...] Read more.
The construction of marine ranching is a crucial component of China’s Blue Granary strategy, yet the fragmented knowledge system in marine ranching equipment impedes intelligent management and operational efficiency. This study proposes the first knowledge graph (KG) framework tailored for marine ranching equipment, integrating hybrid ontology design, joint entity–relation extraction, and graph-based knowledge storage: (1) The limitations in existing KG are obtained through targeted questionnaires for diverse users and employees; (2) A domain ontology was constructed through a combination of the top-down and the bottom-up approach, defining seven key concepts and eight semantic relationships; (3) Semi-structured data from enterprises and standards, combined with unstructured data from the literature were systematically collected, cleaned via Scrapy and regular expression, and standardized into JSON format, forming a domain-specific corpus of 1456 annotated sentences; (4) A novel BERT-BiGRU-CRF model was developed, leveraging contextual embeddings from BERT, parameter-efficient sequence modeling via BiGRU (Bidirectional Gated Recurrent Unit), and label dependency optimization using CRF (Conditional Random Field). The TE + SE + Ri + BMESO tagging strategy was introduced to address multi-relation extraction challenges by linking theme entities to secondary entities; (5) The Neo4j-based KG encapsulated 2153 nodes and 3872 edges, enabling scalable visualization and dynamic updates. Experimental results demonstrated superior performance over BiLSTM-CRF and BERT-BiLSTM-CRF, achieving 86.58% precision, 77.82% recall, and 81.97% F1 score. This study not only proposes the first structured KG framework for marine ranching equipment but also offers a transferable methodology for vertical domain knowledge extraction. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

17 pages, 760 KiB  
Article
Evidence-Based Weight Management for Fertility Preservation in Endometrial Cancer Patients: Developing a Complex Intervention Based on the Medical Research Council Framework
by Jingjing Gong, Yiqian Chen, Yongli Wang, Yuanyuan Gong, Dandan Yang and Xiaodan Li
Healthcare 2025, 13(13), 1623; https://doi.org/10.3390/healthcare13131623 - 7 Jul 2025
Viewed by 251
Abstract
Background/Objectives: This study aims to develop a standardized weight management intervention program for patients with endometrial cancer (EC) undergoing fertility preservation treatment and to provide a scientific foundation for midwives to implement weight management initiatives in the domains of oncology and reproduction. [...] Read more.
Background/Objectives: This study aims to develop a standardized weight management intervention program for patients with endometrial cancer (EC) undergoing fertility preservation treatment and to provide a scientific foundation for midwives to implement weight management initiatives in the domains of oncology and reproduction. Methods: The weight management intervention program for patients with EC undergoing fertility preservation treatment was crafted following the directives of the Medical Research Council framework for developing and assessing complex interventions and the World Health Organization handbook for guideline development. The development process encompassed four distinct stages: (1) establishing the intervention development group, (2) identifying a theoretical basis and forming a content framework, (3) gathering and synthesizing evidence, and (4) refining and modeling the practice program. Results: The ultimate weight management program consisted of 6 primary, 18 secondary, and 53 tertiary items. Through two rounds of Delphi consultation, a response rate of 100% was attained, with an expert authority coefficient of 0.83. Conclusions: The developed intervention demonstrates scientific robustness and clinical feasibility, presenting a structured methodology for weight management for EC patients undergoing fertility preservation therapy. Full article
Show Figures

Figure 1

32 pages, 947 KiB  
Systematic Review
The Impact of Environmental and Material Factors on Fluoride Release from Metal-Modified Glass Ionomer Cements: A Systematic Review of In Vitro Studies
by Sylwia Klimas, Sylwia Kiryk, Jan Kiryk, Agnieszka Kotela, Julia Kensy, Mateusz Michalak, Zbigniew Rybak, Jacek Matys and Maciej Dobrzyński
Materials 2025, 18(13), 3187; https://doi.org/10.3390/ma18133187 - 5 Jul 2025
Viewed by 374
Abstract
Objective: Fluoride is widely recognized for its preventive role against secondary caries. This systematic review aimed to evaluate how environmental and material factors influence fluoride ion release from metal-reinforced glass ionomer cements. Methods: A structured literature search was performed in March 2025 across [...] Read more.
Objective: Fluoride is widely recognized for its preventive role against secondary caries. This systematic review aimed to evaluate how environmental and material factors influence fluoride ion release from metal-reinforced glass ionomer cements. Methods: A structured literature search was performed in March 2025 across PubMed, Scopus, and Web of Science databases. Search terms included combinations of fluoride release AND glass ionomer AND silver OR zinc OR strontium OR copper. The study selection process followed PRISMA 2020 guidelines and was organized using the PICO framework. Out of 281 initially identified records, 153 were screened based on titles and abstracts. After applying predefined eligibility criteria, 23 studies met the inclusion requirements and were included in the qualitative analysis. Results: Among the 23 included publications, 12 involved glass ionomers modified with silver, and 6 of these reported an increase in fluoride release. Seven studies focused on zinc-modified cements, and four examined materials reinforced with strontium. Conclusions: The addition of strontium, titanium oxide, silver nanoparticles, or zirconium oxide increases the release of fluoride ions, while sintered silver reduces it. There is a great discrepancy among researchers regarding the effect of the addition of zinc oxide and its appropriate amount in the glass ionomer material. Full article
Show Figures

Graphical abstract

Back to TopTop