Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,985)

Search Parameters:
Keywords = secondary plant compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3977 KiB  
Article
Exploring the Cytokinin Profile of Doliocarpus dentatus (Aubl.) Standl. From Guyana and Its Relationship with Secondary Metabolites: Insights into Potential Therapeutic Benefits
by Ewart A. Smith, Ainsely Lewis, Erin N. Morrison, Kimberly Molina-Bean, Suresh S. Narine and R. J. Neil Emery
Metabolites 2025, 15(8), 533; https://doi.org/10.3390/metabo15080533 - 6 Aug 2025
Abstract
Background/Objectives: Possessing red and white ecotypes, and utilized in traditional Guyanese medicine, Doliocarpus dentatus’ red ecotype is preferred locally for its purported superior therapeutic efficacy. Although therapeutic metabolites were detected in D. dentatus previously, phytohormones remain largely unexplored, until now. Cytokinins, [...] Read more.
Background/Objectives: Possessing red and white ecotypes, and utilized in traditional Guyanese medicine, Doliocarpus dentatus’ red ecotype is preferred locally for its purported superior therapeutic efficacy. Although therapeutic metabolites were detected in D. dentatus previously, phytohormones remain largely unexplored, until now. Cytokinins, phytohormones responsible for plant cell division, growth and differentiation, are gaining traction for their therapeutic potential in human health. This study screened and quantified endogenous cytokinins and correlated detected cytokinins with selected secondary metabolites. Methods: Liquid chromatography–mass spectrometry was used to acquire phytohormone and metabolite data. Bioinformatics tools were used to assess untargeted metabolomics datasets via statistical and pathway analyses, and chemical groupings of putative metabolites. Results: In total, 20 of the 35 phytohormones were detected and quantified in both ecotypes, with the red ecotype displaying higher free base and glucoside cytokinin concentrations and exhibited 6.2 times the total CK content when compared to the white ecotype. Pathway analysis revealed flavonoid and monoterpenoid biosynthesis in red and white ecotypes, respectively. Positive correlations between specific cytokinins and alkaloids, and between trans-Zeatin and isopentenyladenosine riboside with phenolic compounds were observed. Conclusions: These results suggest that the red ecotype’s elevated cytokinin levels coupled with flavonoid biosynthesis enrichment support its preference in Guyanese traditional medicine. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

26 pages, 3287 KiB  
Review
Endophytic Species of the Genus Colletotrichum as a Source of Bioactive Metabolites: A Review of Their Biotechnological Potential
by Manuela Vitoria Nascimento da Silva, Andrei da Silva Alexandre and Cecilia Veronica Nunez
Microorganisms 2025, 13(8), 1826; https://doi.org/10.3390/microorganisms13081826 - 5 Aug 2025
Abstract
The genus Colletotrichum is widely known for its phytopathological significance, especially as the causative agent of anthracnose in diverse agricultural crops. However, recent studies have unveiled its ecological versatility and biotechnological potential, particularly among endophytic species. These fungi, which asymptomatically colonize plant tissues, [...] Read more.
The genus Colletotrichum is widely known for its phytopathological significance, especially as the causative agent of anthracnose in diverse agricultural crops. However, recent studies have unveiled its ecological versatility and biotechnological potential, particularly among endophytic species. These fungi, which asymptomatically colonize plant tissues, stand out as high-yielding producers of bioactive secondary metabolites. Given their scientific and economic relevance, this review critically examines endophytic Colletotrichum species, focusing on the chemical diversity and biological activities of the metabolites they produce, including antibacterial, antifungal, and cytotoxic activity against cancer cells, and antioxidant properties. This integrative review was conducted through a structured search of scientific databases, from which 39 relevant studies were selected, highlighting the chemical and functional diversity of these compounds. The analyzed literature emphasizes their potential applications in pharmaceutical, agricultural, and industrial sectors. Collectively, these findings reinforce the promising biotechnological potential of Colletotrichum endophytes not only as sources of bioactive metabolites but also as agents involved in ecological regulation, plant health promotion, and sustainable production systems. Full article
(This article belongs to the Special Issue Endophytic Fungus as Producers of New and/or Bioactive Substances)
Show Figures

Figure 1

27 pages, 884 KiB  
Review
Harnessing Seed Endophytic Microbiomes: A Hidden Treasure for Enhancing Sustainable Agriculture
by Ayomide Emmanuel Fadiji, Adedayo Ayodeji Lanrewaju, Iyabo Olunike Omomowo, Fannie Isela Parra-Cota and Sergio de los Santos-Villalobos
Plants 2025, 14(15), 2421; https://doi.org/10.3390/plants14152421 - 4 Aug 2025
Abstract
Microbes perform diverse and vital functions in animals, plants, and humans, and among them, plant-associated microbiomes, especially endophytes, have attracted growing scientific interest in recent years. Numerous plant species thriving in diverse environments have been shown to host endophytic microbes. While endophytic bacteria [...] Read more.
Microbes perform diverse and vital functions in animals, plants, and humans, and among them, plant-associated microbiomes, especially endophytes, have attracted growing scientific interest in recent years. Numerous plant species thriving in diverse environments have been shown to host endophytic microbes. While endophytic bacteria commonly colonize plant tissues such as stems, roots, and leaves, seed-associated endophytes generally exhibit lower diversity compared to those in other plant compartments. Nevertheless, seed-borne microbes are of particular importance, as they represent the initial microbial inoculum that influences a plant’s critical early developmental stages. The seed endophytic microbiome is of particular interest due to its potential for vertical transmission and its capacity to produce a broad array of phytohormones, enzymes, antimicrobial compounds, and other secondary metabolites. Collectively, these functions contribute to enhanced plant biomass and yield, especially under abiotic and biotic stress conditions. Despite their multifaceted roles, seed microbiomes remain underexplored in plant ecology, and their potential benefits are not yet fully understood. This review highlights recent advances in our understanding of the diversity, community composition, mechanisms of action, and agricultural significance of seed endophytic microbes. Furthermore, it synthesizes current insights into how seed endophytes promote plant health and productivity and proposes future research directions to fully harness their potential in sustainable agriculture. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

22 pages, 5809 KiB  
Article
Multistrain Microbial Inoculant Enhances Yield and Medicinal Quality of Glycyrrhiza uralensis in Arid Saline–Alkali Soil and Modulate Root Nutrients and Microbial Diversity
by Jun Zhang, Xin Li, Peiyao Pei, Peiya Wang, Qi Guo, Hui Yang and Xian Xue
Agronomy 2025, 15(8), 1879; https://doi.org/10.3390/agronomy15081879 - 3 Aug 2025
Viewed by 140
Abstract
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and [...] Read more.
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and preventing and adjuvantly treating related diseases. However, the cultivation of G. uralensis is easily restricted by adverse soil conditions in these regions, characterized by high salinity, high alkalinity, and nutrient deficiency. This study investigated the impacts of four multistrain microbial inoculants (Pa, Pb, Pc, Pd) on the growth performance and bioactive compound accumulation of G. uralensis in moderately saline–sodic soil. The aim was to screen the most beneficial inoculant from these strains, which were isolated from the rhizosphere of plants in moderately saline–alkaline soils of the Hexi Corridor and possess native advantages with excellent adaptability to arid environments. The results showed that inoculant Pc, comprising Pseudomonas silesiensis, Arthrobacter sp. GCG3, and Rhizobium sp. DG1, exhibited superior performance: it induced a 0.86-unit reduction in lateral root number relative to the control, while promoting significant increases in single-plant dry weight (101.70%), single-plant liquiritin (177.93%), single-plant glycyrrhizic acid (106.10%), and single-plant total flavonoids (107.64%). Application of the composite microbial inoculant Pc induced no significant changes in the pH and soluble salt content of G. uralensis rhizospheric soils. However, it promoted root utilization of soil organic matter and nitrate, while significantly increasing the contents of available potassium and available phosphorus in the rhizosphere. High-throughput sequencing revealed that Pc reorganized the rhizospheric microbial communities of G. uralensis, inducing pronounced shifts in the relative abundances of rhizospheric bacteria and fungi, leading to significant enrichment of target bacterial genera (Arthrobacter, Pseudomonas, Rhizobium), concomitant suppression of pathogenic fungi, and proliferation of beneficial fungi (Mortierella, Cladosporium). Correlation analyses showed that these microbial shifts were linked to improved plant nutrition and secondary metabolite biosynthesis. This study highlights Pc as a sustainable strategy to enhance G. uralensis yield and medicinal quality in saline–alkali ecosystems by mediating microbe–plant–nutrient interactions. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

15 pages, 5630 KiB  
Article
Toxic Effects of Vanillic Acid and Sinapic Acid on Spodoptera frugiperda
by Ya-Nan Deng, Jin-Yan Lv, Xiao-Rong Liu, Dan Niu, Ling-Xin Xu and Jun-Xin Yan
Biology 2025, 14(8), 979; https://doi.org/10.3390/biology14080979 (registering DOI) - 1 Aug 2025
Viewed by 159
Abstract
The tolerance of the fall armyworm (Spodoptera frugiperda) to plant-derived secondary compounds gradually increases with instars. Therefore, even if plant-based additives are applied at early stages, such as the second or third instar, they may have a differential impact on the [...] Read more.
The tolerance of the fall armyworm (Spodoptera frugiperda) to plant-derived secondary compounds gradually increases with instars. Therefore, even if plant-based additives are applied at early stages, such as the second or third instar, they may have a differential impact on the ecofriendly control of S. frugiperda. In this study, S. frugiperda larvae were exposed to vanillic acid or sinapic acid at the second and third instar, and physiological and growth parameters were measured. The results showed that the effects of vanillic acid treatment on S. frugiperda were similar at the different instars. They can significantly affect the larval carboxylesterase, glutathione S-transferase, and mixed-function oxidase activities. By reducing larval food intake, food conversion, and utilization efficiency while increasing the food consumption rate, it inhibits weight accumulation. This leads to a significant extension of the development of both the larval and pupal stages, and the adult longevity was reduced. Treatment with sinapic acid at the second instar extended the negative effects on the pupal duration of S. frugiperda when compared to treatment at the third instar, but did not affect adult longevity. Therefore, vanillic acid treatment at the second or third instar stage, can play an important role in the ecofriendly control process of S. frugiperda. The results of this study are of great significance for integrated pest management. Full article
(This article belongs to the Section Toxicology)
Show Figures

Figure 1

14 pages, 2566 KiB  
Review
Improved Biomass Production and Secondary Metabolism: A Critical Review of Grafting in Cannabis sativa
by S. M. Ahsan, Md. Injamum-Ul-Hoque, Md. Mezanur Rahman, Sang-Mo Kang, In-Jung Lee and Hyong Woo Choi
Plants 2025, 14(15), 2347; https://doi.org/10.3390/plants14152347 - 30 Jul 2025
Viewed by 460
Abstract
Cannabis sativa L. is a versatile plant with applications in various sectors such as agriculture, medicine, food, and cosmetics. The therapeutic properties of cannabis are often linked to its secondary compounds. The worldwide cannabis market is undergoing swift changes due to varying legal [...] Read more.
Cannabis sativa L. is a versatile plant with applications in various sectors such as agriculture, medicine, food, and cosmetics. The therapeutic properties of cannabis are often linked to its secondary compounds. The worldwide cannabis market is undergoing swift changes due to varying legal frameworks. Medicinal cannabis (as a heterozygous and dioecious species) is distinct from most annual crops grown in controlled environments, typically propagated through stem cutting rather than seeds to ensure genetic uniformity. Consequently, as with any commercially cultivated crop, biomass yield plays a crucial role in overall productivity. The key factors involved in cultivation conditions, such as successful root establishment, stress tolerance, and the production cycle duration, are critical for safeguarding, improving, and optimizing plant yield. Grafting is a long-established horticultural practice that mechanically joins the scion and rootstock of distinct genetic origins by merging their vascular systems. This approach can mitigate undesirable traits by leveraging the strengths of particular plants, proving beneficial to various applications. Grafting is not used commercially in Cannabis. Only three very recent investigations suggest that grafting holds significant promise for enhancing both the agronomic and medicinal potential of Cannabis. This review critically examines the latest advancements in cannabis grafting and explores prospects for improving biomass (stem, root, flower, etc.) yield and secondary metabolite production. Full article
Show Figures

Figure 1

54 pages, 3105 KiB  
Review
Insight into the in Silico Structural, Physicochemical, Pharmacokinetic and Toxicological Properties of Antibacterially Active Viniferins and Viniferin-Based Compounds as Derivatives of Resveratrol Containing a (2,3-Dihydro)benzo[b]furan Privileged Scaffold
by Dominika Nádaská and Ivan Malík
Appl. Sci. 2025, 15(15), 8350; https://doi.org/10.3390/app15158350 - 27 Jul 2025
Viewed by 622
Abstract
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel [...] Read more.
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel natural products, including plant secondary metabolites. These molecules serve as inspiration and a suitable structural platform in the design and development of novel semi-synthetic and synthetic derivatives. All considered compounds have to be adequately evaluated in silico, in vitro, and in vivo using relevant approaches. The current review paper briefly focuses on the chemical and metabolic properties of resveratrol (1), as well as its oligomeric structures, viniferins, and viniferin-based molecules. The core scaffolds of these compounds contain so-called privileged structures, which are also present in many clinically approved drugs, indicating that those natural, properly substituted semi-synthetic, and synthetic molecules can provide a notably broad spectrum of beneficial pharmacological activities, including very impressive antimicrobial efficiency. Except for spectral verification of their structures, these compounds suffer from the determination or prediction of other structural and physicochemical characteristics. Therefore, the structure–activity relationships for specific dihydrodimeric and dimeric viniferins, their bioisosteres, and derivatives with notable efficacy in vitro, especially against chosen Gram-positive bacterial strains, are summarized. In addition, a set of descriptors related to their structural, physicochemical, pharmacokinetic, and toxicological properties is generated using various computational tools. The obtained values are compared to those of clinically approved drugs. The particular relationships between these in silico parameters are also explored. Full article
Show Figures

Figure 1

24 pages, 1391 KiB  
Article
Nitrogen Fertilization and Glomus Mycorrhizal Inoculation Enhance Growth and Secondary Metabolite Accumulation in Hyssop (Hyssopus officinalis L.)
by Saeid Hazrati, Marzieh Mohammadi, Saeed Mollaei, Mostafa Ebadi, Giuseppe Pignata and Silvana Nicola
Nitrogen 2025, 6(3), 60; https://doi.org/10.3390/nitrogen6030060 - 26 Jul 2025
Viewed by 330
Abstract
Nitrogen (N) availability often limits primary productivity in terrestrial ecosystems, and arbuscular mycorrhizal fungi (AMF) can enhance plant N acquisition. This study investigated the interactive effects of N fertilization and AMF inoculation on N uptake, plant performance and phenolic acid content in Hyssopus [...] Read more.
Nitrogen (N) availability often limits primary productivity in terrestrial ecosystems, and arbuscular mycorrhizal fungi (AMF) can enhance plant N acquisition. This study investigated the interactive effects of N fertilization and AMF inoculation on N uptake, plant performance and phenolic acid content in Hyssopus officinalis L., with the aim of promoting sustainable N management in H. officinalis cultivation. A factorial randomized complete block design was employed to evaluate four AMF inoculation strategies (no inoculation, root inoculation, soil inoculation and combined root–soil inoculation) across three N application rates (0, 0.5 and 1,1 g N pot−1 (7 L)) in a controlled greenhouse environment. Combined root and soil AMF inoculation alongside moderate N fertilization (0.5 mg N pot−1) optimized N use efficiency, maximizing plant biomass and bioactive compound production. Compared to non-inoculated controls, this treatment combination increased N uptake by 30%, phosphorus uptake by 24% and potassium uptake by 22%. AMF colonization increased chlorophyll content and total phenolic compounds under moderate N supply. However, excessive N application (1 g N pot−1) reduced AMF effectiveness and secondary metabolite accumulation. Notably, AMF inoculation without N fertilization yielded the highest levels of anthocyanin and salicylic acid, indicating differential N-dependent regulation of specific biosynthetic pathways. The interaction between AMF and N demonstrated that moderate N fertilization (0.5 g N pot−1) combined with dual inoculation strategies can reduce total N input requirements by 50%, while maintaining optimal plant performance. These findings provide practical insights for developing N-efficient cultivation protocols in medicinal plant production systems, contributing to sustainable agricultural practices that minimize environmental N losses. Full article
Show Figures

Figure 1

31 pages, 3043 KiB  
Article
Physiological and Phytochemical Responses of Calendula officinalis L. to End-of-Day Red/Far-Red and Green Light
by Luisa F. Lozano-Castellanos, Giuseppina Pennisi, Luis Manuel Navas-Gracia, Francesco Orsini, Eva Sánchez-Hernández, Pablo Martín-Ramos and Adriana Correa-Guimaraes
Biology 2025, 14(8), 935; https://doi.org/10.3390/biology14080935 - 24 Jul 2025
Viewed by 308
Abstract
Calendula officinalis L. is a widely used medicinal plant whose secondary metabolism and morphology are influenced by light. This study evaluated the effects of 2 and 4 h end-of-day (EOD) red/far-red (R:FR) and green (G) light on the growth, physiology, and phytochemical profile [...] Read more.
Calendula officinalis L. is a widely used medicinal plant whose secondary metabolism and morphology are influenced by light. This study evaluated the effects of 2 and 4 h end-of-day (EOD) red/far-red (R:FR) and green (G) light on the growth, physiology, and phytochemical profile of hydroponically grown C. officinalis under a constant red/blue light background, compared with a red/blue control without EOD treatment. Morphological, physiological (gas exchange, chlorophyll fluorescence), biochemical (chlorophyll, anthocyanin), and chemical composition (attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and Gas Chromatography-Mass Spectrometry (GC-MS)) were evaluated. EOD G 2 h enhanced photosynthetic pigments, anthocyanins, and biomass, while control plants showed higher phenolic content. EOD R:FR induced stem elongation but reduced pigment and metabolite accumulation. GC-MS revealed organ-specific metabolic specialization, with flowers displaying greater chemical diversity than leaves. EOD G favored sesquiterpene diversity in flowers, while EOD R:FR increased nitrogen-containing compounds and unsaturated fatty acids. Vibrational data supported these shifts, with spectral signatures of esters, phenolics, and lipid-related structures. Bioactive compounds, including α-cadinol and carboxylic acids, were identified across treatments. These findings demonstrate that EOD light modulates physiological and metabolic traits in C. officinalis, highlighting EOD G as an enhancer of biomass and phytochemical richness for pharmaceutical applications under controlled conditions. Full article
Show Figures

Graphical abstract

30 pages, 1726 KiB  
Review
Selected Pentacyclic Triterpenoids and Their Derivatives as Biologically Active Compounds
by Zdeněk Wimmer
Molecules 2025, 30(15), 3106; https://doi.org/10.3390/molecules30153106 - 24 Jul 2025
Viewed by 202
Abstract
Medicinal plants have been used in traditional medicines all over the world to treat human diseases throughout human history. Many of the medicinal plants have frequently become food and nutrition plants. A more sophisticated investigation resulted in discovering numbers of biologically important secondary [...] Read more.
Medicinal plants have been used in traditional medicines all over the world to treat human diseases throughout human history. Many of the medicinal plants have frequently become food and nutrition plants. A more sophisticated investigation resulted in discovering numbers of biologically important secondary metabolites of plants. Pentacyclic triterpenoids represent an important group of the plant secondary metabolites that have emerged as having top biological importance. While the most widespread plant triterpenoids and a majority of their semisynthetic derivatives have been reviewed quite often, other plant pentacyclic triterpenoids and their derivatives have so far been less frequently studied. Therefore, attention has been focused on selected pentacyclic triterpenoids, namely on arjunolic acid, asiatic acid, α- and β-boswellic acids, corosolic acid, maslinic acid, morolic acid, moronic acid, and the friedelane triterpenoids, and on different derivatives of the selected triterpenoids in this review article. A literature search was made in the Web of Science for the given keywords, covering the required area of secondary plant metabolites and their semisynthetic derivatives starting in 2023 and ending in February 2025. The most recently published findings on the biological activity of the selected triterpenoids, and on the structures and the biological activity of their relevant derivatives have been summarized therein. Even if cytotoxicity of the compounds has mainly been reviewed, other biological effects are mentioned if they appeared in the original articles in connection with the selected triterpenoids and their derivatives, listed above. A comparison of the effects of the parent plant products and their derivatives has also been made. Full article
(This article belongs to the Topic Natural Compounds in Plants, 2nd Volume)
Show Figures

Figure 1

24 pages, 2289 KiB  
Article
Use of Volatile Organic Compounds Produced by Bacillus Bacteria for the Biological Control of Fusarium oxysporum
by Marcin Stocki, Natalia Stocka, Piotr Borowik, Marzenna Dudzińska, Amelia Staszowska, Adam Okorski and Tomasz Oszako
Forests 2025, 16(8), 1220; https://doi.org/10.3390/f16081220 - 24 Jul 2025
Viewed by 327
Abstract
Restricting the use of chemical pesticides in forestry requires the search for alternative solutions. These could be volatile organic compounds produced by three investigated species of bacteria (Bacillus amyloliquefaciens (ex Fukumoto) Priest, B. subtilis (Ehrenberg) Cohn and B. thuringiensis Berliner), which inhibit [...] Read more.
Restricting the use of chemical pesticides in forestry requires the search for alternative solutions. These could be volatile organic compounds produced by three investigated species of bacteria (Bacillus amyloliquefaciens (ex Fukumoto) Priest, B. subtilis (Ehrenberg) Cohn and B. thuringiensis Berliner), which inhibit the growth of the pathogen F. oxysporum Schltdl. emend. Snyder & Hansen in forest nurseries. The highest inhibition of fungal growth (70%) was observed with B. amyloliquefaciens after 24 h of antagonism test, which had a higher content of carbonyl compounds (46.83 ± 8.41%) than B. subtilis (41.50 ± 6.45%) or B. thuringiensis (34.62 ± 4.77%). Only in the volatile emissions of B. amyloliquefaciens were 3-hydroxybutan-2-one, undecan-2-one, dodecan-5-one and tetradecan-5-one found. In contrast, the main components of the volatile emissions of F. oxysporum were chlorinated derivatives of benzaldehyde (e.g., 3,5-dichloro-4-methoxybenzaldehyde) and chlorinated derivatives of benzene (e.g., 1,4-dichloro-2,5-dimethoxybenzene), as well as carbonyl compounds (e.g., benzaldehyde) and alcohols (e.g., benzyl alcohol). Further compounds were found in the interactions between B. amyloliquefaciens and F. oxysporum (e.g., α-cubebene, linalool, undecan-2-ol, decan-2-one and 2,6-dichloroanisole). Specific substances were found for B. amyloliquefaciens (limonene, nonan-2-ol, phenethyl alcohol, heptan-2-one and tridecan-2-one) and for F. oxysporum (propan-1-ol, propan-2-ol, heptan-2-one and tridecan-2-one). The amounts of volatile chemical compounds found in B. amyloliquefaciens or in the bacterium–fungus interaction can be used for further research to limit the pathogenic fungus. In the future, one should focus on the compounds that were found exclusively in interactions and whose content was higher than in isolated bacteria. In order to conquer an ecological niche, bacteria increase the production of secondary metabolites, including specific chemical compounds. The results presented are a prerequisite for creating an alternative solution or supplementing the currently used methods of plant protection against F. oxysporum. Understanding and applying the volatile organic compounds produced by bacteria can complement chemical plant protection against the pathogen, especially in greenhouses or tunnels where plants grow in conditions that favour fungal growth. Full article
(This article belongs to the Special Issue Advances in Forest Tree Seedling Cultivation Technology—2nd Edition)
Show Figures

Figure 1

25 pages, 3993 KiB  
Article
Green Chemistry and Multivariate Optimization in the Extraction of Phenolic Compounds: The Potential of NaDES in Alternative Raw Materials for Expanded Extrudates
by Mateus Alves Araújo, Bianca Rodrigues Morais, João Pedro da Silva Santos, Larissa Karla de Jesus, Kaliston Aurélio Lomba, Gustavo Costa do Nascimento, Marcus Alvarenga Soares, Nathalia de Andrade Neves, Irene Andressa, Maria Teresa Pedrosa Silva Clerici and Marcio Schmiele
Methods Protoc. 2025, 8(4), 82; https://doi.org/10.3390/mps8040082 - 23 Jul 2025
Viewed by 367
Abstract
Phenolic compounds are secondary metabolites widely distributed among plants, with bioactive properties, especially antioxidant activity. The search for sustainable extraction methods has driven the use of natural deep eutectic solvents (NaDESs), formed by combinations of natural compounds, such as organic acids, sugars, alcohols, [...] Read more.
Phenolic compounds are secondary metabolites widely distributed among plants, with bioactive properties, especially antioxidant activity. The search for sustainable extraction methods has driven the use of natural deep eutectic solvents (NaDESs), formed by combinations of natural compounds, such as organic acids, sugars, alcohols, and amino acids. This study optimized NaDES (sorbitol, citric acid, and glycine) efficiency and compared it to that of 70% methanol solution in extracting total soluble phenolic compounds (TSPCs) from six flours matrices—corn, buckwheat, biofortified orange sweet potato, red lentil, Sudan grass, and chickpea—before and after thermoplastic extrusion cooking. Quantification was performed using the Folin–Ciocalteu method, with statistical analysis at the 10% significance level. In general, the methanolic extracts showed higher TSPC levels in the raw materials, whereas the levels were higher in NaDESs for legumes. After extrusion, a reduction in the TSPC levels was observed, except in the sweet potato. Multivariate analysis (PLS-DA and heatmap) distinguished the raw and extruded samples, revealing structural and chemical changes from thermal processing. The AGREE scores were 0.7 (NaDES) and 0.54 (methanol), favoring NaDES. The BAGI score (75.0) confirmed the method’s robustness and suitability for sustainable analytical applications. Full article
(This article belongs to the Collection Green Chemistry)
Show Figures

Figure 1

19 pages, 1331 KiB  
Article
Phytochemical Diversity and Genetic Characterization of Mountain Tea (Sideritis sect. Empedoclia) from Greece
by Christos E. Ioannou, Eleni Liveri, Charikleia Papaioannou, Konstantina Zeliou, Virginia D. Dimaki, Aris Zografidis, Gregoris Iatrou, Panayiotis Trigas, Vasileios Papasotiropoulos and Fotini N. Lamari
Agriculture 2025, 15(15), 1573; https://doi.org/10.3390/agriculture15151573 - 22 Jul 2025
Viewed by 272
Abstract
Members of Sideritis sect. Empedoclia (Lamiaceae), known as ‘mountain tea’, are widely used medicinal plants. Their taxonomic classification is complex due to frequent hybridization and subtle morphological distinctions. This study examines 12 populations of eight native Sideritis taxa from Greece: S. clandestina subsp. [...] Read more.
Members of Sideritis sect. Empedoclia (Lamiaceae), known as ‘mountain tea’, are widely used medicinal plants. Their taxonomic classification is complex due to frequent hybridization and subtle morphological distinctions. This study examines 12 populations of eight native Sideritis taxa from Greece: S. clandestina subsp. clandestina, S. clandestina subsp. peloponnesiaca, S. euboea, S. raeseri subsp. raeseri, S. raeseri subsp. attica, S. scardica, S. sipylea, and S. syriaca subsp. syriaca. The objectives were to (1) monitor non-polar secondary metabolites (mainly terpenoids) using gas chromatography; (2) shed light on their phylogenetic relationships; (3) evaluate the correlation between genetic and chemical data. Diterpenes, particularly sideridiol, siderol, 7-epicandicandiol, and ent-3α,18-dihydroxy-kaur-16-ene, were the most abundant chemical compounds. Categorical Principal Component Analysis revealed that S. raeseri subsp. attica is chemically distinct, while the rest are grouped into two clusters: one comprising S. clandestina and S. sipylea, and the other including all the rest. Genetic analysis based on chloroplast DNA (matK, psbA-trnH, trnL-F), showed that S. sipylea and S. syriaca subsp. syriaca were the most phylogenetically distant groups. Our study enhances the understanding of Sideritis chemovariability and phylogeny, supporting also taxonomic, authentication, and breeding efforts. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

26 pages, 17214 KiB  
Article
Polyploid Induction Enhances Secondary Metabolite Biosynthesis in Clausena lansium: Morphological and Metabolomic Insights
by Yu Ding, Liangfang Wu, Hongyao Wei, Zhichun Zhang, Jietang Zhao, Guibing Hu, Yonghua Qin and Zhike Zhang
Agriculture 2025, 15(14), 1566; https://doi.org/10.3390/agriculture15141566 - 21 Jul 2025
Viewed by 401
Abstract
Polyploidy in plants can enhance stress resistance and secondary metabolite production, offering potential benefits for Clausena lansium (L.) Skeel, a medicinally valuable species. However, systematic studies of polyploidy-induced morphological, anatomical, and metabolic changes in this species are lacking. This study aimed to induce [...] Read more.
Polyploidy in plants can enhance stress resistance and secondary metabolite production, offering potential benefits for Clausena lansium (L.) Skeel, a medicinally valuable species. However, systematic studies of polyploidy-induced morphological, anatomical, and metabolic changes in this species are lacking. This study aimed to induce and characterize polyploid C. lansium lines, assess ploidy-dependent variations, and evaluate their impact on bioactive metabolite accumulation. Three cultivars were hybridized, treated with colchicine, and bred, yielding 13 stable polyploid lines confirmed by flow cytometry and chromosome counting. The polyploids exhibited distinct traits, including larger pollen grains, altered leaf margins, increased leaflet numbers, enlarged guard cells with reduced stomatal density, and thicker leaf tissues. Metabolomic analysis revealed that tetraploids accumulated significantly higher levels of flavonoids, alkaloids, and phenolic acids compared to diploids, while triploids showed moderate increases. These findings demonstrate that polyploidization, particularly tetraploidy, enhances C. lansium’s medicinal potential by boosting pharmacologically active compounds. The study expands germplasm resources and supports the development of high-quality cultivars for pharmaceutical applications. Full article
(This article belongs to the Special Issue Fruit Germplasm Resource Conservation and Breeding)
Show Figures

Figure 1

15 pages, 1351 KiB  
Review
Unraveling the Complexity of Plant Trichomes: Models, Mechanisms, and Bioengineering Strategies
by Tiantian Chen, Yanfei Ma and Jiyan Qi
Int. J. Mol. Sci. 2025, 26(14), 7008; https://doi.org/10.3390/ijms26147008 - 21 Jul 2025
Viewed by 431
Abstract
Trichomes—microscopic appendages on the plant epidermis—play vital roles as both protective barriers and specialized biosynthetic factories. Acting as the first line of defense against environmental stressors, they also produce a wide range of pharmaceutically valuable secondary metabolites. This mini-review highlights recent advances in [...] Read more.
Trichomes—microscopic appendages on the plant epidermis—play vital roles as both protective barriers and specialized biosynthetic factories. Acting as the first line of defense against environmental stressors, they also produce a wide range of pharmaceutically valuable secondary metabolites. This mini-review highlights recent advances in understanding the development, structure, and function of trichomes, with a focus on glandular secretory trichomes (GSTs) in key species such as Artemisia annua and Solanum lycopersicum. We explore how insights from these systems are driving innovation in plant synthetic biology, including modular genetic engineering and metabolic channeling strategies. These breakthroughs are paving the way for scalable, plant-based platforms to produce high-value compounds. By integrating molecular mechanisms with emerging technologies, this review outlines a forward-looking framework for leveraging trichomes in sustainable agriculture, natural product discovery, and next-generation biomanufacturing. Full article
Show Figures

Figure 1

Back to TopTop