Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (142)

Search Parameters:
Keywords = seam-line

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 21294 KB  
Article
Stress Bias Load Response of Different Roadway Layers in 20 m Extra-Thick Coal Seams
by Dongdong Chen, Changxiang Gao, Jiachen Tang, Shengrong Xie, Chenjie Wang, Hao Pan and Hao Sun
Appl. Sci. 2025, 15(19), 10456; https://doi.org/10.3390/app151910456 - 26 Sep 2025
Viewed by 232
Abstract
To address the challenge of asymmetric deformation and failure in the surrounding rock of main roadways within extra-thick coal seams caused by level differences under intense mining disturbance, this study systematically analyzed the evolution laws of principal stress fields, deviatoric stress fields, and [...] Read more.
To address the challenge of asymmetric deformation and failure in the surrounding rock of main roadways within extra-thick coal seams caused by level differences under intense mining disturbance, this study systematically analyzed the evolution laws of principal stress fields, deviatoric stress fields, and their impact on surrounding rock stability in upper-, middle-, and lower-level roadways within a 20 m extra-thick coal seam during mining retreat. The analysis employed numerical simulation, similarity simulation, and field monitoring. Key findings include the following: ① As the working face advances, the principal stress vector lines deflect following a bias-unloading pattern, while the peak value of the deviatoric stress field (PVDSF) exhibits asymmetric bias-loading characteristics. The lower-layer roadway emerges as the primary load-bearing layer controlling surrounding rock stability. ② The evolution trend of the maximum principal stress vector orientation is consistent across different layers. The deflection trajectory manifests as “the deflection of the goaf side → the near layer orientation → the deflection of the solid coal side”. ③ The deviatoric stress peak zones (DSPZs) at all layers exhibit a characteristic “three-stage” evolution. The deviatoric loading pattern for the lower-layer roadway surrounding rock is the following: initial state double peak region crescent-shaped non-layer distribution type → the range of the bimodal region and the extreme value increased simultaneously, distributed in a non-layer manner → the asymmetrical distribution type of steep drop in the peak area of non-mining deviator stress. ④ The junctions between the mining-side rib and floor and the non-mining-side rib and roof were identified as critical control zones. An innovative zonal asymmetric directional anchoring control technology, “anchor cable foundation support + concrete floor + asymmetric reinforcing anchor cable support”, along with a “One Directional Penetration and Three Synergies” control methodology, was proposed. Field monitoring confirmed the significant effectiveness of the optimized support system. Full article
Show Figures

Figure 1

18 pages, 11011 KB  
Article
Research on the Deviatoric Stress Mode and Control of the Surrounding Rock in Close-Distance Double-Thick Coal Seam Roadways
by Dongdong Chen, Jiachen Tang, Wenrui He, Changxiang Gao and Chenjie Wang
Appl. Sci. 2025, 15(19), 10416; https://doi.org/10.3390/app151910416 - 25 Sep 2025
Viewed by 230
Abstract
To address the issue of sustained deformation in the main roadway surrounding rock triggered by intense movement of overlying strata following the reduction of width of the stopping pillar (WSP) in closely spaced double extra-thick coal seams (CSDECS). Analyze the evolution patterns of [...] Read more.
To address the issue of sustained deformation in the main roadway surrounding rock triggered by intense movement of overlying strata following the reduction of width of the stopping pillar (WSP) in closely spaced double extra-thick coal seams (CSDECS). Analyze the evolution patterns of abutment pressure, principal stress vector lines, and zones of deviatoric stress concentration (ZDSC) of the main roadways using multi-method approaches. The findings are as follows: As the WSP is reduced, the maximum abutment pressure (MAP) on both sides of the gate roadways’ surrounding rock becomes significantly more asymmetric and intense. The deflection trajectory of the maximum principal stress line (MPSL) in the two coal seams, induced by the advancing underlying panel, follows an approximate inverted ︺ shape. The evolution of the ZDSC and the main roadways in the adjacent working faces all shows three-stage characteristics. For the upper coal seam, it is characterized by crescent-shaped symmetry → slow and asymmetric increase of the peak value and the offset of the ZDSC → the ZDSC on the non-mining side (NM-S) reaches the maximum while the mining side (M-S) shows the reverse trend. For the lower coal seam, it is characterized by crescent-shaped symmetry → quasi-annular distribution with a slight increase in the peak value → significant and asymmetric increase of the peak values. Based on the identification of the key control zones in the ZDSC, an asymmetric reinforcement segmented control method was proposed. The findings provide useful guidance for analogous engineering projects. Full article
(This article belongs to the Topic Advances in Mining and Geotechnical Engineering)
Show Figures

Figure 1

13 pages, 2688 KB  
Article
Three-Dimensional Numerical Simulation for Mechanical Performance of Semi-Prefabricated Second Lining of Highway Tunnels
by Yangyang Bao, Haitao Bao, Yeongbin Yang and Yazhou Liu
Buildings 2025, 15(18), 3425; https://doi.org/10.3390/buildings15183425 - 22 Sep 2025
Viewed by 268
Abstract
To align with the development trends of green construction and industrialized building, prefabricated assembly technology has been widely applied in highway tunnel lining structures. However, when used in large-section highway tunnels, this technology faces challenges not only due to the large size of [...] Read more.
To align with the development trends of green construction and industrialized building, prefabricated assembly technology has been widely applied in highway tunnel lining structures. However, when used in large-section highway tunnels, this technology faces challenges not only due to the large size of the components but due to the high demands in the working space. In response to the limitations of traditional assembly methods, this paper proposes a semi-prefabricated secondary lining structure for highway tunnels. The mechanical performance of the second lining constructed by various segmentation schemes under surrounding rock pressure is analyzed using a 3D shell-spring finite element model, considering both the continuous and staggered seam layouts. This study provides technical support for the design of assembled secondary lining structures in large-section highway tunnels. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 3623 KB  
Article
Off-Site Geological Surveying of Longwall Face Based on the Fusion of Multi-Source Monitoring Data
by Mengbo Zhu, Ruoyu Rong, Zhizhen Liu, Xuebin Qin, Haonan Zhang and Shuaihong Kang
Mathematics 2025, 13(18), 3008; https://doi.org/10.3390/math13183008 - 17 Sep 2025
Viewed by 314
Abstract
A high-precision coal seam model is crucial to improving the adaptability of unmanned mining technology to geological conditions. However, the accuracy of a coal seam model constructed with boreholes and geophysical data is far from the required accuracy of unmanned mining (sub-decimeter level). [...] Read more.
A high-precision coal seam model is crucial to improving the adaptability of unmanned mining technology to geological conditions. However, the accuracy of a coal seam model constructed with boreholes and geophysical data is far from the required accuracy of unmanned mining (sub-decimeter level). Therefore, it is necessary to collect geological data revealed by mining and to update the coal seam model dynamically. As a solution to this problem, this paper proposes a new method for conducting off-site geological surveying of longwall faces by integrating multi-source monitoring data. The spatial attitudes of hydraulic supports are monitored to estimate the local dip angles of longwall face. A roof line calculation model was established, which integrates the local inclination angle of the longwall face, the number of hydraulic supports, and the roof elevation of the two roadways. Meanwhile, the local coal–rock columns at the camera observation point are extracted automatically using image segmentation and a proportional relationship between the picture and the actual scene. Coal and rock walls and a support guarding plate in the longwall face image are identified accurately using the coal-rock support segmentation model trained with U-net. Then, the height of the coal (or rock) wall above the coal–rock interface is estimated automatically according to the image segmentation and the similar proportion equation of actual longwall face and longwall face image. Combined with mining height information, the local coal–rock column can be extracted. Finally, the geological surveying profile of longwall face can be obtained by integrating the estimated roof line and local coal–rock columns. The field test demonstrated the efficacy of the method. This study helps to address a long-standing limitation of insufficient geological adaptability of intelligent mining technology. Full article
(This article belongs to the Special Issue Mathematical Modeling and Analysis in Mining Engineering)
Show Figures

Figure 1

20 pages, 5389 KB  
Article
Diffusion Behavior of Polyurethane Slurry for Simultaneous Enhancement of Reservoir Strength and Permeability Through Splitting Grouting Technology
by Xiangzeng Wang, Fengsan Zhang, Jinqiao Wu, Siqi Qiang, Bing Li and Guobiao Zhang
Polymers 2025, 17(18), 2513; https://doi.org/10.3390/polym17182513 - 17 Sep 2025
Viewed by 404
Abstract
A polyurethane slurry was developed to simultaneously enhance the strength and permeability of geological formations, differing from the conventional fracture grouting used for soft-soil reinforcement. Injected via splitting grouting, the slurry cures to form high-strength, highly permeable channels that increase reservoir permeability while [...] Read more.
A polyurethane slurry was developed to simultaneously enhance the strength and permeability of geological formations, differing from the conventional fracture grouting used for soft-soil reinforcement. Injected via splitting grouting, the slurry cures to form high-strength, highly permeable channels that increase reservoir permeability while improving mechanical stability (dual-enhanced stimulation). To quantify its diffusion behavior and guide field application, we built a splitting-grouting model using the finite–discrete element method (FDEM), parameterized with the reservoir properties of coalbed methane (CBM) formations in the Ordos Basin and the slurry’s measured rheology and filtration characteristics. Considering the stratified structures within coal rock formed by geological deposition, this study utilizes Python code interacting with Abaqus to divide the coal seam into coal rock and natural bedding. We analyzed the effects of engineering parameters, geological factors, and bedding characteristics on slurry–vein propagation patterns, the stimulation extent, and fracturing pressure. The findings reveal that increasing the grouting rate from 1.2 to 3.6 m3/min enlarges the stimulated volume and the maximum fracture width and raises the fracturing pressure from 26.28 to 31.44 MPa. A lower slurry viscosity of 100 mPa·s promotes the propagation of slurry veins, making it easier to develop multiple veins. The bedding-to-coal rock strength ratio controls crossing versus layer-parallel growth: at 0.3, veins more readily penetrate bedding planes, whereas at 0.1 they preferentially spread along them. Raising the lateral pressure coefficient from 0.6 to 0.8 increases the likelihood of the slurry expanding along the beddings. Natural bedding structures guide directional flow; a higher bedding density (225 lines per 10,000 m3) yields greater directional deflection and a more intricate fracture network. As the angle of bedding increases from 10° to 60°, the slurry veins are more susceptible to directional changes. Throughout the grouting process, the slurry veins can undergo varying degrees of directional alteration. Under the studied conditions, both fracturing and compaction grouting modes are present, with fracturing grouting dominating in the initial stages, while compaction grouting becomes more prominent later on. These results provide quantitative guidance for designing dual-enhanced stimulation to jointly improve permeability and mechanical stability. Full article
(This article belongs to the Special Issue Polymer Fluids in Geology and Geotechnical Engineering)
Show Figures

Graphical abstract

23 pages, 16731 KB  
Article
WeldLight: A Lightweight Weld Classification and Feature Point Extraction Model for Weld Seam Tracking
by Ang Gao, Anning Li, Fukang Su, Xinqi Yang, Wenping Liu, Fuxin Du and Chao Chen
Sensors 2025, 25(18), 5761; https://doi.org/10.3390/s25185761 - 16 Sep 2025
Viewed by 717
Abstract
To address the issues of intense image noise interference and computational intensity faced by traditional vision-based weld tracking systems, we propose WeldLight, a lightweight and noise-resistant convolutional neural network for precise classification and positioning of welding seam feature points using single-line structured light [...] Read more.
To address the issues of intense image noise interference and computational intensity faced by traditional vision-based weld tracking systems, we propose WeldLight, a lightweight and noise-resistant convolutional neural network for precise classification and positioning of welding seam feature points using single-line structured light vision. Our approach includes (1) an online data augmentation method to enhance training samples and improve noise adaptability; (2) a one-stage lightweight network for simultaneous positioning and classification; and (3) an attention module to filter features corrupted by intense noise, thereby improving stability. Experiments show that WeldLight achieves an F1-score of 0.9668 for seam classification on an adjusted test set, with mean absolute positioning errors of 1.639 pixels and 1.736 pixels on low-noise and high-noise test sets, respectively. With an inference time of 29.32 ms on a CPU platform, it meets real-time seam tracking requirements. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

18 pages, 39111 KB  
Article
Impact of Beam Shape and Frequency on Weld Seam Geometry and Penetration Depth Using a Coherent Beam Combining Laser
by Karthik Ravi Krishna Murthy, Reza Sanei, Abhay Sharma, Simon Olschok and Uwe Reisgen
Appl. Sci. 2025, 15(17), 9432; https://doi.org/10.3390/app15179432 - 28 Aug 2025
Viewed by 720
Abstract
The geometry and quality of a weld seam are critical factors in laser beam welding, influencing mechanical performance and structural integrity. Dynamically modulated laser beams provide a precise means of tailoring energy input in high-power laser welding processes. This study investigates the influence [...] Read more.
The geometry and quality of a weld seam are critical factors in laser beam welding, influencing mechanical performance and structural integrity. Dynamically modulated laser beams provide a precise means of tailoring energy input in high-power laser welding processes. This study investigates the influence of beam shape and modulated frequency on weld seam geometry, penetration depth, and capillary behaviour using a coherent beam combining (CBC) laser system from Civan Lasers. Three beam intensity distributions—single point, line–point–line (LPL), and boomerang—were applied across a modulation frequency range of 1, 10, and 100 kHz during the welding of duplex and austenitic stainless steels. High-speed imaging captured real-time capillary dynamics, and the data were analysed to assess capillary stability, measure capillary diameter, and determine the capillary front angle as a function of frequency and beam shape. Transverse cross-sections of the welds were prepared to evaluate seam geometry and microstructure. The results show that beam shape significantly affects energy distribution and weld profile, while modulation frequency critically influences capillary behaviour and penetration characteristics. These findings highlight the critical role of dynamic beam shaping and frequency modulation in optimizing laser welding processes for material-specific performance, offering a versatile platform for advancing precision manufacturing using CBC technology. Full article
(This article belongs to the Special Issue Advanced Welding Technology and Its Applications)
Show Figures

Figure 1

14 pages, 3015 KB  
Article
Analysis of Heat Transfer in the Welding Processes of Naval Metallic Sheets from an Occupational Safety Perspective
by Roberto José Hernández de la Iglesia, José L. Calvo-Rolle, Héctor Quintian-Pardo and Julia C. Mirza-Rosca
Safety 2025, 11(3), 78; https://doi.org/10.3390/safety11030078 - 18 Aug 2025
Viewed by 638
Abstract
Ship repair is hazardous, often presenting unsuitable working areas and risks due to the ship’s configuration. Welding tasks are particularly dangerous due to the high temperatures generated, high enough to melt the metal in structural elements, bulkheads, linings, and tanks. This study investigates [...] Read more.
Ship repair is hazardous, often presenting unsuitable working areas and risks due to the ship’s configuration. Welding tasks are particularly dangerous due to the high temperatures generated, high enough to melt the metal in structural elements, bulkheads, linings, and tanks. This study investigates the consequences of temperature distribution during the welding of naval plates and proposes some accident prevention measures. Industry working conditions were reproduced, including the materials, procedures, and tools used, as well as the certified personnel employed. DH 36-grade naval steel, with a composition of C max. 0.18%, Mn 0.90–1.60%, P 0.035%, S 0.04%, Si 0.10–0.50%, Ni max 0.4%, Cr max 0.25%, Mo 0.08%, Cu max 0.35%, Cb (Nb) 0.05%, and V 0.1%, was welded via FCAW-G (Gas-Shielded Flux-Cored Arc Welding), selected for this study because it is one of the most widely practiced in the naval industry. The main sensor used in the experiments was an FLIR model E50 thermographic camera, and thermal waxes were employed. The results for each thickness case are presented in both graphical and tabular form to provide accurate and actionable guidelines, prioritizing safety. After studying the butt jointing of naval plates of various thicknesses (8, 10, and 15 mm), safe distances to maintain were proposed to avoid risks in the most unfavorable cases: 350 mm from the welding seam to avoid burn injuries to unprotected areas of the body and 250 mm from the welding seam to avoid producing flammable gases. These numbers are less accurate but easier to remember, which prevents errors in the face of hazards throughout a long working day. Full article
Show Figures

Figure 1

19 pages, 4719 KB  
Article
Laser Stripe Segmentation Network Based on Evidential Uncertainty Theory Modeling Fine-Tuning Optimization Symmetric Algorithm
by Chenbo Shi, Delin Wang, Xiangyu Zhang, Chun Zhang, Jia Yan, Changsheng Zhu and Xiaobing Feng
Symmetry 2025, 17(8), 1280; https://doi.org/10.3390/sym17081280 - 9 Aug 2025
Viewed by 645
Abstract
In welding applications, line-structured-light vision is widely used for seam tracking, but intense noise from arc glow, spatter, smoke, and reflections makes reliable laser-stripe segmentation difficult. To address these challenges, we propose EUFNet, an uncertainty-driven symmetrical two-stage segmentation network for precise stripe extraction [...] Read more.
In welding applications, line-structured-light vision is widely used for seam tracking, but intense noise from arc glow, spatter, smoke, and reflections makes reliable laser-stripe segmentation difficult. To address these challenges, we propose EUFNet, an uncertainty-driven symmetrical two-stage segmentation network for precise stripe extraction under real-world welding conditions. In the first stage, a lightweight backbone generates a coarse stripe mask and a pixel-wise uncertainty map; in the second stage, a functionally mirrored refinement network uses this uncertainty map to symmetrically guide fine-tuning of the same image regions, thereby preserving stripe continuity. We further employ an uncertainty-weighted loss that treats ambiguous pixels and their corresponding evidence in a one-to-one, symmetric manner. Evaluated on a large-scale dataset of 3100 annotated welding images, EUFNet achieves a mean IoU of 89.3% and a mean accuracy of 95.9% at 236.7 FPS (compared to U-Net’s 82.5% mean IoU and 90.2% mean accuracy), significantly outperforming existing approaches in both accuracy and real-time performance. Moreover, EUFNet generalizes effectively to the public WLSD benchmark, surpassing state-of-the-art baselines in both accuracy and speed. These results confirm that a structurally and functionally symmetric, uncertainty-driven two-stage refinement strategy—combined with targeted loss design and efficient feature integration—yields high-precision, real-time performance for automated welding vision. Full article
Show Figures

Figure 1

33 pages, 8582 KB  
Article
Mobile Tunnel Lining Measurable Image Scanning Assisted by Collimated Lasers
by Xueqin Wu, Jian Ma, Jianfeng Wang, Hongxun Song and Jiyang Xu
Sensors 2025, 25(13), 4177; https://doi.org/10.3390/s25134177 - 4 Jul 2025
Cited by 1 | Viewed by 574
Abstract
The health of road tunnel linings directly impacts traffic safety and requires regular inspection. Appearance defects on tunnel linings can be measured through images scanned by cameras mounted on a car to avoid disrupting traffic. Existing tunnel lining mobile scanning methods often fail [...] Read more.
The health of road tunnel linings directly impacts traffic safety and requires regular inspection. Appearance defects on tunnel linings can be measured through images scanned by cameras mounted on a car to avoid disrupting traffic. Existing tunnel lining mobile scanning methods often fail in image stitching due to the lack of corresponding feature points in the lining images, or require complex, time-consuming algorithms to eliminate stitching seams caused by the same issue. This paper proposes a mobile scanning method aided by collimated lasers, which uses lasers as corresponding points to assist with image stitching to address the problems. Additionally, the lasers serve as structured light, enabling the measurement of image projection relationships. An inspection car was developed based on this method for the experiment. To ensure operational flexibility, a single checkerboard was used to calibrate the system, including estimating the poses of lasers and cameras, and a Laplace kernel-based algorithm was developed to guarantee the calibration accuracy. Experiments show that the performance of this algorithm exceeds that of other benchmark algorithms, and the proposed method produces nearly seamless, measurable tunnel lining images, demonstrating its feasibility. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

26 pages, 10335 KB  
Article
Effects of Natural Fractures on Coal Drilling Response: Implications for CBM Fracturing Optimization
by Zixiang Han, Shuaifeng Lyu, Yuhang Xiao, Haijun Zhang, Quanming Chen and Ao Lu
Energies 2025, 18(13), 3404; https://doi.org/10.3390/en18133404 - 27 Jun 2025
Viewed by 611
Abstract
The efficiency of coalbed methane (CBM) extraction is closely related to the drilling response of coal seams, which is significantly influenced by natural fracture development of coal seams. This work investigated 11 coal samples from the Baode, Xinyuan, and Huolinhe mines, employing quantitative [...] Read more.
The efficiency of coalbed methane (CBM) extraction is closely related to the drilling response of coal seams, which is significantly influenced by natural fracture development of coal seams. This work investigated 11 coal samples from the Baode, Xinyuan, and Huolinhe mines, employing quantitative fracture characterization, acoustic wave testing, drilling experiments, and cuttings analysis to systematically reveal the relationships and mechanisms between fracture parameters and coal drilling response characteristics. The result found that acoustic parameters (average wave velocity v and drilling surface wave velocity v0) exhibit significant negative correlations with fracture line density (ρ1) and area ratio (ρ2) (|r| > 0.7), while the geological strength index (GSI) positively correlates with acoustic parameters, confirming their utility as indirect indicators of fracture development. Fracture area ratio (ρ2) strongly correlates with drilling cuttings rate q (r = 0.82), whereas GSI negatively correlates with drilling rate w, indicating that highly fractured coal is more friable but structural stability constrains drilling efficiency, while fracture parameters show limited influence on drill cuttings quantity Q. Cuttings characteristics vary with fracture types and density. Type I coal (low-density coexisting exogenous fractures and cleats) produces cuttings dominated by fine particles with concentrated size distribution (average particle size d ≈ 0.52 mm, crushability index n = 0.46–0.61). Type II coal (exogenous-fracture-dominant) exhibits coarser particle sizes in cuttings (d ≈ 0.8 mm, n = 0.43–0.53). Type III coal (dense-cleat-dominant) drill cuttings are mainly coarse particles and are concentrated in distribution (d ≈ 1.53 mm, n = 0.72–0.98). Additionally, drilling response differences are governed by the coupling effects of vitrinite reflectance (Ro), density, and firmness coefficient (f), with Huolinhe coal being easier to drill due to its lower Ro, f, and density. This study elucidates the mechanism by which fracture development affects coal drilling response through multi-parameter correlation analysis, while also providing novel insights into the optimization of fracturing sweet spot selection for CBM development. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

16 pages, 6672 KB  
Article
Lithology and Macroscopic Coal Lithotype Identification of Coal-Bearing Measures Based on Elemental Mud Logging: A Case Study of the Eastern Ordos Basin Coal Seam
by Yuejiao Liu, Wenya Zhang, Fuqiang Lai, Mingyang Zhang, Honghua Sun, Zongsheng Zhou, Jianmeng Sun, Ruyue Wang and Shanshan Zheng
Minerals 2025, 15(6), 616; https://doi.org/10.3390/min15060616 - 9 Jun 2025
Viewed by 467
Abstract
China is rich in coalbed methane (CBM) resources, and the key to realizing the scale and efficiency of CBM development is to build “engineering tools” for exploration and development continuously. Accurate calculation of rock components and precise identification of lithology and macroscopic coal [...] Read more.
China is rich in coalbed methane (CBM) resources, and the key to realizing the scale and efficiency of CBM development is to build “engineering tools” for exploration and development continuously. Accurate calculation of rock components and precise identification of lithology and macroscopic coal lithotypes of coal-bearing measures are the basis for the evaluation of CBM geological engineering. This paper proposes a method to identify the lithology and macroscopic coal lithotypes of coal-bearing measures based on elemental mud logging. Firstly, a coal seam demarcation line is constructed based on the elemental mud logging to divide the coal and non-coal seams. Secondly, the content of each component in the coal and non-coal seams is calculated. Finally, based on the results of the calculations, a method for recognizing the lithology of non-coal seams and macroscopic coal lithotypes of coal seams is constructed based on the combination of the S (sulfur) element innovatively. The calculation error of mineral and proximate analysis components is less than 10%, and the average accuracy of lithology and macroscopic coal lithotype identification is as high as 87%. The results can provide important technical guidance for the geological evaluation of coal-bearing measures and the selection of target seams. Full article
Show Figures

Figure 1

22 pages, 6256 KB  
Article
Structural Design of Segmented Linings for High-Pressure CAES in Underground Workings: Method and Case Study
by Sheng Wang, Mengfan Gao and Caichu Xia
Appl. Sci. 2025, 15(10), 5782; https://doi.org/10.3390/app15105782 - 21 May 2025
Viewed by 833
Abstract
This study aims to ensure that the maximum crack width of underground working linings for compressed air energy storage (CAES) meets the allowable limit under high internal pressure conditions. Drawing on crack width calculation methods from hydraulic tunnels, this study proposes a design [...] Read more.
This study aims to ensure that the maximum crack width of underground working linings for compressed air energy storage (CAES) meets the allowable limit under high internal pressure conditions. Drawing on crack width calculation methods from hydraulic tunnels, this study proposes a design method for segmented linings with preset seams. The method accounts for the shear mechanical behavior of the sliding layer, with parameters determined through laboratory testing. A typical case study validates the reliability of the crack width calculation method that accounts for lining damage and plasticity. The study determined, from an engineering case, that six seams are optimal when the lateral pressure coefficient λ is below 1, while four seams are more suitable when λ > 1. Additionally, reinforcement ratios and retractable joints of the segmented lining were designed for the case. When the surrounding rock quality is lower than that of hard rock mass and gas pressure exceeds 12 MPa, monolithic cast-reinforced concrete linings often fail to meet the allowable crack width limits. However, segmented linings offer greater flexibility, as they can still meet the requirements even with fair-quality rock mass. These findings provide critical theoretical foundations for the design of CAES workings under high internal pressure. Full article
Show Figures

Figure 1

20 pages, 22222 KB  
Article
Mechanisms of Surrounding Rock Failure and Control Measures When Main Roof Fractures Directly Above Gob-Side Entry in Thick Coal Seam
by Dongdong Chen, Jingchen Chang, Jun Zou, Chunyang Tian, Shengrong Xie, Jie Ni, Fangfang Guo, Zhixuan Zhang, Wenkang Zhao, Xiangyu Yang and Shikun Xing
Appl. Sci. 2025, 15(8), 4284; https://doi.org/10.3390/app15084284 - 13 Apr 2025
Viewed by 561
Abstract
This study investigates the surrounding rock failure caused by the fracture line of the main roof above the gob-side roadway during fully mechanized top-coal caving mining in a 19 m thick coal seam. As mining progresses, stress concentration occurs in the roadway roof. [...] Read more.
This study investigates the surrounding rock failure caused by the fracture line of the main roof above the gob-side roadway during fully mechanized top-coal caving mining in a 19 m thick coal seam. As mining progresses, stress concentration occurs in the roadway roof. Furthermore, the fracture line of the main roof above the roadway poses a significant threat to the structural stability of the gob-side roadway, leading to the localized failure of the roof structure, which consequently affects the safe and efficient production of the mine. This study investigates the shear failure mechanism of the roadway top coal and analyzes the failure characteristics and stress evolution law of the surrounding rock when the main roof fracture line (MRFL) is located above the roadway through three integrated approaches: theoretical analysis, numerical simulation, and physical similarity modeling. To effectively mitigate damage to the top coal, it is proposed to implement a five-hole tray coupled with high-strength prestressed anchor cables for reinforcing the surrounding rock, while compact wooden piles in combination with single pillars are employed to strengthen the roadway support control measures. It is verified by field tests that these control methods significantly improve the stability of coal above the entry and greatly mitigate the likelihood of surrounding rock failure. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

24 pages, 35913 KB  
Article
Study on Spatial Interpolation Methods for High Precision 3D Geological Modeling of Coal Mining Faces
by Mingyi Cui, Enke Hou, Tuo Lu, Pengfei Hou and Dong Feng
Appl. Sci. 2025, 15(6), 2959; https://doi.org/10.3390/app15062959 - 10 Mar 2025
Cited by 1 | Viewed by 1218
Abstract
High-precision three-dimensional geological modeling of mining faces is crucial for intelligent coal mining and disaster prevention. Accurate spatial interpolation is essential for building high-quality models. This study focuses on the 25214 workface of the Hongliulin coal mine, addressing challenges in interpolating terrain elevation, [...] Read more.
High-precision three-dimensional geological modeling of mining faces is crucial for intelligent coal mining and disaster prevention. Accurate spatial interpolation is essential for building high-quality models. This study focuses on the 25214 workface of the Hongliulin coal mine, addressing challenges in interpolating terrain elevation, stratum thickness, and coal seam thickness data. We evaluate eight interpolation methods (four kriging methods, an inverse distance weighting method, and three radial basis function methods) for terrain and stratum thickness, and nine methods (including the Bayesian Maximum Entropy method) for coal seam thickness, using cross-validation to assess their accuracy. Research results indicate that for terrain elevation data with dense and evenly distributed sampling points, linear kriging achieves the highest accuracy (MAE = 1.01 m, RMSE = 1.20 m). For the optimal interpolation methods of five layers of thickness data with sparse sampling points, the results are as follows: Q4, spherical kriging (MAE = 2.13 m, RMSE = 2.83 m); N2b, IDW (p = 2), MAE = 2.08 m, RMSE = 2.44 m; J2y3, RS-RBF (MAE = 0.89 m, RMSE = 1.05 m); J2y2, TPS-RBF (MAE = 1.96 m, RMSE = 2.25 m); J2y1, HS-RBF (MAE = 2.36 m, RMSE = 2.71 m). A method for accurately delineating the zero line of strata thickness by assigning negative values to virtual thickness in areas of missing strata has been proposed. For coal seam thickness data with uncertain data (from channel wave exploration), a soft-hard data fusion interpolation method based on Bayesian Maximum Entropy has been introduced, and its interpolation results (MAE = 0.64 m, RMSE = 0.66 m) significantly outperform those of eight other interpolation algorithms. Using the optimal interpolation methods for terrain, strata, and coal seams, we construct a high-precision three-dimensional geological model of the workface, which provides reliable support for intelligent coal mining. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

Back to TopTop