Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = seakeeping motions prediction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 9959 KiB  
Article
Hydrodynamic Performance and Motion Prediction Before Twin-Barge Float-Over Installation of Offshore Wind Turbines
by Mengyang Zhao, Xiang Yuan Zheng, Sheng Zhang, Kehao Qian, Yucong Jiang, Yue Liu, Menglan Duan, Tianfeng Zhao and Ke Zhai
J. Mar. Sci. Eng. 2025, 13(5), 995; https://doi.org/10.3390/jmse13050995 - 21 May 2025
Viewed by 683
Abstract
In recent years, the twin-barge float-over method has been widely used in offshore installations. This paper conducts numerical simulation and experimental research on the twin-barge float-over installation of offshore wind turbines (TBFOI-OWTs), focusing primarily on seakeeping performance, and also explores the influence of [...] Read more.
In recent years, the twin-barge float-over method has been widely used in offshore installations. This paper conducts numerical simulation and experimental research on the twin-barge float-over installation of offshore wind turbines (TBFOI-OWTs), focusing primarily on seakeeping performance, and also explores the influence of the gap distance on the hydrodynamic behavior of TBFOI-OWTs. Model tests are conducted in the ocean basin at Tsinghua Shenzhen International Graduate School. A physical model with a scale ratio of 1:50 is designed and fabricated, comprising two barges, a truss carriage frame, two small wind turbines, and a spread catenary mooring system. A series of model tests, including free decay tests, regular wave tests, and random wave tests, are carried out to investigate the hydrodynamics of TBFOI-OWTs. The experimental results and the numerical results are in good agreement, thereby validating the accuracy of the numerical simulation method. The motion RAOs of TBFOI-OWTs are small, demonstrating their good seakeeping performance. Compared with the regular wave situation, the surge and sway motions in random waves have greater ranges and amplitudes. This reveals that the mooring analysis cannot depend on regular waves only, and more importantly, that the random nature of realistic waves is less favorable for float-over installations. The responses in random waves are primarily controlled by motions’ natural frequencies and incident wave frequency. It is also revealed that the distance between two barges has a significant influence on the motion RAOs in beam seas. Within a certain range of incident wave periods (10.00 s < T < 15.00 s), increasing the gap distance reduces the sway RAO and roll RAO due to the energy dissipated by the damping pool of the barge gap. For installation safety within an operating window, it is meaningful but challenging to have accurate predictions of the forthcoming motions. For this, this study employs the Whale Optimization Algorithm (WOA) to optimize the Long Short-Term Memory (LSTM) neural network. Both the stepwise iterative model and the direct multi-step model of LSTM achieve a high accuracy of predicted heave motions. This study, to some extent, affirms the feasibility of float-over installation in the offshore wind power industry and provides a useful scheme for short-term predictions of motions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

19 pages, 4430 KiB  
Article
Establishment of the Unified Maneuvering and Seakeeping Dynamic Model for Submarines Moving in Horizontal Plane near Free Surface
by Aeri Cho, Hoang Thien Vu, Tien Long Bien, Hyeon Kyu Yoon, Anh Khoa Vo and Thi Thanh Diep Nguyen
J. Mar. Sci. Eng. 2025, 13(2), 329; https://doi.org/10.3390/jmse13020329 - 11 Feb 2025
Cited by 1 | Viewed by 768
Abstract
When a submarine moves near the free surface, the lift and drag characteristics that act on it are different compared to when in deep water; for example, waves on the free surface cause submarine motions that are not seen in deep water conditions [...] Read more.
When a submarine moves near the free surface, the lift and drag characteristics that act on it are different compared to when in deep water; for example, waves on the free surface cause submarine motions that are not seen in deep water conditions and lead to changes in speed, fuel efficiency, safety, and maneuverability. To accurately predict the maneuverability of a submarine, it is necessary to consider how both maneuvering and seakeeping performance are affected by free-surface effects during the design stage. In this study, the unified maneuvering and seakeeping dynamic model is proposed. In the maneuvering performance analysis, hydrodynamic forces in the horizontal plane were calculated using STAR-CCM+. In the seakeeping performance analysis, the 6-DOF motions of the submarine and the mean wave drift forces in the horizontal plane were calculated using Ansys AQWA. Since the maneuvering motion component has a relatively long period and the seakeeping motion component has a relatively short period, the unified maneuvering and seakeeping dynamic model for a submarine moving near the surface was established using a two-time-scale approach. Using the established unified maneuvering and seakeeping dynamic model, turning circle simulations were performed in both calm water and in waves. In calm water, there were no significant differences as depth was varied. However, in irregular waves, significant differences were found in the trajectories and motion variables as depth varied. These findings underscore the necessity of accounting for sea surface conditions when operating near the free surface to ensure safety and avoid potentially hazardous scenarios during submarine operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

36 pages, 20333 KiB  
Article
Computational Fluid Dynamics Prediction of the Sea-Keeping Behavior of High-Speed Unmanned Surface Vehicles Under the Coastal Intersecting Waves
by Xiaobin Hong, Guihong Zheng, Ruimou Cai, Yuanming Chen and Guoquan Xiao
J. Mar. Sci. Eng. 2025, 13(1), 83; https://doi.org/10.3390/jmse13010083 - 5 Jan 2025
Viewed by 1282
Abstract
To better study the sea-keeping response behavior of unmanned surface vehicles (USVs) in coastal intersecting waves, a prediction is conducted using the CFD method in this paper, in which a USV with the shape of a small-scale catamaran and designed target for high-speed [...] Read more.
To better study the sea-keeping response behavior of unmanned surface vehicles (USVs) in coastal intersecting waves, a prediction is conducted using the CFD method in this paper, in which a USV with the shape of a small-scale catamaran and designed target for high-speed navigating is considered. The CFD method is proved to be good enough at ship response prediction and can be utilized in abundant forms of towing experiment simulations, including planar motion mechanism experiments. The regular and irregular wave generation of numerical CFD can also virtualize the actual wave tank work, making it equally scientific but more efficient than the real test. This research regards the changing trend of encounter characteristics of USVs meeting two trains of waves with different inclination angles and wavelengths by monitoring wave profiles, pitch, heave, acceleration, slamming force, and pressure on specific locations of the USV hull. This paper first introduces the modeling method of intersecting waves in a virtual tank and verifies the wave profiles by comparing them with a theoretical solution. Further, the paper focuses on the sea-keeping motion of USVs and analyzes the complicated influences of encounter parameters. Eventually, this paper analyzes the changing pattern of the motion in encounter frequency and investigates the severity during the sea-keeping period through acceleration analysis. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 6552 KiB  
Article
A Prediction Method and Model Experiments on Surf-Riding and Broaching in Stern-Quartering Waves
by Jilong Chu, Min Gu, Jiang Lu and Peijie Zhang
J. Mar. Sci. Eng. 2024, 12(9), 1538; https://doi.org/10.3390/jmse12091538 - 4 Sep 2024
Viewed by 3651
Abstract
At present, the International Maritime Organization (IMO) has issued interim guidelines for the direct stability assessment of surf-riding and broaching for the second-generation intact stability criteria. Accurately and efficiently predicting surf-riding and broaching remains a key problem to be solved for the direct [...] Read more.
At present, the International Maritime Organization (IMO) has issued interim guidelines for the direct stability assessment of surf-riding and broaching for the second-generation intact stability criteria. Accurately and efficiently predicting surf-riding and broaching remains a key problem to be solved for the direct stability assessment of surf-riding and broaching. Therefore, a six-degree-of-freedom(6DOF) coupled mathematical model is established in this paper. Firstly, the four-degree-of-freedom(4DOF) coupled equations of surge–sway–roll–yaw motions are built based on the traditional MMG maneuvering mathematical model by considering Froude–Krylov forces, diffraction forces and restoring forces, and the heave and pitch are approximately calculated by iteratively solving improved static equilibrium equations in real-time, effectively solving the divergence problem in direct time-domain seakeeping calculations of high-speed ships in stern-quartering waves. Secondly, the hydrodynamic lift forces due to the coexistence of wave particle velocity and ship forward velocity are taken into account in the propeller-thrust and rudder-force models. In addition, the real-time emersion of twin rudders in waves is considered in the rudder-force models. At the same time, the free-running model experiments with a ONR tumblehome vessel are carried out in stern-quartering waves, and the pure loss of stability and broaching motions are observed. Finally, comparative validations between the calculations and the experiments of surf-riding and broaching in stern-quartering waves are carried out, and the effects of the ship speed, the instantaneous wetted surface of the hull, rudder exposure, heave and pitch motions on predicting surf-riding and broaching motions are investigated. The computation results show that the established 6DOF mathematical model has enough accuracy to be used for the direct stability assessment of the surf-riding and broaching failure modes. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 6521 KiB  
Article
AI-Driven Model Prediction of Motions and Mooring Loads of a Spar Floating Wind Turbine in Waves and Wind
by Antonio Medina-Manuel, Rafael Molina Sánchez and Antonio Souto-Iglesias
J. Mar. Sci. Eng. 2024, 12(9), 1464; https://doi.org/10.3390/jmse12091464 - 23 Aug 2024
Cited by 5 | Viewed by 2389
Abstract
This paper describes a Long Short-Term Memory (LSTM) neural network model used to simulate the dynamics of the OC3 reference design of a Floating Offshore Wind Turbine (FOWT) spar unit. It crafts an advanced neural network with an encoder–decoder architecture capable of predicting [...] Read more.
This paper describes a Long Short-Term Memory (LSTM) neural network model used to simulate the dynamics of the OC3 reference design of a Floating Offshore Wind Turbine (FOWT) spar unit. It crafts an advanced neural network with an encoder–decoder architecture capable of predicting the spar’s motion and fairlead tensions time series. These predictions are based on wind and wave excitations across various operational and extreme conditions. The LSTM network, trained on an extensive dataset from over 300 fully coupled simulation scenarios using OpenFAST, ensures a robust framework that captures the complex dynamics of a floating platform under diverse environmental scenarios. This framework’s effectiveness is further verified by thoroughly evaluating the model’s performance, leveraging comparative statistics and accuracy assessments to highlight its reliability. This methodology contributes to substantial reductions in computational time. While this research provides insights that facilitate the design process of offshore wind turbines, its primary aim is to introduce a new predictive approach, marking a step forward in the quest for more efficient and dependable renewable energy solutions. Full article
Show Figures

Figure 1

22 pages, 18151 KiB  
Article
A Unified Numerical Method for Broaching and Loss of Stability in Astern Seas
by Jiang Lu, Min Gu and Evangelos Boulougouris
J. Mar. Sci. Eng. 2023, 11(8), 1555; https://doi.org/10.3390/jmse11081555 - 6 Aug 2023
Cited by 4 | Viewed by 1635
Abstract
The interim guidelines of second-generation intact stability criteria and their explanatory note were issued by the IMO in 2022. However, due to their complexity, the direct stability assessments of broaching and loss of stability still need to be made easier for users. Therefore, [...] Read more.
The interim guidelines of second-generation intact stability criteria and their explanatory note were issued by the IMO in 2022. However, due to their complexity, the direct stability assessments of broaching and loss of stability still need to be made easier for users. Therefore, the mathematical models for broaching and loss of stability in astern seas are studied in this paper. Firstly, a time-domain 6 DOF numerical model is adopted, combining seakeeping and maneuvering mathematical models. Secondly, the hydrodynamic forces, heave, and pitch motions are obtained by an enhanced strip method with the upright hull at different speeds in the frequency domain. Then, their time-domain values are transferred from their frequency-domain values with the speed variation considered. Thirdly, the time-domain varied wet hull in waves is captured by the 6 DOF ship motion. Then, the Froude–Krylov and the hydrostatic forces in the surging, swaying, rolling, and yawing directions are simulated considering the wave pressure around the wet hull. Fourthly, the exposure of the twin rudders and the wave-particle velocity are considered for predicting broaching. Finally, the calculated results are compared with the published results. The results show that the time-domain 6 DOF coupled numerical model can be unified for predicting broaching and loss of stability in the astern seas. Full article
Show Figures

Figure 1

28 pages, 3420 KiB  
Article
A New Model Uncertainty Measure of Wave-Induced Motions and Loads on a Container Ship with Forward Speed
by Hossam S. Abdelwahab, Shan Wang, Josko Parunov and C. Guedes Soares
J. Mar. Sci. Eng. 2023, 11(5), 1042; https://doi.org/10.3390/jmse11051042 - 13 May 2023
Cited by 6 | Viewed by 2902
Abstract
A new uncertainty quantifier is presented for linear transfer functions of wave-induced ship motions and loads obtained by various seakeeping codes. The numerical simulations are conducted for the high-speed Flokstra container ship in regular waves at various heading angles, and the results are [...] Read more.
A new uncertainty quantifier is presented for linear transfer functions of wave-induced ship motions and loads obtained by various seakeeping codes. The numerical simulations are conducted for the high-speed Flokstra container ship in regular waves at various heading angles, and the results are compared with existing experimental data. The study employs five numerical codes that are based on three different seakeeping theories, namely strip theory, 3D frequency-domain method, and 3D time-domain method. Multiple measures are applied to quantify the uncertainty in the calculated transfer functions, such as frequency-independent model error, coefficient of determination, and the total difference. In addition, a new measure of uncertainty, termed modified total difference, is proposed for determining the uncertainty of individual seakeeping codes based on experimental data rather than the mean of results obtained by numerical codes. Results show that the uncertainty measures can identify differences between the codes. The predicted wave-induced loads have higher uncertainties compared to motions. The uncertainty assessment shows that none of the applied codes can produce accurate estimates for all wave-induced motions and loads at all heading angles at the same time. Full article
Show Figures

Figure 1

23 pages, 3759 KiB  
Article
The Effect of a Linear Free Surface Boundary Condition on the Steady-State Wave-Making of Shallowly Submerged Underwater Vehicles
by William Lambert, Stefano Brizzolara and Craig Woolsey
J. Mar. Sci. Eng. 2023, 11(5), 981; https://doi.org/10.3390/jmse11050981 - 5 May 2023
Cited by 2 | Viewed by 2451
Abstract
Near-surface simulation methods for shallowly submerged underwater vehicles are necessary for the population of a variety of free-surface-affected, coefficient-based maneuvering and seakeeping models. Simulations vary in complexity and computational costs, often sacrificing accuracy for simplicity and speed. One particular simplifying assumption, the linearization [...] Read more.
Near-surface simulation methods for shallowly submerged underwater vehicles are necessary for the population of a variety of free-surface-affected, coefficient-based maneuvering and seakeeping models. Simulations vary in complexity and computational costs, often sacrificing accuracy for simplicity and speed. One particular simplifying assumption, the linearization of the free surface boundary conditions, is explored in this study by comparing the steady-state wave-making characteristics of a shallowly submerged prolate spheroid using two different simulation methods at several submergence depths and forward speeds. Hydrodynamic responses are compared between a time-domain boundary element method that makes use of a linearized free surface boundary condition and an inviscid, volume of fluid Reynolds-Averaged Navier–Stokes computational fluid dynamics code that imposes no explicit free surface boundary condition. Differences of up to 22.6%, 32.5%, and 33.3% are found in the prediction of steady state surge force, heave force, and pitch moment, respectively. The largest differences between the two simulation methods arise for motions occurring at small submergences and large wave-making velocities where linear free-surface assumptions become less valid. Nonlinearities that occur in such cases are revealed through physical artifacts such as wave steepening, wave breaking, and high-energy waves. A further examination of near-surface viscous forces reveals that the viscous drag on the vessel is depth dependent due to the changing velocity profile around the body. Full article
(This article belongs to the Special Issue Advances in Ship and Marine Hydrodynamics)
Show Figures

Figure 1

25 pages, 13371 KiB  
Article
Comparative Study of Potential Flow and CFD in the Assessment of Seakeeping and Added Resistance of Ships
by Ivan Sulovsky, Guillaume de Hauteclocque, Marilena Greco and Jasna Prpić-Oršić
J. Mar. Sci. Eng. 2023, 11(3), 641; https://doi.org/10.3390/jmse11030641 - 17 Mar 2023
Cited by 6 | Viewed by 4076
Abstract
The need for maritime freight transport of various goods has never been greater. Consequently, ships are designed with ever-increasing dimensions, with the emphasis, of course, on length. One of the many challenges in the design of large ships is the prediction of their [...] Read more.
The need for maritime freight transport of various goods has never been greater. Consequently, ships are designed with ever-increasing dimensions, with the emphasis, of course, on length. One of the many challenges in the design of large ships is the prediction of their behavior in waves, i.e., motions, and consequently, added resistance. In this paper, a comparative study of two numerical tools for estimating ship motions and added resistance is presented. The first tool is the well-established DNV’s commercial seakeeping code Wasim, a weakly nonlinear potential flow (PF) solver based on a Rankine panel method. The other is the increasingly recognized open-source Computational Fluid Dynamic (CFD) toolkit OpenFOAM®, a viscous flow solver with a turbulence model; it is based on the finite volume method (FVM) combined with a volume-of-fluid (VOF) technique for sea-surface evolution. The study is carried out for two ship seakeeping cases in head-sea regular waves, respectively, without and with ship forward speed. The first case refers to a 6750 TEU containership scale model developed at the LHEEA laboratory in Nantes for a benchmark study, providing experimental data for all test cases. Pitch and heave response is calculated and compared with the experimental values. The second case refers to a KRISO container ship, an extensively researched hull model in ship hydrodynamics. In addition to the pitch and heave, added resistance is also calculated and compared with the experimental values. Hence, it provides a comprehensive basis for a comparative analysis between the selected solvers. The results are systematically analyzed and discussed in detail. For both cases, deterioration of the PF solution with increasing wave steepness is observed, thus suggesting limitations in the modeled nonlinear effects as a possible reason. The accuracy of the CFD solver greatly depends on the spatial discretization characteristics, thus suggesting the need for grid independence studies, as such tools are crucial for accurate results of the examined wave–body interaction scenarios. Full article
(This article belongs to the Special Issue CFD Applications in Ship and Offshore Hydrodynamics)
Show Figures

Graphical abstract

27 pages, 10987 KiB  
Article
CFD-Modified Potential Simulation on Seakeeping Performance of a Barge
by Seol Nam, Jong-Chun Park, Jun-Bum Park and Hyeon-Kyu Yoon
Water 2022, 14(20), 3271; https://doi.org/10.3390/w14203271 - 17 Oct 2022
Cited by 5 | Viewed by 3017
Abstract
This study proposes a computational fluid dynamics (CFD)-modified potential (CMP) model. This hybrid model uses linear potential theory with a corrected damping ratio obtained from CFD simulations to analyze the seakeeping performance of a small vessel. According to the analysis procedure of the [...] Read more.
This study proposes a computational fluid dynamics (CFD)-modified potential (CMP) model. This hybrid model uses linear potential theory with a corrected damping ratio obtained from CFD simulations to analyze the seakeeping performance of a small vessel. According to the analysis procedure of the proposed model, a motion analysis, including the prediction of the roll and pitch damping ratio of a small barge, was conducted; to verify reliability; the results were compared to those of an experiment performed in a physical tank. The relative errors in the experiment for peak amplitude in the roll motion response amplitude operators (RAOs) using the CMP model were relatively small, whereas those obtained from only the potential analysis were large errors in all three conventionally used roll-damping ratios. In addition, the computational time consumed by the CMP model was longer than that consumed by the potential theory but faster than the full CFD simulation for all wave conditions. Subsequently, based on the motion analysis results, the seakeeping performance was evaluated in a real sea environment, and the results on the single significant amplitude (SSA) were discussed through comparison with the results of the potential analysis and experiment. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

19 pages, 2323 KiB  
Article
Seakeeping Tests of a FOWT in Wind and Waves: An Analysis of Dynamic Coupling Effects and Their Impact on the Predictions of Pitch Motion Response
by Giovanni A. Amaral, Pedro C. Mello, Lucas H. S. do Carmo, Izabela F. Alberto, Edgard B. Malta, Alexandre N. Simos, Guilherme R. Franzini, Hideyuki Suzuki and Rodolfo T. Gonçalves
J. Mar. Sci. Eng. 2021, 9(2), 179; https://doi.org/10.3390/jmse9020179 - 10 Feb 2021
Cited by 19 | Viewed by 4488
Abstract
The present work highlights some of the dynamic couplings observed in a series of tests performed in a wave basin with a scaled-model of a Floating Offshore Wind Turbine (FOWT) with semi-submersible substructure. The model was moored by means of a conventional chain [...] Read more.
The present work highlights some of the dynamic couplings observed in a series of tests performed in a wave basin with a scaled-model of a Floating Offshore Wind Turbine (FOWT) with semi-submersible substructure. The model was moored by means of a conventional chain catenary system and an actively controlled fan was used for emulating the thrust loads during the tests. A set of wave tests was performed for concomitant effects of not aligned wave and wind. The experimental measurements illustrate the main coupling effects involved and how they affect the FOWT motions in waves, especially when the floater presents a non-negligible tilt angle. In addition, a frequency domain numerical analysis was performed in order to evaluate its ability to capture these effects properly. The influence of different modes of fan response, floater trim angles (changeable with ballast compensation) and variations in the mooring stiffness with the offsets were investigated in the analysis. Results attest that significant changes in the FOWT responses may indeed arise from coupling effects, thus indicating that caution must be taken when simplifying the hydrodynamic frequency-domain models often used as a basis for the simulation of FOWTs in waves and in optimization procedures for the design of the floater and mooring lines. Full article
Show Figures

Figure 1

32 pages, 18234 KiB  
Article
On the Comparative Seakeeping Analysis of the Full Scale KCS by Several Hydrodynamic Approaches
by Florin Pacuraru, Leonard Domnisoru and Sandita Pacuraru
J. Mar. Sci. Eng. 2020, 8(12), 962; https://doi.org/10.3390/jmse8120962 - 25 Nov 2020
Cited by 19 | Viewed by 5097
Abstract
The main transport channel of the global economy is represented by shipping. Engineers and hull designers are more preoccupied in ensuring fleet safety, the proper operation of the ships, and, more recently, compliance with International Maritime Organization (IMO) regulatory incentives. Considerable efforts have [...] Read more.
The main transport channel of the global economy is represented by shipping. Engineers and hull designers are more preoccupied in ensuring fleet safety, the proper operation of the ships, and, more recently, compliance with International Maritime Organization (IMO) regulatory incentives. Considerable efforts have been devoted to in-depth understanding of the hydrodynamics mechanism and prediction of ship behavior in waves. Prediction of seakeeping performances with a certain degree of accuracy is a demanding task for naval architects and researchers. In this paper, a fully numerical approach of the seakeeping performance of a KRISO (Korea Research Institute of Ships and Ocean Engineering, Daejeon, South Korea) container ship (KCS) container vessel is presented. Several hydrodynamic methods have been employed in order to obtain accurate results of ship hydrodynamic response in regular waves. First, an in-house code DYN (Dynamic Ship Analysis, “Dunarea de Jos” University of Galati, Romania), based on linear strip theory (ST) was used. Then, a 3D fully nonlinear time-domain Boundary Element Method (BEM) was implemented, using the commercial code SHIPFLOW (FLOWTECH International AB, Gothenburg, Sweden). Finally, the commercial software NUMECA (NUMECA International, Brussels, Belgium) was used in order to solve the incompressible unsteady Reynolds-averaged Navier–Stokes equation (RANSE) flow at ship motions in head waves. The results obtained using these methods are represented and discussed, in order to establish a methodology for estimating the ship response in regular waves with accurate results and the sensitivity of hydrodynamical models. Full article
(This article belongs to the Special Issue Stability and Seakeeping of Marine Vessels)
Show Figures

Figure 1

18 pages, 8436 KiB  
Article
Numerical Prediction of the Vertical Responses of Planing Hulls in Regular Head Waves
by Emre Kahramanoğlu, Ferdi Çakıcı and Ali Doğrul
J. Mar. Sci. Eng. 2020, 8(6), 455; https://doi.org/10.3390/jmse8060455 - 20 Jun 2020
Cited by 11 | Viewed by 3633
Abstract
The evaluation of the hydrodynamic performance of planing vessels has always been one of the most attractive study fields in the maritime agenda. Resistance and self-propulsion studies have been performed using experimental and numerical methods by researchers for a long time. As opposed [...] Read more.
The evaluation of the hydrodynamic performance of planing vessels has always been one of the most attractive study fields in the maritime agenda. Resistance and self-propulsion studies have been performed using experimental and numerical methods by researchers for a long time. As opposed to this, the seakeeping performance of planing hulls is assessed with 2D approximation methods, but limitedly, while the experimental campaign is not cost-effective for several reasons. With this motivation, pitch and heave transfer functions and accelerations were obtained for a monohedral hull and a warped hull using a state of art commercial Reynolds-averaged Navier–Stokes (RANS) solver, in this study. Moreover, 2-DOF (degree of freedom) dynamic fluid–body interaction (DFBI) equations were solved in a coupled manner with an overset mesh algorithm, to find the instantaneous motion of the body. After verification, obtained numerical results at three different Froude numbers and a sufficiently large wave frequency range were compared with the experiments. The results showed that the employed RANS method offers a very accurate prediction of vertical motions and accelerations for planing hulls. Full article
(This article belongs to the Special Issue CFD Simulations of Marine Hydrodynamics)
Show Figures

Figure 1

21 pages, 8062 KiB  
Article
A Framework of Numerically Evaluating a Maneuvering Vessel in Waves
by Zhitian Xie, Jeffrey Falzarano and Hao Wang
J. Mar. Sci. Eng. 2020, 8(6), 392; https://doi.org/10.3390/jmse8060392 - 29 May 2020
Cited by 5 | Viewed by 2882
Abstract
Maneuvering in waves is a hydrodynamic phenomenon that involves both seakeeping and maneuvering problems. The environmental loads, such as waves, wind, and current, have a significant impact on a maneuvering vessel, which makes it more complex than maneuvering in calm water. Wave effects [...] Read more.
Maneuvering in waves is a hydrodynamic phenomenon that involves both seakeeping and maneuvering problems. The environmental loads, such as waves, wind, and current, have a significant impact on a maneuvering vessel, which makes it more complex than maneuvering in calm water. Wave effects are perhaps the most important factor amongst these environmental loads. In this research, a framework has been developed that simultaneously incorporates the maneuvering and seakeeping aspects that includes the hydrodynamics effects corresponding to both. To numerically evaluate the second-order wave loads in the seakeeping problem, a derivation has been presented with a discussion and the Neumann-Kelvin linearization has been applied to consider the wave drift damping effect. The maneuvering evaluations of the KVLCC (KRISO Very Large Crude Carrier) and KCS (KRISO Container Ship) models in calm water and waves have been conducted and compared with the model tests. Through the comparison with the experimental results, this framework had been proven to provide a convincing numerical prediction of the horizontal motions for a maneuvering vessel in waves. The current framework can be extended and contribute to the IMO (International Maritime Organization) standards for determining the minimum propulsion power to maintain the maneuverability of vessels in adverse conditions. Full article
(This article belongs to the Special Issue Dynamic Instability in Offshore Structures)
Show Figures

Figure 1

24 pages, 18676 KiB  
Article
CFD Simulation of Ship Seakeeping Performance and Slamming Loads in Bi-Directional Cross Wave
by Jialong Jiao and Songxing Huang
J. Mar. Sci. Eng. 2020, 8(5), 312; https://doi.org/10.3390/jmse8050312 - 29 Apr 2020
Cited by 29 | Viewed by 6275
Abstract
Accurate prediction of ship seakeeping performance in complex ocean environment is a fundamental requirement for ship design and actual operation in seaways. In this paper, an unsteady Reynolds-averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) solver with overset grid technique was applied to estimate [...] Read more.
Accurate prediction of ship seakeeping performance in complex ocean environment is a fundamental requirement for ship design and actual operation in seaways. In this paper, an unsteady Reynolds-averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) solver with overset grid technique was applied to estimate the seakeeping performance of an S175 containership operating in bi-directional cross waves. The cross wave is reproduced by linear superposition of two orthogonal regular waves in a rectangle numerical wave tank. The ship nonlinear motion responses, bow slamming loads, and green water on deck induced by cross wave with different control parameters such as wave length and wave heading angle are systemically analyzed. The results demonstrate that both vertical and transverse motion responses, as well as slamming pressure of ship induced by cross wave, can be quite large, and they are quite different from those in regular wave. Therefore, ship navigational safety when suffering cross waves should be further concerned. Full article
(This article belongs to the Special Issue CFD Simulations of Marine Hydrodynamics)
Show Figures

Figure 1

Back to TopTop