Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = sea spray flux

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2049 KB  
Article
An Investigation into Using CFD for the Estimation of Ship Specific Parameters for the SPICE Model for the Prediction of Sea Spray Icing: Part 2—The Verification of SPICE2 with a Full-Scale Test
by Per-Arne Sundsbø and Sujay Deshpande
J. Mar. Sci. Eng. 2024, 12(10), 1866; https://doi.org/10.3390/jmse12101866 - 18 Oct 2024
Cited by 2 | Viewed by 1031
Abstract
A hybrid CFD–ML model for the prediction of sea spray icing, SPICE2, was developed in Part 1 of this study in Deshpande et al., 2024. The SPICE2 model is an extension of the ML model, SPICE, where some of the variables required for [...] Read more.
A hybrid CFD–ML model for the prediction of sea spray icing, SPICE2, was developed in Part 1 of this study in Deshpande et al., 2024. The SPICE2 model is an extension of the ML model, SPICE, where some of the variables required for icing rate predictions: local wind speed, spray duration, spray period, and spray flux, are computed from CFD simulations. These, along with the air and water temperatures, and the salinity from the metocean data are used for the prediction of icing rates at different locations on a moving vessel. The existing full-scale icing measurements proved to be not detailed enough for the purpose of the verification of sea spray icing prediction models and the verification of the SPICE2 required distribution of sea spray icing data on the vessel surface in addition to the vessel design for simulation. A full-scale sea spray icing test was conducted in 2018 by Sundsbø et al. on a fully enclosed lifeboat equipped for the Goliat field in the Barents Sea. The 3D design of the same lifeboat, together with the corresponding metocean conditions and ship characteristics was used for the simulation of the vessel-specific parameters required for the verification of the icing rate and distribution prediction from the SPICE2 model against the measured distribution of sea spray icing rates on the lifeboat surface. The availability of the 3D model of this lifeboat, in addition to the fact that the icing measurements from this test were detailed enough to attempt a model verification served the purpose of validating the SPICE2 model. The icing rates measured on this lifeboat are used for the full-scale validation of the SPICE2 model that is proposed in Part 1 of this study. It was seen that the icing rates predicted by SPICE2 concurred with 9 of 13 selected locations on the lifeboat. The ones which did not showed very little deviation from the measurements. The icing rate and distribution prediction with SPICE2 were satisfactorily validated against full-scale icing measurements. This is a first attempt in modelling sea spray generation using CFD and further research into CFD for the estimation of spray flux is suggested. Full article
(This article belongs to the Special Issue Novel Maritime Techniques and Technologies, and Their Safety)
Show Figures

Figure 1

9 pages, 805 KB  
Review
Timescales for the Spray-Mediated Gas Exchange of Carbon Dioxide
by Lucy Hendrickson, Penny Vlahos and Leonel Romero
J. Mar. Sci. Eng. 2024, 12(7), 1128; https://doi.org/10.3390/jmse12071128 - 5 Jul 2024
Viewed by 1653
Abstract
The air–sea exchange of carbon dioxide (CO2) on a global scale is a key factor in understanding climate change and predicting its effects. The magnitude of sea spray’s contribution to this flux is currently highly uncertain. Constraining CO2’s diffusion [...] Read more.
The air–sea exchange of carbon dioxide (CO2) on a global scale is a key factor in understanding climate change and predicting its effects. The magnitude of sea spray’s contribution to this flux is currently highly uncertain. Constraining CO2’s diffusion in sea spray droplets is important for reducing error margins in global estimates of oceanic CO2 uptake and release. The timescale for CO2 gas diffusion within sea spray is known to be shorter than the timescales for the droplets’ physical changes to take place while aloft. However, the rate of aqueous carbonate reactions relative to these timescales has not been assessed. This study investigates the timescales of droplet physical changes to those of chemical transformations across the H2CO3/HCO3/CO32− sequence. We found that physical timescales are rate limiting and that evaporation drives carbonate species into gaseous CO2, promoting the production and evasion of CO2 from sea spray droplets. This has important implications for carbon cycling and feedback in the surface ocean. Full article
(This article belongs to the Section Chemical Oceanography)
Show Figures

Figure 1

44 pages, 9502 KB  
Review
Natural Background and the Anthropogenic Enrichment of Mercury in the Southern Florida Environment: A Review with a Discussion on Public Health
by Thomas M. Missimer, James H. MacDonald, Seneshaw Tsegaye, Serge Thomas, Christopher M. Teaf, Douglas Covert and Zoie R. Kassis
Int. J. Environ. Res. Public Health 2024, 21(1), 118; https://doi.org/10.3390/ijerph21010118 - 22 Jan 2024
Cited by 4 | Viewed by 9756
Abstract
Mercury (Hg) is a toxic metal that is easily released into the atmosphere as a gas or a particulate. Since Hg has serious health impacts based on human exposure, it is a major concern where it accumulates. Southern Florida is a region of [...] Read more.
Mercury (Hg) is a toxic metal that is easily released into the atmosphere as a gas or a particulate. Since Hg has serious health impacts based on human exposure, it is a major concern where it accumulates. Southern Florida is a region of high Hg deposition in the United States. It has entered the southern Florida environment for over 56 MY. For the past 3000 to 8000 years, Hg has accumulated in the Everglades peatlands, where approximately 42.3 metric tons of Hg was deposited. The pre-industrial source of mercury that was deposited into the Everglades was from the atmosphere, consisting of combined Saharan dust and marine evasion. Drainage and the development of the Everglades for agriculture, and other mixed land uses have caused a 65.7% reduction in the quantity of peat, therefore releasing approximately 28 metric tons of Hg into the southern Florida environment over a period of approximately 133 years. Both natural and man-made fires have facilitated the Hg release. The current range in mercury release into the southern Florida environment lies between 994.9 and 1249 kg/yr. The largest source of Hg currently entering the Florida environment is from combined atmospheric sources, including Saharan dust, aerosols, sea spray, and ocean flux/evasion at 257.1–514.2 kg/yr. The remobilization of Hg from the Everglades peatlands and fires is approximately 215 kg/yr. Other large contributors include waste to energy incinerators (204.1 kg/yr), medical waste and crematory incinerators (159.7+ kg/yr), and cement plant stack discharge (150.6 kg/yr). Minor emissions include fuel emissions from motorized vehicles, gas emissions from landfills, asphalt plants, and possible others. No data are available on controlled fires in the Everglades in sugar farming, which is lumped with the overall peatland loss of Hg to the environment. Hg has impacted wildlife in southern Florida with recorded excess concentrations in fish, birds, and apex predators. This bioaccumulation of Hg in animals led to the adoption of regulations (total maximum loads) to reduce the impacts on wildlife and warnings were given to consumers to avoid the consumption of fish that are considered to be contaminated. The deposition of atmospheric Hg in southern Florida has not been studied sufficiently to ascertain where it has had the greatest impacts. Hg has been found to accumulate on willow tree leaves in a natural environment in one recent study. No significant studies of the potential impacts on human health have been conducted in southern Florida, which should be started based on the high rates of Hg fallout in rainfall and known recycling for organic sediments containing high concentrations of Hg. Full article
(This article belongs to the Special Issue Environmental Geochemistry of Toxic Elements in the Environment)
Show Figures

Figure 1

17 pages, 3980 KB  
Article
The Impact of Surface Waves and Spray Injection Velocities on Air–Sea Momentum and Heat Fluxes
by Ting Zhang
Atmosphere 2023, 14(10), 1500; https://doi.org/10.3390/atmos14101500 - 28 Sep 2023
Cited by 1 | Viewed by 1209
Abstract
Surface waves and sea spray play a significant role in air–sea fluxes in high winds. The present study used a marine atmosphere surface layer (MASL), which couples the traditional Monin–Obukhov similarity theory, sea spray generation function, the balance of turbulent kinetic budget, and [...] Read more.
Surface waves and sea spray play a significant role in air–sea fluxes in high winds. The present study used a marine atmosphere surface layer (MASL), which couples the traditional Monin–Obukhov similarity theory, sea spray generation function, the balance of turbulent kinetic budget, and momentum/enthalpy conservation equations. Based on this model, the effects of wave states and spray injection velocities on air–sea momentum/enthalpy fluxes and near-surface wind/temperature profiles were theoretically investigated. Based on the assumption that the velocity of injected spray is the same as that of the ambient airflow, it was found that spray could increase the near-surface air turbulence intensity and inhibit air–sea fluxes at 10 m above the sea surface. Correspondingly, near-surface wind speeds and temperature increase in high winds. This phenomenon becomes prominent in cases of large wave ages or surface waves supporting a minority of air–sea fluxes. Based on the assumption that the velocity of the edges of breaking water bags is used to estimate that of spray injection, the opposite results were found: spray could weaken the near-surface air turbulence and increase total air–sea fluxes at 10 m above the sea surface. In this case, the near-surface wind speeds and temperature decreased. This reduction becomes remarkable when surface waves are full-developed or the majority of air–sea momentum fluxes are supported by waves. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

26 pages, 9600 KB  
Article
An Improved Sea Spray-Induced Heat Flux Algorithm and Its Application in the Case Study of Typhoon Mangkhut (2018)
by Yunjie Lan, Hongze Leng, Difu Sun, Junqiang Song and Xiaoqun Cao
J. Mar. Sci. Eng. 2022, 10(9), 1329; https://doi.org/10.3390/jmse10091329 - 19 Sep 2022
Cited by 4 | Viewed by 2439
Abstract
The prediction of tropical cyclone (TC) intensity has been a lasting challenge. Numerical models often underestimate the intensity of strong TCs. Accurately describing the air–sea heat flux is essential for improving the simulation of TCs. It is widely accepted that sea spray has [...] Read more.
The prediction of tropical cyclone (TC) intensity has been a lasting challenge. Numerical models often underestimate the intensity of strong TCs. Accurately describing the air–sea heat flux is essential for improving the simulation of TCs. It is widely accepted that sea spray has a nonnegligible effect on the heat transfer between the atmosphere and the ocean. However, the commonly used sea spray-induced heat flux algorithms have poor applicability under high wind speeds, and it is difficult to apply these algorithms to models to forecast TCs. In this study, we proposed an improved sea spray-induced heat flux algorithm based on the FASTEX dataset. This improved algorithm performs much better under high wind speed conditions than the commonly used algorithms and can be used in a coupled numerical model. The addition of sea spray-induced heat fluxes noticeably enhances the total air–sea heat fluxes and allows more energy to be transferred from the ocean to the lower atmosphere. In the simulation of TCs, the addition of sea spray-induced heat fluxes significantly improves the simulation of TC intensity and makes the low-pressure structure and wind field structure more fully developed in the horizontal direction. Full article
(This article belongs to the Special Issue Numerical Modelling of Atmospheres and Oceans)
Show Figures

Figure 1

14 pages, 4277 KB  
Article
Impacts of the Wave-Dependent Sea Spray Parameterizations on Air–Sea–Wave Coupled Modeling under an Idealized Tropical Cyclone
by Xingkun Xu, Joey J. Voermans, Qingxiang Liu, Il-Ju Moon, Changlong Guan and Alexander V. Babanin
J. Mar. Sci. Eng. 2021, 9(12), 1390; https://doi.org/10.3390/jmse9121390 - 6 Dec 2021
Cited by 16 | Viewed by 4305
Abstract
While sea spray can significantly impact air–sea heat fluxes, the effect of spray produced by the interaction of wind and waves is not explicitly addressed in current operational numerical models. In the present work, the thermal effects of the sea spray were investigated [...] Read more.
While sea spray can significantly impact air–sea heat fluxes, the effect of spray produced by the interaction of wind and waves is not explicitly addressed in current operational numerical models. In the present work, the thermal effects of the sea spray were investigated for an idealized tropical cyclone (TC) through the implementation of different sea spray models into a coupled air–sea–wave numerical system. Wave-Reynolds-dependent and wave-steepness-dependent sea spray models were applied to test the sensitivity of local wind, wave, and ocean fields of this TC system. Results show that while the sensible heat fluxes decreased by up to 231 W m−2 (364%) and 159 W m−2 (251%), the latent heat fluxes increased by up to 359 W m−2 (89%) and 263 W m−2 (76%) in the simulation period, respectively. This results in an increase of the total heat fluxes by up to 135 W m−2 (32%) and 123 W m−2 (30%), respectively. Based on different sea spray models, sea spray decreases the minimum sea level pressure by up to 7 hPa (0.7%) and 8 hPa (0.8%), the maximum wind speed increases by up to 6.1 m s−1 (20%) and 5.7 m s−1 (19%), the maximum significant wave height increases by up to 1.1 m (17%) and 1.6 m (25%), and the minimum sea surface temperature decreases by up to 0.2 °C (0.8%) and 0.15 °C (0.6%), respectively. As the spray has such significant impacts on atmospheric and oceanic environments, it needs to be included in TC forecasting models. Full article
(This article belongs to the Special Issue Latest Advances in Physical Oceanography)
Show Figures

Figure 1

22 pages, 5691 KB  
Article
Improving the Representation of Whitecap Fraction and Sea Salt Aerosol Emissions in the ECMWF IFS-AER
by Samuel Rémy and Magdalena D. Anguelova
Remote Sens. 2021, 13(23), 4856; https://doi.org/10.3390/rs13234856 - 30 Nov 2021
Cited by 6 | Viewed by 2871 | Correction
Abstract
The European Centre for Medium-Range Weather Forecasts (ECMWF) operates the Integrated Forecasting System aerosol module (IFS-AER) to provide daily global analysis and forecast of aerosols for the Copernicus Atmosphere Monitoring Service (CAMS). New estimates of sea salt aerosol emissions have been implemented in [...] Read more.
The European Centre for Medium-Range Weather Forecasts (ECMWF) operates the Integrated Forecasting System aerosol module (IFS-AER) to provide daily global analysis and forecast of aerosols for the Copernicus Atmosphere Monitoring Service (CAMS). New estimates of sea salt aerosol emissions have been implemented in the IFS-AER using a new parameterization of whitecap fraction as a function of wind speed and sea surface temperature. The effect of whitecap fraction simulated by old and new parameterizations has been evaluated by comparing the IFS-AER new sea salt aerosol characteristics to those of aerosol retrievals. The new parameterization brought a significant improvement as compared to the two parameterizations of sea salt aerosol emissions previously implemented in the IFS-AER. Likewise, the simulated sea salt aerosol optical depth and surface concentration are significantly improved, as compared against ground and remote sensing products. Full article
(This article belongs to the Special Issue Passive Remote Sensing of Oceanic Whitecaps)
Show Figures

Figure 1

16 pages, 2509 KB  
Article
Relationship between Sea Surface Drag Coefficient and Wave State
by Jian Shi, Zhihao Feng, Yuan Sun, Xueyan Zhang, Wenjing Zhang and Yi Yu
J. Mar. Sci. Eng. 2021, 9(11), 1248; https://doi.org/10.3390/jmse9111248 - 10 Nov 2021
Cited by 3 | Viewed by 4156
Abstract
The sea surface drag coefficient plays an important role in momentum transmission between the atmosphere and the ocean, which is affected by ocean waves. The total air–sea momentum flux consists of effective momentum flux and sea spray momentum flux. Sea spray momentum flux [...] Read more.
The sea surface drag coefficient plays an important role in momentum transmission between the atmosphere and the ocean, which is affected by ocean waves. The total air–sea momentum flux consists of effective momentum flux and sea spray momentum flux. Sea spray momentum flux involves sea surface drag, which is largely affected by the ocean wave state. Under strong winds, the sea surface drag coefficient (CD) does not increase linearly with the increasing wind speed, namely, the increase of CD is inhibited by strong winds. In this study, a sea surface drag coefficient is constructed that can be applied to the calculation of the air–sea momentum flux under high wind speed. The sea surface drag coefficient also considers the influence of wave state and sea spray droplets generated by wave breaking. Specially, the wave-dependent sea spray generation function is employed to calculate sea spray momentum flux. This facilitates the analysis not only on the sensitivity of the sea spray momentum flux to wave age, but also on the effect of wave state on the effective CD (CD, eff) under strong winds. Our results indicate that wave age plays an important role in determining CD. When the wave age is >0.4, CD decreases with the wave age. However, when the wave age is ≤0.4, CD increases with the wave age at low and moderate wind speeds but tends to decrease with the wave age at high wind speeds. Full article
(This article belongs to the Special Issue Nonlinear Fluid Dynamics in the Ocean)
Show Figures

Figure 1

16 pages, 4252 KB  
Article
A Wind–Wave-Dependent Sea Spray Volume Flux Model Based on Field Experiments
by Xingkun Xu, Joey J. Voermans, Hongyu Ma, Changlong Guan and Alexander V. Babanin
J. Mar. Sci. Eng. 2021, 9(11), 1168; https://doi.org/10.3390/jmse9111168 - 24 Oct 2021
Cited by 24 | Viewed by 3501
Abstract
Sea spray can contribute significantly to the exchanges of heat and momentum across the air–sea interface. However, while critical, sea spray physics are typically not included in operational atmospheric and oceanic models due to large uncertainties in their parameterizations. In large part, this [...] Read more.
Sea spray can contribute significantly to the exchanges of heat and momentum across the air–sea interface. However, while critical, sea spray physics are typically not included in operational atmospheric and oceanic models due to large uncertainties in their parameterizations. In large part, this is because of the scarcity of in-situ sea spray observations which prevent rigorous validation of existing sea spray models. Moreover, while sea spray is critically produced through the fundamental interactions between wind and waves, traditionally, sea spray models are parameterized in terms of wind properties only. In this study, we present novel in-situ observations of sea spray derived from a laser altimeter through the adoption of the Beer–Lambert law. Observations of sea spray cover a broad range of wind and wave properties and are used to develop a wind–wave-dependent sea spray volume flux model. Improved performance of the model is observed when wave properties are included, in contrast to a parameterization based on wind properties alone. The novel in-situ sea spray observations and the predictive model derived here are consistent with the classic spray model in both trend and magnitude. Our model and novel observations provide opportunities to improve the prediction of air–sea fluxes in operational weather forecasting models. Full article
(This article belongs to the Special Issue Models of Ocean-Wave-Atmosphere Interaction Processes)
Show Figures

Figure 1

33 pages, 49210 KB  
Article
Baltic Sea Spray Emissions: In Situ Eddy Covariance Fluxes vs. Simulated Tank Sea Spray
by Ernst Douglas Nilsson, Kim A. H. Hultin, Eva Monica Mårtensson, Piotr Markuszewski, Kai Rosman and Radovan Krejci
Atmosphere 2021, 12(2), 274; https://doi.org/10.3390/atmos12020274 - 18 Feb 2021
Cited by 15 | Viewed by 4394
Abstract
We present the first ever evaluation of sea spray aerosol eddy covariance (EC) fluxes at near coastal conditions and with limited fetch, and the first over water with brackish water (on average 7 ppt). The measurements were made on the island of Garpen [...] Read more.
We present the first ever evaluation of sea spray aerosol eddy covariance (EC) fluxes at near coastal conditions and with limited fetch, and the first over water with brackish water (on average 7 ppt). The measurements were made on the island of Garpen in the Baltic Sea (56°23′ N, 16°06′ E) in September 2005. We found that wind speed is a major factor that is driving an exponential increase in sea spray sea salt emissions, comparable to previous studies over waters with higher salinity. We were able to show that the inclusion of a thermodenuder in the EC system allowed for the parallel measurements of the dry unheated aerosol flux (representing both organic and sea salt sea spray emissions) and the heated (300 °C) non-volatile sea salt emissions. This study’s experimental approach also included measurements of the artificial sea spray formed in a tank in locally sampled water at the same location as the EC fluxes. We attempted to use the EC aerosol flux measurements to scale the tank measurements to aerosol emissions in order to derive a complete size distribution for the sea spray emission fluxes below the size range (0.3–2 µm dry diameter) of the optical particle counters (OPCs) in the EC system, covering in total 0.01 µm to 2 µm diameter. In the wind directions with long fetches (corresponding to conditions similar to open sea), we were able to distinguish between the aerosol emission fluxes of dry aerosol and heated non-volatile (sea salt only) in the smallest size bins of the OPC, and could therefore indirectly estimate the organic sea spray fraction. In agreement with several previous ambient and tank experiments deriving the size resolved chemical mass concentration of sea salt and water-insoluble organic sea spray, our EC fluxes showed that sea sprays were dominated by sea salt at sizes ≥1 µm diameter, and by organics at the smallest OPC sizes. Since we used direct measures of the sea spray emission fluxes, we confirmed previous suggestions that this size distribution of sea salt and organics is a signature of sea spray aerosols. We were able to show that two sea salt source parameterizations (Mårtensson et al. (2003) and Salter et al. (2015)) agreed fairly well with our observed heated EC aerosol emission fluxes, as long as their predicted emissions were modified for the actual salinity by shifting the particle diameters proportionally to the cubic rote of the salinity. If, in addition, we added organics to the parameterized sea spray following the mono-layer model by Ellison et al. (1999), the combined sea spray parameterizations for sea salt and organics fell reasonably close to the observed fluxes for diameters > 0.15 µm, while one of them overpredicted the sea spray emissions below this size. The organic mono-layer model by Ellison et al. appeared to be able to explain most of the differences we observed between the aerosol emission fluxes with and without the thermodenuder. Full article
Show Figures

Figure 1

17 pages, 7785 KB  
Article
CO2 Flux from Volcanic Lakes in the Western Group of the Azores Archipelago (Portugal)
by César Andrade, J. Virgílio Cruz, Fátima Viveiros and Rui Coutinho
Water 2019, 11(3), 599; https://doi.org/10.3390/w11030599 - 22 Mar 2019
Cited by 21 | Viewed by 4555
Abstract
Here, we present the first detailed study on diffuse CO2 degassing in the lakes in the Western Group (Corvo and Flores islands) of the Azores archipelago. This research is of interest in order to determine (1) the overall CO2 emission from [...] Read more.
Here, we present the first detailed study on diffuse CO2 degassing in the lakes in the Western Group (Corvo and Flores islands) of the Azores archipelago. This research is of interest in order to determine (1) the overall CO2 emission from such lakes, as volcanic lakes are often underrepresented in the databases of these water bodies, and (2) the diffuse CO2 degassing estimates in active volcanic areas such as the Azores. The lake waters on Corvo and Flores islands are mainly of the Na–Cl type, which is likely caused by the lakes’ sea salt signatures, arising from nearby seawater spraying; however, a few samples show evidence of slight alkali earth metal and bicarbonate enrichments in the lake waters, suggesting a contribution of water–rock interaction. In this study, diffuse CO2 flux measurements were taken using the accumulation chamber method, and statistical analyses utilizing the graphical statistical approach (GSA) and sequential Gaussian simulation (sGs) were conducted on the CO2 flux data, showing that the CO2 flux values measured in these lakes were relatively low (0.0–18.6 g m−2 d−1). The results seem to indicate that there is a single source of CO2 (a biogenic source), which is also supported by the waters’ δ13C isotopic signatures. Significant differences in the final CO2 output values were verified between surveys (e.g., 0.16 t d−1 in R1; 0.32 t d−1 in R2), and these differences are probably associated with the monomictic character of the lakes. CO2 emissions ranged between 0.18 t d−1 (CE1) and 0.50 t d−1 (CW1) for the Corvo lakes and between 0.03 t d−1 (P1) and 0.32 t d−1 (R2) for the seven lakes studied on Flores Island. The presence of a dense macrophyte mass in a few of the lakes appears to enhance the CO2 flux in these lakes. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

17 pages, 5853 KB  
Article
Influence of Wave State and Sea Spray on the Roughness Length: Feedback on Medicanes
by Umberto Rizza, Elisa Canepa, Antonio Ricchi, Davide Bonaldo, Sandro Carniel, Mauro Morichetti, Giorgio Passerini, Laura Santiloni, Franciano Scremin Puhales and Mario Marcello Miglietta
Atmosphere 2018, 9(8), 301; https://doi.org/10.3390/atmos9080301 - 1 Aug 2018
Cited by 32 | Viewed by 6154
Abstract
Occasionally, storms that share many features with tropical cyclones, including the presence of a quasi-circular “eye” a warm core and strong winds, are observed in the Mediterranean. Generally, they are known as Medicanes, or tropical-like cyclones (TLC). Due to the intense wind forcings [...] Read more.
Occasionally, storms that share many features with tropical cyclones, including the presence of a quasi-circular “eye” a warm core and strong winds, are observed in the Mediterranean. Generally, they are known as Medicanes, or tropical-like cyclones (TLC). Due to the intense wind forcings and the consequent development of high wind waves, a large number of sea spray droplets—both from bubble bursting and spume tearing processes—are likely to be produced at the sea surface. In order to take into account this process, we implemented an additional Sea Spray Source Function (SSSF) in WRF-Chem, model version 3.6.1, using the GOCART (Goddard Chemistry Aerosol Radiation and Transport) aerosol sectional module. Traditionally, air-sea momentum fluxes are computed through the classical Charnock relation that does not consider the wave-state and sea spray effects on the sea surface roughness explicitly. In order to take into account these forcing, we implemented a more recent parameterization of the sea surface aerodynamic roughness within the WRF surface layer model, which may be applicable to both moderate and high wind conditions. The implemented SSSF and sea surface roughness parameterization have been tested using an operative model sequence based on COAWST (Coupled Ocean Atmosphere Wave Sediment Transport) and WRF-Chem. The third-generation wave model SWAN (Simulating Waves Nearshore), two-way coupled with the WRF atmospheric model in the COAWST framework, provided wave field parameters. Numerical simulations have been integrated with the WRF-Chem chemistry package, with the aim of calculating the sea spray generated by the waves and to include its effect in the Charnock roughness parametrization together with the sea state effect. A single case study is performed, considering the Medicane that affected south-eastern Italy on 26 September 2006. Since this Medicane is one of the most deeply analysed in literature, its investigation can easily shed some light on the feedbacks between sea spray and drag coefficients. Full article
(This article belongs to the Special Issue Mediterranean Tropical-Like Cyclones (Medicanes))
Show Figures

Graphical abstract

32 pages, 3552 KB  
Article
Does Marine Surface Tension Have Global Biogeography? Addition for the OCEANFILMS Package
by Scott Elliott, Susannah Burrows, Philip Cameron-Smith, Forrest Hoffman, Elizabeth Hunke, Nicole Jeffery, Yina Liu, Mathew Maltrud, Zachary Menzo, Oluwaseun Ogunro, Luke Van Roekel, Shanlin Wang, Michael Brunke, Meibing Jin, Robert Letscher, Nicholas Meskhidze, Lynn Russell, Isla Simpson, Dale Stokes and Oliver Wingenter
Atmosphere 2018, 9(6), 216; https://doi.org/10.3390/atmos9060216 - 4 Jun 2018
Cited by 11 | Viewed by 7530
Abstract
We apply principles of Gibbs phase plane chemistry across the entire ocean-atmosphere interface to investigate aerosol generation and geophysical transfer issues. Marine surface tension differences comprise a tangential pressure field controlling trace gas fluxes, primary organic inputs, and sea spray salt injections, in [...] Read more.
We apply principles of Gibbs phase plane chemistry across the entire ocean-atmosphere interface to investigate aerosol generation and geophysical transfer issues. Marine surface tension differences comprise a tangential pressure field controlling trace gas fluxes, primary organic inputs, and sea spray salt injections, in addition to heat and momentum fluxes. Mapping follows from the organic microlayer composition, now represented in ocean system models. Organic functional variations drive the microforcing, leading to (1) reduced turbulence and (by extension) laminar gas-energy diffusion; plus (2) altered bubble film mass emission into the boundary layer. Interfacial chemical behaviors are, therefore, closely reviewed as the background. We focus on phase transitions among two dimensional “solid, liquid, and gaseous” states serving as elasticity indicators. From the pool of dissolved organic carbon (DOC) only proteins and lipids appear to occupy significant atmospheric interfacial areas. The literature suggests albumin and stearic acid as the best proxies, and we distribute them through ecodynamic simulation. Consensus bulk distributions are obtained to control their adsorptive equilibria. We devise parameterizations for both the planar free energy and equation of state, relating excess coverage to the surface pressure and its modulus. Constant settings for the molecular surrogates are drawn from laboratory study and successfully reproduce surfactant solid-to-gas occurrence in compression experiments. Since DOC functionality measurements are rare, we group them into super-ecological province tables to verify aqueous concentration estimates. Outputs are then fed into a coverage, tension, elasticity code. The resulting two dimensional pressure contours cross a critical range for the regulation of precursor piston velocity, bubble breakage, and primary aerosol sources plus ripple damping. Concepts extend the water-air adsorption theory currently embodied in our OCEANFILMS aerosol emissions package, and the two approaches could be inserted into Earth System Models together. Uncertainties in the logic include kinetic and thermochemical factors operating at multiple scales. Full article
(This article belongs to the Special Issue Ocean Contributions to the Marine Boundary Layer Aerosol Budget)
Show Figures

Figure 1

Back to TopTop