Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (503)

Search Parameters:
Keywords = scavenger receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 11606 KiB  
Article
Emerging Highly Pathogenic Avian Influenza H5N1 Clade 2.3.4.4b Causes Neurological Disease and Mortality in Scavenging Ducks in Bangladesh
by Rokshana Parvin, Sumyea Binta Helal, Md Mohi Uddin, Shadia Tasnim, Md. Riabbel Hossain, Rupaida Akter Shila, Jahan Ara Begum, Mohammed Nooruzzaman, Ann Kathrin Ahrens, Timm Harder and Emdadul Haque Chowdhury
Vet. Sci. 2025, 12(8), 689; https://doi.org/10.3390/vetsci12080689 - 23 Jul 2025
Viewed by 499
Abstract
Scavenging domestic ducks significantly contribute to the transmission and maintenance of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses in Bangladesh, a strain of growing global concern due to its broad host range, high pathogenicity, and spillover potential. This study investigates the molecular [...] Read more.
Scavenging domestic ducks significantly contribute to the transmission and maintenance of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses in Bangladesh, a strain of growing global concern due to its broad host range, high pathogenicity, and spillover potential. This study investigates the molecular epidemiology and pathology of HPAI H5N1 viruses in unvaccinated scavenging ducks in Bangladesh, with the goal of assessing viral evolution and associated disease outcomes. Between June 2022 and March 2024, 40 scavenging duck flocks were investigated for HPAI outbreaks. Active HPAIV H5N1 infection was detected in 35% (14/40) of the flocks using RT-qPCR. Affected ducks exhibited clinical signs of incoordination, torticollis, and paralysis. Pathological examination revealed prominent meningoencephalitis, encephalopathy and encephalomalacia, along with widespread lesions in the trachea, lungs, liver, and spleen, indicative of systemic HPAIV infection. A phylogenetic analysis of full-genome sequences confirmed the continued circulation of clade 2.3.2.1a genotype G2 in these ducks. Notably, two samples of 2022 and 2023 harbored HPAIV H5N1 of clade 2.3.4.4b, showing genetic similarity to H5N1 strains circulating in Korea and Vietnam. A mutation analysis of the HA protein in clade 2.3.4.4b viruses revealed key substitutions, including T156A (loss of an N-linked glycosylation site), S141P (antigenic site A), and E193R/K (receptor-binding pocket), indicating potential antigenic drift and receptor-binding adaptation compared to clade 2.3.2.1a. The emergence of clade 2.3.4.4b with the first report of neurological and systemic lesions suggests ongoing viral evolution with increased pathogenic potential for ducks. These findings highlight the urgent need for enhanced surveillance and biosecurity to control HPAI spread in Bangladesh. Full article
Show Figures

Figure 1

17 pages, 1758 KiB  
Article
Bioactive Polysaccharides from Fermented Dendrobium officinale: Structural Insights and Their Role in Skin Barrier Repair
by Wanshuai Wang, Anqi Zou, Qingtao Yu, Zhe Wang, Daotong Tan, Kaiye Yang, Chao Cai and Guangli Yu
Molecules 2025, 30(13), 2875; https://doi.org/10.3390/molecules30132875 - 6 Jul 2025
Viewed by 617
Abstract
Dendrobium, a prominent genus in the Orchidaceae family, has generated significant research attention due to its demonstrated biological potential, particularly its notable anti-inflammatory and antioxidant activities. In this study, two fractions of fermented Dendrobium officinale polysaccharides (FDOPs) were successfully isolated through a [...] Read more.
Dendrobium, a prominent genus in the Orchidaceae family, has generated significant research attention due to its demonstrated biological potential, particularly its notable anti-inflammatory and antioxidant activities. In this study, two fractions of fermented Dendrobium officinale polysaccharides (FDOPs) were successfully isolated through a multi-stage purification strategy including gradient ethanol precipitation, gel column chromatography, and ion exchange chromatography with Lactobacillus reuteri CCFM863. Structural characterization revealed that both Dendrobium officinale polysaccharide fractions consisted of (1→4)-β-D-Manp, (1→4)-β-D-Glcp, and (1→4)-α-D-Glcp residues. The anti-inflammatory efficacy and keratinocyte-protective potential of FDOPs (FDOP-1A and FDOP-2A) were investigated by using lipopolysaccharide (LPS)-induced RAW264.7 and HaCaT cells models, which showed significant inhibitions on the inflammatory factors of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), and interleukin-1 beta (IL-1β); recovered levels of filaggrin (FLG), aquaporin 3 (AQP3), transient receptor potential vanilloid 4 (TRPV4), cathelicidin antimicrobial peptide (CAMP)/LL-37, and adiponectin (ADIPOQ); and the reduced protein expression of the TLR4/IκB-α/NF-κB/NLRP3 pathway. Notably, the FDOPs exhibited a remarkable reactive oxygen species (ROS) scavenging capacity, demonstrating superior antioxidant activity. Therefore, FDOPs show dual anti-inflammatory and antioxidant properties, making them suitable as active ingredients for modulating epidermal inflammation and promoting skin barrier repair. Full article
(This article belongs to the Special Issue Biotechnology and Biomass Valorization)
Show Figures

Figure 1

24 pages, 3509 KiB  
Article
Spray-Dried Celtis iguanaea (Jacq.) Planch (Cannabaceae) Extract: Building Evidence for Its Therapeutic Potential in Pain and Inflammation Management
by Kátia Regina Ribeiro, Rúbia Bellard e Silva, João Paulo Costa Rodrigues, Mairon César Coimbra, Laura Jéssica Pereira, Emmilly de Oliveira Alves, Flávio Martins de Oliveira, Marx Osório Araújo Pereira, Eric de Souza Gil, Carlos Alexandre Carollo, Nadla Soares Cassemiro, Camile Aparecida da Silva, Pablinny Moreira Galdino de Carvalho, Flávia Carmo Horta Pinto, Renan Diniz Ferreira, Zakariyya Muhammad Bello, Edilene Santos Alves de Melo, Marina Andrade Rocha, Ana Gabriela Silva, Rosy Iara Maciel Azambuja Ribeiro, Adriana Cristina Soares and Renê Oliveira do Coutoadd Show full author list remove Hide full author list
Plants 2025, 14(13), 2008; https://doi.org/10.3390/plants14132008 - 30 Jun 2025
Viewed by 399
Abstract
Celtis iguanaea, widely used in Brazilian folk medicine, is known for its analgesic and anti-inflammatory properties. This study evaluated the in vitro antioxidant capacity and the in vivo antinociceptive and anti-inflammatory mechanisms of the standardized spray-dried Celtis iguanaea hydroethanolic leaf extract (SDCi). Phytochemical [...] Read more.
Celtis iguanaea, widely used in Brazilian folk medicine, is known for its analgesic and anti-inflammatory properties. This study evaluated the in vitro antioxidant capacity and the in vivo antinociceptive and anti-inflammatory mechanisms of the standardized spray-dried Celtis iguanaea hydroethanolic leaf extract (SDCi). Phytochemical analysis showed that SDCi contains 21.78 ± 0.82 mg/g polyphenols, 49.69 ± 0.57 mg/g flavonoids, and 518.81 ± 18.02 mg/g phytosterols. UFLC-DAD-MS identified iridoid glycosides, p-coumaric acid glycosides, flavones, and unsaturated fatty acids. Antioxidant assays revealed an IC50 of 301.6 ± 38.8 µg/mL for DPPH scavenging and an electrochemical index of 6.1 μA/V. In vivo, SDCi (100–1000 mg/kg, p.o) did not impair locomotor function (rotarod test) but significantly reduced acetic acid-induced abdominal writhing and both phases of the formalin test at higher doses (300 and 1000 mg/kg). The antinociceptive effects were independent of α-2 adrenergic receptors. SDCi also increased latency in the hot-plate test and reduced paw edema in the carrageenan model, accompanied by decreased IL-1β and increased IL-10 levels. Histological analysis showed a 50% reduction in inflammatory cell infiltration. These findings support SDCi as an effective anti-inflammatory and antinociceptive phytopharmaceutical intermediate, with potential applications in managing pain and inflammation. Full article
Show Figures

Figure 1

21 pages, 4834 KiB  
Article
Neuroprotective Effect of Mixed Mushroom Mycelia Extract on Neurotoxicity and Neuroinflammation via Regulation of ROS-Induced Oxidative Stress in PC12 and BV2 Cells
by Sang-Seop Lee, Da-Hyun Ko, Ga-Young Lee, So-Yeon Kim, Seung-Yun Han, Jong-Yea Park, MiNa Park, Hyun-Min Kim, Ya-El Kim and Yung-Choon Yoo
Cells 2025, 14(13), 977; https://doi.org/10.3390/cells14130977 - 25 Jun 2025
Viewed by 700
Abstract
In this study, we investigated the potential of a three-mushroom complex extract (GMK) to inhibit neuronal cell death induced by the activation of AMPA and NMDA receptors following glutamate treatment in NGF-differentiated PC12 neuronal cells. GMK significantly mitigated glutamate-induced excitotoxic neuronal apoptosis by [...] Read more.
In this study, we investigated the potential of a three-mushroom complex extract (GMK) to inhibit neuronal cell death induced by the activation of AMPA and NMDA receptors following glutamate treatment in NGF-differentiated PC12 neuronal cells. GMK significantly mitigated glutamate-induced excitotoxic neuronal apoptosis by reducing the elevated expression of BAX, a critical regulator of apoptosis, and restoring BCL2 levels. These neuroprotective effects were associated with redox regulation, as evidenced by the upregulation of SOD, CAT, and GSH levels, and the downregulation of MDA levels. Mechanistic studies further revealed that GMK effectively scavenged ROS by downregulating NOX1, NOX2, and NOX4, while upregulating NRF1, P62, NRF2, HO1, and NQO1. Additionally, in the same model, GMK treatment increased acetylcholine, choline acetyltransferase, and GABA levels while reducing acetylcholinesterase activity. These effects were also attributed to the regulation of redox balance. Furthermore, we investigated the antioxidant and anti-inflammatory mechanisms of GMK in LPS-stimulated BV2 microglia. GMK inhibited the activation of IκB and MAPK pathways, positively regulated the BCL2/BAX ratio, suppressed TXNIP activity, and upregulated NQO1 and NOX1. In conclusion, GMK improved neuronal excitotoxicity and microglial inflammation through the positive modulation of the redox regulatory system, demonstrating its potential as a natural resource for pharmaceutical applications and functional health foods. Full article
Show Figures

Figure 1

19 pages, 4128 KiB  
Article
Integrating Metabolomics and Machine Learning to Analyze Chemical Markers and Ecological Regulatory Mechanisms of Geographical Differentiation in Thesium chinense Turcz
by Cong Wang, Ke Che, Guanglei Zhang, Hao Yu and Junsong Wang
Metabolites 2025, 15(7), 423; https://doi.org/10.3390/metabo15070423 - 20 Jun 2025
Viewed by 466
Abstract
Background: The relationship between medicinal efficacy and the geographical environment in Thesium chinense Turcz. (T. chinense Turcz.), a traditional Chinese herb, remains systematically unexplored. This study integrates metabolomics, machine learning, and ecological factor analysis to elucidate the geographical variation patterns and regulatory [...] Read more.
Background: The relationship between medicinal efficacy and the geographical environment in Thesium chinense Turcz. (T. chinense Turcz.), a traditional Chinese herb, remains systematically unexplored. This study integrates metabolomics, machine learning, and ecological factor analysis to elucidate the geographical variation patterns and regulatory mechanisms of secondary metabolites in T. chinense Turcz. from Anhui, Henan, and Shanxi Provinces. Methods: Metabolomic profiling was conducted on T. chinense Turcz. samples collected from three geographical origins across Anhui, Henan, and Shanxi Provinces. Machine learning algorithms (Random Forest, LASSO regression) identified region-specific biomarkers through intersection analysis. Metabolic pathway enrichment employed MetaboAnalyst 5.0 with target prediction. Antioxidant activity (DPPH/hydroxyl radical scavenging) was quantified spectrophotometrically. Environmental correlation analysis incorporated 19 WorldClim variables using redundancy analysis, Mantel tests, and Pearson correlations. Results: We identified 43 geographical marker compounds (primarily flavonoids and alkaloids). Random forest and LASSO regression algorithms determined core markers for each production area: Anhui (4 markers), Henan (6 markers), and Shanxi (3 markers). Metabolic pathway enrichment analysis revealed these markers exert pharmacological effects through neuroactive ligand–receptor interaction and PI3K-Akt signaling pathways. Redundancy analysis demonstrated Anhui samples exhibited significantly higher antioxidant activity (DPPH and hydroxyl radical scavenging rates) than other regions, strongly correlating with stable low-temperature environments (annual mean temperature) and precipitation patterns. Conclusions: This study established the first geo-specific molecular marker system for T. chinense Turcz., demonstrating that the geographical environment critically influences metabolic profiles and bioactivity. Findings provide a scientific basis for quality control standards of geo-authentic herbs and offer insights into plant–environment interactions for sustainable cultivation practices. Full article
(This article belongs to the Special Issue Metabolomics in Plant Natural Products Research, 2nd Edition)
Show Figures

Figure 1

37 pages, 18599 KiB  
Article
Diclofenac Immune-Mediated Hepatitis: Identification of Innate and Adaptive Immune Responses at Clinically Relevant Doses
by Jürgen Borlak and Reinhard Spanel
Int. J. Mol. Sci. 2025, 26(12), 5899; https://doi.org/10.3390/ijms26125899 - 19 Jun 2025
Viewed by 645
Abstract
Diclofenac is an effective medication for pain and inflammation. However, its use has been linked to hepatitis. To gain insight into diclofenac’s ability to cause hepatitis, we investigated the regulation of major effectors of the immune system following daily treatment of minipigs at [...] Read more.
Diclofenac is an effective medication for pain and inflammation. However, its use has been linked to hepatitis. To gain insight into diclofenac’s ability to cause hepatitis, we investigated the regulation of major effectors of the immune system following daily treatment of minipigs at 3 and 15 mg/kg for 28 days. Histopathology evidenced lobular inflammation, and through a combination of immunogenomics and immunopathology, we detected marked innate and adaptive immune responses. We identified 109 significantly regulated genes linked to neutrophil, monocyte, Kupffer cell, and lymphocyte responses and 32 code for cytokine- and interferon-γ-signaling. In support of wound repair, immunopathology evidenced manifest upregulation of macrophage migration inhibitory factor and CD74. Furthermore, the strong expression of IgG and IgM underscored humoral immune responses. Diclofenac caused an activation of the complement system, especially the C1 inhibitor of the classical pathway and C3 with critical functions in liver regeneration. The marked expression of complement factor B and H of the alternate pathway modulated B-cell responses. Likely, the upregulation of factor H protected hepatocytes from injury by limiting complement-mediated damage of inflamed cells. Additionally, diclofenac treatment elicited marked hepatic expression of lysozyme and KLF6. The latter earmarks M1-polarized Kupffer cells. We observed an extraordinary induction of calprotectin/S100A9 and of the monocyte/macrophage CD163 scavenger receptor, and therefore, we detected innate immune sensing of damaged cells. Lastly, we noted an unprecedented induction of the acute phase reactant SAA1 and DEC-205, which recognize apoptotic and necrotic cells. Together, our results offer mechanistic insights into immune-mediated liver injury patterns following diclofenac treatment. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

20 pages, 1211 KiB  
Review
Human CD36: Gene Regulation, Protein Function, and Its Role in Atherosclerosis Pathogenesis
by Monika Rac
Genes 2025, 16(6), 705; https://doi.org/10.3390/genes16060705 - 13 Jun 2025
Cited by 1 | Viewed by 1821
Abstract
Human CD36 plays an important role in ligand binding, signalling, cell adhesion, and the regulation of angiogenesis. As a scavenging receptor, it is responsible for clearing long-chain fatty acids (LCFAs) and removing approximately 50% of oxidised low-density lipoprotein (ox-LDL) from plasma. The CD36 [...] Read more.
Human CD36 plays an important role in ligand binding, signalling, cell adhesion, and the regulation of angiogenesis. As a scavenging receptor, it is responsible for clearing long-chain fatty acids (LCFAs) and removing approximately 50% of oxidised low-density lipoprotein (ox-LDL) from plasma. The CD36 gene is alternatively spliced. It has several alternative promoters and first exons. The alternative transcripts are expressed in multiple tissues, and their expression patterns are highly variable. The molecular mechanisms that regulate CD36 gene expression are complex and reflect its multifunctional role in different tissues. CD36 activity has been linked to several metabolic processes, such as inflammation, angiogenesis, phagocytosis, and energy homeostasis. CD36 plays a key role in regulating vascular and cardiovascular health and in the pathogenesis of atherosclerosis. CD36 gene mutations in the Caucasian population are rare. Hence, it is extremely difficult to recruit a statistically significant group of CAD patients with these mutations. Nevertheless, this population is largely at risk of cardiovascular disease. Atherosclerosis is a multifactorial disease, but the role of the CD36 receptor in the development of ox-LDL is extremely important. This review aims to introduce readers to issues related to the relationship between CD36 and CAD. The activity of this receptor should be considered when exploring treatment options for atherosclerosis-related complications. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

38 pages, 1860 KiB  
Review
Modified Lipid Particle Recognition: A Link Between Atherosclerosis and Cancer?
by Amy E. Hall, Dhananjay Jade, Faheem Shaik, Shervanthi Homer-Vanniasinkam, Stephen P. Muench, Michael A. Harrison and Sreenivasan Ponnambalam
Biology 2025, 14(6), 675; https://doi.org/10.3390/biology14060675 - 11 Jun 2025
Viewed by 3499
Abstract
Cardiovascular disease and cancer are major global causes of mortality. Dysfunctional lipid metabolism causes atherosclerosis, a driving force in arterial disease leading to heart attacks and strokes. In this review, we focus on emerging evidence for links between atherosclerosis and cancer. In atherosclerosis, [...] Read more.
Cardiovascular disease and cancer are major global causes of mortality. Dysfunctional lipid metabolism causes atherosclerosis, a driving force in arterial disease leading to heart attacks and strokes. In this review, we focus on emerging evidence for links between atherosclerosis and cancer. In atherosclerosis, modified and oxidized lipid particles promote plaque initiation and progression, with wider effects on cell and tissue responses. Oxidized and modified lipid particles bind to scavenger receptors (SRs) and promote intracellular signaling and pro-inflammatory responses. Increasing evidence points to SR-mediated activation and signaling promoting cancer cell growth and spread. In particular, the lectin-like oxidized low-density lipoprotein (LOX-1) scavenger receptor activates NF-κB-regulated signal transduction pathways which modulate different cellular responses. LOX-1-regulated signaling events are implicated in both atherosclerosis and cancer, depending on the cell type. LOX-1 signaling modulates cell proliferation, epithelial–mesenchymal transition, neutrophil recruitment and apoptosis. Elevated LOX-1 levels are linked to poor prognosis in arterial disease and prostate, colorectal and lung cancers. Inhibition of LOX-1 function could thus provide new therapeutic strategies for targeting both atherosclerosis and cancer. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Graphical abstract

18 pages, 1594 KiB  
Article
Uptake and Toxicity of Polystyrene NPs in Three Human Cell Lines
by Sylwia Męczyńska-Wielgosz, Katarzyna Sikorska, Malwina Czerwińska, Lucyna Kapka-Skrzypczak and Marcin Kruszewski
Int. J. Mol. Sci. 2025, 26(10), 4783; https://doi.org/10.3390/ijms26104783 - 16 May 2025
Viewed by 417
Abstract
Internalization of nanoparticles (NPs), including nanoplastic, is one of the key factors determining their toxicity. In this work, we studied the toxicity and mechanisms of the uptake of model fluorescent polystyrene NPs (PS NPs) of three different sizes (30, 50, and 100 nm) [...] Read more.
Internalization of nanoparticles (NPs), including nanoplastic, is one of the key factors determining their toxicity. In this work, we studied the toxicity and mechanisms of the uptake of model fluorescent polystyrene NPs (PS NPs) of three different sizes (30, 50, and 100 nm) in three human cancer cells lines; two originated from gut tissue (HT-29 and Caco-2) and one originated from liver tissue (Hep G2). Toxicity was measured by Neutral Red Assay (NRU), whereas mechanisms of uptake were studied using flow cytometry and different uptake inhibitors. The toxicity of the studied NPs followed a general rule observed for NPs—the smaller ones were more toxic than the larger ones. This relationship was dose dependent; however, the overall toxicity of the studied NPs was very low, despite the significant uptake of PS NPs. Although clathrin- and caveolin-dependent uptake is generally accepted as a major route of NP uptake, the inhibition of both mechanisms did not affect PS NP uptake in the cell lines studied in this work. Further experiments revealed that the major route of PS NP uptake in these cells is a scavenger receptor-mediated uptake. Full article
(This article belongs to the Special Issue Toxicity of Nanoparticles: Second Edition)
Show Figures

Graphical abstract

17 pages, 15016 KiB  
Article
Baicalin Alleviates Piglet Immunosuppression Induced by Glaesserella parasuis via Promoting CD163/Tumor Necrosis Factor-like Weak Inducer of Apoptosis-Mediated Autophagy
by Shulin Fu, Ronghui Luo, Jingyang Li, Yunjian Fu, Qiaoli Dong, Siyu Liu, Yamin Sun, Ling Guo, Jin Hu and Yinsheng Qiu
Biomolecules 2025, 15(5), 722; https://doi.org/10.3390/biom15050722 - 15 May 2025
Viewed by 614
Abstract
Glaesserella parasuis (G. parasuis) causes vascular inflammation in piglets, resulting in vascular damage. However, the mechanism causing vascular inflammation remains unclear. Baicalin possesses an anti-inflammatory function. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) has been implicated in immunosuppression. CD163, a [...] Read more.
Glaesserella parasuis (G. parasuis) causes vascular inflammation in piglets, resulting in vascular damage. However, the mechanism causing vascular inflammation remains unclear. Baicalin possesses an anti-inflammatory function. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) has been implicated in immunosuppression. CD163, a scavenger receptor expressed on macrophages that acts as a decoy receptor for TWEAK, plays a crucial role in the regulation of autophagy and inflammation. This research investigated the efficacy of baicalin in reducing immunosuppression elicited by G. parasuis through the regulation of CD163/TWEAK-mediated autophagy. The data demonstrated that G. parasuis altered routine blood indicators and biochemical parameters, increased cytokine production, and induced blood vessel tissue damage. G. parasuis reduced the CD3+ T cell proportion, CD3+CD4+ T cell proportion, and CD3+CD8+ T cell proportion in piglet blood. The proteomic analysis revealed that CD163 was differentially expressed in the blood vessels of challenged piglets. Baicalin was found to regulate CD163/TWEAK axis expression, inhibit Notch/Wnt signaling pathway activation, promote autophagy, and reduce NLRP3/Caspase 1 signaling pathway activation. Baicalin also decreased cytokine production and alleviated pathological tissue damage in the blood vessels of G. parasuis-challenged piglets. Taken together, this study indicates that baicalin alleviates G. parasuis-induced immunosuppression and might promote CD163/TWEAK-mediated autophagy. This finding suggests that baicalin could serve as a potential therapeutic agent to control G. parasuis infection and related vascular inflammation. Full article
(This article belongs to the Topic Recent Advances in Veterinary Pharmacology and Toxicology)
Show Figures

Figure 1

17 pages, 788 KiB  
Review
Amyloid β-Induced Inflammarafts in Alzheimer’s Disease
by Shihui Ding, Soo-Ho Choi and Yury I. Miller
Int. J. Mol. Sci. 2025, 26(10), 4592; https://doi.org/10.3390/ijms26104592 - 10 May 2025
Cited by 1 | Viewed by 931
Abstract
The formation of amyloid beta (Aβ) plaques is a central process in the development of Alzheimer’s disease (AD). Although its causative role or the effectiveness of therapeutic targeting is still debated, the key involvement of Aβ in the pathogenesis of neuroinflammation and neurodegeneration [...] Read more.
The formation of amyloid beta (Aβ) plaques is a central process in the development of Alzheimer’s disease (AD). Although its causative role or the effectiveness of therapeutic targeting is still debated, the key involvement of Aβ in the pathogenesis of neuroinflammation and neurodegeneration in AD is broadly accepted. In this review, we emphasize the role of lipid rafts, both in APP cleavage producing Aβ in neurons and in mediating Aβ inflammatory signaling in microglia. We introduce the term inflammarafts to characterize the Aβ-driven formation of enlarged, cholesterol-rich lipid rafts in activated microglia, which support protein–protein and lipid–protein interactions of inflammatory receptors. Examples reviewed include toll-like receptors (TLR2, TLR4), scavenger receptors (CD36, RAGE), and TREM2. The downstream pathways lead to the production of cytokines and reactive oxygen species, intensifying neuroinflammation and resulting in neuronal injury and cognitive decline. We further summarize emerging therapeutic strategies and emphasize the utility of apolipoprotein A-I binding protein (AIBP) in selective targeting of inflammarafts and attenuation of microglia-driven inflammation. Unlike the targeting of a single inflammatory receptor or a secretase, selective disruption of inflammarafts and preservation of physiological lipid rafts offer a novel approach to targeting multiple components and processes that contribute to neuroinflammation in AD. Full article
Show Figures

Figure 1

38 pages, 8552 KiB  
Review
Enzyme-Based Anti-Inflammatory Therapeutics for Inflammatory Diseases
by Kannan Badri Narayanan
Pharmaceutics 2025, 17(5), 606; https://doi.org/10.3390/pharmaceutics17050606 - 2 May 2025
Cited by 1 | Viewed by 3107
Abstract
Inflammation is a multifaceted biological response of the immune system against various harmful stimuli, including pathogens (such as bacteria and viruses), cellular damage, toxins, and natural/synthetic irritants. This protective mechanism is essential for eliminating the cause of injury, removing damaged cells, and initiating [...] Read more.
Inflammation is a multifaceted biological response of the immune system against various harmful stimuli, including pathogens (such as bacteria and viruses), cellular damage, toxins, and natural/synthetic irritants. This protective mechanism is essential for eliminating the cause of injury, removing damaged cells, and initiating the repair process. While inflammation is a fundamental component of the body’s defense and healing process, its dysregulation can lead to pathological consequences, contributing to various acute and chronic diseases, such as autoimmune disorders, cancer, metabolic syndromes, cardiovascular diseases, neurodegenerative conditions, and other systemic complications. Generally, non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroids, disease-modifying anti-rheumatic drugs (DMARDs), antihistamines, biologics, and colchicine are used as pharmacological agents in the management of inflammatory diseases. However, these conventional treatments often have limitations, including adverse side effects, long-term toxicity, and drug resistance. In contrast, enzyme-based therapeutics have emerged as a promising alternative due to their high specificity, catalytic efficiency, and ability to modulate inflammatory pathways with reduced side effects. These enzymes function by scavenging reactive oxygen species (ROS), inhibiting cytokine transcription, degrading circulating cytokines, and blocking cytokine release by targeting exocytosis-related receptors. Additionally, their role in tissue repair and regeneration further enhances their therapeutic potential. Most natural anti-inflammatory enzymes belong to the oxidoreductase class, including catalase and superoxide dismutase, as well as hydrolases such as trypsin, chymotrypsin, nattokinase, bromelain, papain, serratiopeptidase, collagenase, hyaluronidase, and lysozyme. Engineered enzymes, such as Tobacco Etch Virus (TEV) protease and botulinum neurotoxin type A (BoNT/A), have also demonstrated significant potential in targeted anti-inflammatory therapies. Recent advancements in enzyme engineering, nanotechnology-based enzyme delivery, and biopharmaceutical formulations have further expanded their applicability in treating inflammatory diseases. This review provides a comprehensive overview of both natural and engineered enzymes, along with their formulations, used as anti-inflammatory therapeutics. It highlights improvements in stability, efficacy, and specificity, as well as minimized immunogenicity, while discussing their mechanisms of action and clinical applications and potential future developments in enzyme-based biomedical therapeutics. Full article
(This article belongs to the Special Issue Medical Applications of Biologic Drugs)
Show Figures

Figure 1

31 pages, 17364 KiB  
Article
Structural Insights into the Dynamics of Water in SOD1 Catalysis and Drug Interactions
by Ilkin Yapici, Arda Gorkem Tokur, Belgin Sever, Halilibrahim Ciftci, Ayse Nazli Basak and Hasan DeMirci
Int. J. Mol. Sci. 2025, 26(9), 4228; https://doi.org/10.3390/ijms26094228 - 29 Apr 2025
Viewed by 766
Abstract
Superoxide dismutase 1 (SOD1) is a crucial enzyme that protects cells from oxidative damage by converting superoxide radicals into H2O2 and O2. This detoxification process, essential for cellular homeostasis, relies on a precisely orchestrated catalytic mechanism involving the [...] Read more.
Superoxide dismutase 1 (SOD1) is a crucial enzyme that protects cells from oxidative damage by converting superoxide radicals into H2O2 and O2. This detoxification process, essential for cellular homeostasis, relies on a precisely orchestrated catalytic mechanism involving the copper cation, while the zinc cation contributes to the structural integrity of the enzyme. This study presents the 2.3 Å crystal structure of human SOD1 (PDB ID: 9IYK), revealing an assembly of six homodimers and twelve distinct active sites. The water molecules form a complex hydrogen-bonding network that drives proton transfer and sustains active site dynamics. Our structure also uncovers subtle conformational changes that highlight the intrinsic flexibility of SOD1, which is essential for its function. Additionally, we observe how these dynamic structural features may be linked to pathological mutations associated with amyotrophic lateral sclerosis (ALS). By advancing our understanding of hSOD1’s mechanistic intricacies and the influence of water coordination, this study offers valuable insights for developing therapeutic strategies targeting ALS. Our structure’s unique conformations and active site interactions illuminate new facets of hSOD1 function, underscoring the critical role of structural dynamics in enzyme catalysis. Moreover, we conducted a molecular docking analysis using SOD1 for potential radical scavengers and Abelson non-receptor tyrosine kinase (c-Abl, Abl1) inhibitors targeting misfolded SOD1 aggregation along with oxidative stress and apoptosis, respectively. The results showed that CHEMBL1075867, a free radical scavenger derivative, showed the most promising docking results and interactions at the binding site of hSOD1, highlighting its promising role for further studies against SOD1-mediated ALS. Full article
(This article belongs to the Special Issue Advanced Research on Protein Structure and Protein Dynamics)
Show Figures

Figure 1

20 pages, 3325 KiB  
Article
Evaluation of Sapindus mukorossi Gaertn Flower Water Extract on In Vitro Anti-Acne Activity
by Zibing Zhao, Aohuan Zhang, Liya Song, Congfen He and Huaming He
Curr. Issues Mol. Biol. 2025, 47(5), 316; https://doi.org/10.3390/cimb47050316 - 28 Apr 2025
Cited by 2 | Viewed by 774
Abstract
Background: Sapindus mukorossi Gaertn is a deciduous tree with saponins as the main active ingredients and has been utilized in medicine and cosmetic industries. Currently, the investigations of S. mukorossi mainly focus on the pericarp and seed kernel parts, while other parts [...] Read more.
Background: Sapindus mukorossi Gaertn is a deciduous tree with saponins as the main active ingredients and has been utilized in medicine and cosmetic industries. Currently, the investigations of S. mukorossi mainly focus on the pericarp and seed kernel parts, while other parts are yet to be studied and developed. This study aimed to investigate the anti-acne potential of S. mukorossi flower water extract (SMFW) by in vitro experiments. Methods and Results: The DPPH, ABTS, superoxide anion radical scavenging assay, and FRAP assay revealed the strong antioxidant activities of SMFW. The antibacterial activity of SMFW against Cutibacterium acnes has been evaluated with an inhibition diameter of 14.08 ± 0.63 mm. Furthermore, SMFW significantly inhibited the secretion of pro-inflammatory cytokines (TNF-α, IL-6, and IL-β) in lipopolysaccharide (LPS)-stimulated THP-1 macrophages. Transcriptome analysis showed that SMFW treatment reversed 448 LPS-upregulated DEGs and 349 LPS-downregulated DEGs, and KEGG enrichment analysis indicated that SMFW might exert its anti-inflammatory effect via NOD-like receptor and JAK-STAT signaling pathways. Conclusions: SMFW exhibited antioxidant, antibacterial, and anti-inflammatory properties in in vitro experiments. RNA-seq analysis indicated that SMFW may alleviate inflammation by regulating the NOD-like receptor and JAK-STAT signaling pathways. In summary, SMFW has shown potential for anti-acne efficacy and can be used as a natural raw material in cosmetics. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

17 pages, 23079 KiB  
Article
Intestinal Activation of LXRα Counteracts Metabolic-Associated Steatohepatitis Features in Mice
by Gessica Lioci, Fabio Gurrado, Nadia Panera, Marzia Bianchi, Cristiano De Stefanis, Valentina D’Oria, Nicolò Cicolani, Silvano Junior Santini, Laura Schiadà, Anna Alisi and Gianluca Svegliati-Baroni
Nutrients 2025, 17(8), 1349; https://doi.org/10.3390/nu17081349 - 15 Apr 2025
Viewed by 741
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem and the discovery of drugs is challenging. In this study, we aimed to investigate the effects of intestinal activation of the liver X receptor (LXR)α on MASH. Methods: [...] Read more.
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem and the discovery of drugs is challenging. In this study, we aimed to investigate the effects of intestinal activation of the liver X receptor (LXR)α on MASH. Methods: An intestinal-specific LXRα activation model in mice was established and subjected to MASH development by combining a Western diet and carbon tetrachloride. Lipid metabolism, reverse cholesterol transport (RCT), steatosis, inflammation, and fibrosis were evaluated. In vitro models of steatosis and fibrosis were used to explore the role of scavenger receptor class B type 1 (SRB1). Results: We found that the intestinal activation of LXRα improved several MASLD features, including levels of triglycerides, RCT, steatosis, systemic and hepatic inflammatory profiles, and liver fibrosis. These effects were associated with increased high-density lipoprotein (HDL) levels and hepatic SRB1 expression. In vitro depletion of SRB1 hampered the beneficial effects of HDL on steatosis and fibrogenesis in liver cells by altering the activation of both peroxisome proliferator-activated receptors γ and small mothers against decapentaplegic homolog protein (SMAD)2/3 proteins. Conclusions: Our findings showed that the intestinal activation of LXRα and a parallel induction of hepatic SRB1 are protective against inflammation, steatosis, and advanced liver fibrosis in MASLD. Full article
(This article belongs to the Special Issue The Role of Lipids and Lipoproteins in Health)
Show Figures

Figure 1

Back to TopTop