Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (145)

Search Parameters:
Keywords = scatterometer winds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7495 KB  
Article
Potential Impacts of Climate Change on South China Sea Wind Energy Resources Under CMIP6 Future Climate Projections
by Yue Zhuo and Bo Hong
Energies 2025, 18(20), 5370; https://doi.org/10.3390/en18205370 - 12 Oct 2025
Viewed by 289
Abstract
Wind is an important renewable energy source, and even minor variations in wind speed will significantly impact wind power generation. The objective of this study was to systematically assess the impacts of climate change on wind energy resources in the South China Sea [...] Read more.
Wind is an important renewable energy source, and even minor variations in wind speed will significantly impact wind power generation. The objective of this study was to systematically assess the impacts of climate change on wind energy resources in the South China Sea (SCS) under future climate projections. To achieve this, we employed a multi-model ensemble approach based on Coupled Model Intercomparison Project Phase 6 (CMIP6) data under three Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5). The results demonstrated that, in comparison with scatterometer wind data, the CMIP6 historical results (1995–2014) showed good performance in capturing the spatiotemporal distribution of wind power density (WPD) in the SCS. There were regional discrepancies in the central SCS due to the complex monsoon-driven wind dynamics. Future projections revealed an overall increase in annual mean wind power density (WPD) across the entire SCS by the mid-21st century (2046–2065) and late 21st century (2080–2099). The seasonal analyses indicated significant WPD increases in summer, especially in the northern SCS and the region adjacent to the Kalimantan strait. The increase in summer (>40 × 10−4 m/s/year under SSP5-8.5) is about triple that in winter. In the late 21st century, an increase in WPD exceeding 10% can be generally anticipated under the SSP2-4.5 and SSP5-8.5 scenarios in all seasons. The extreme wind in the northern and central SCS will further increase by 5% under the three scenarios, which will add an extra extreme load to wind turbines and related marine facilities. These assessments are essential for wind farm planning and long-term energy production evaluations in the SCS. Based on the findings in this study, specific areas of concern can be targeted to conduct localized downscaling analyses and risk assessments. Full article
Show Figures

Figure 1

18 pages, 16697 KB  
Article
Analysis of Abnormal Sea Level Rise in Offshore Waters of Bohai Sea in 2024
by Song Pan, Lu Liu, Yuyi Hu, Jie Zhang, Yongjun Jia and Weizeng Shao
J. Mar. Sci. Eng. 2025, 13(6), 1134; https://doi.org/10.3390/jmse13061134 - 5 Jun 2025
Cited by 1 | Viewed by 746
Abstract
The primary contribution of this study lies in analyzing the dynamic drivers during two anomalous sea level rise events in the Bohai Sea through coupled numeric modeling using the Weather Research and Forecasting (WRF) model and the Finite-Volume Community Ocean Model (FVCOM) integrated [...] Read more.
The primary contribution of this study lies in analyzing the dynamic drivers during two anomalous sea level rise events in the Bohai Sea through coupled numeric modeling using the Weather Research and Forecasting (WRF) model and the Finite-Volume Community Ocean Model (FVCOM) integrated with the Simulating Waves Nearshore (SWAN) module (hereafter referred to as FVCOM-SWAVE). WRF-derived wind speeds (0.05° grid resolution) were validated against Haiyang-2 (HY-2) scatterometer observations, yielding a root mean square error (RMSE) of 1.88 m/s and a correlation coefficient (Cor) of 0.85. Similarly, comparisons of significant wave height (SWH) simulated by FVCOM-SWAVE (0.05° triangular mesh) with HY-2 altimeter data showed an RMSE of 0.67 m and a Cor of 0.84. Four FVCOM sensitivity experiments were conducted to assess drivers of sea level rise, validated against tide gauge observations. The results identified tides as the primary driver of sea level rise, with wind stress and elevation forcing (e.g., storm surge) amplifying variability, while currents exhibited negligible influence. During the two events, i.e., 20–21 October and 25–26 August 2024, elevation forcing contributed to localized sea level rises of 0.6 m in the northern and southern Bohai Sea and 1.1 m in the southern Bohai Sea. A 1 m surge in the northern region correlated with intense Yellow Sea winds (20 m/s) and waves (5 m SWH), which drove water masses into the Bohai Sea. Stokes transport (wave-driven circulation) significantly amplified water levels during the 21 October and 26 August peak, underscoring critical wave–tide interactions. This study highlights the necessity of incorporating tides, wind, elevation forcing, and wave effects into coastal hydrodynamic models to improve predictions of extreme sea level rise events. In contrast, the role of imposed boundary current can be marginalized in such scenarios. Full article
Show Figures

Figure 1

17 pages, 11839 KB  
Article
Developing an Objective Scheme to Construct Hurricane Bogus Vortices Based on Scatterometer Sea Surface Wind Data
by Weixin Pan, Xiaolei Zou and Yihong Duan
Remote Sens. 2025, 17(9), 1528; https://doi.org/10.3390/rs17091528 - 25 Apr 2025
Viewed by 523
Abstract
This study presents an objective scheme to construct hurricane bogus vortices based on satellite microwave scatterometer observations of sea surface wind vectors. When specifying a bogus vortex using Fujita’s formula, the required parameters include the center position and the radius of the maximum [...] Read more.
This study presents an objective scheme to construct hurricane bogus vortices based on satellite microwave scatterometer observations of sea surface wind vectors. When specifying a bogus vortex using Fujita’s formula, the required parameters include the center position and the radius of the maximum gradient of sea level pressure (R0). We first propose determining the tropical cyclone (TC) center position as the cyclonic circulation center obtained from sea surface wind observations and then establishing a regression model between R0 and the radius of 34-kt sea surface wind of scatterometer observations. The radius of 34-kt sea surface wind (R34) is commonly used as a measure of TC size. The center positions determined from HaiYang-2B/2C/2D Scatterometers, MetOp-B/C Advanced Scatterometers, and FengYun-3E Wind Radar compared favorably with the axisymmetric centers of hurricane rain/cloud bands revealed by Advanced Himawari Imager observations of brightness temperature for the western Pacific landfalling typhoons Doksuri, Khanun, and Haikui in 2023. Furthermore, regression equations between R0 and the scatterometer-determined radius of 34-kt wind are developed for tropical storms and category-1, -2, -3, and higher hurricanes over the Northwest Pacific (2022–2023). The bogus vortices thus constructed are more realistic than those built without satellite sea surface wind observations. Full article
Show Figures

Graphical abstract

18 pages, 3267 KB  
Article
WindRAD Scatterometer Quality Control in Rain
by Zhen Li, Anton Verhoef and Ad Stoffelen
Remote Sens. 2025, 17(3), 560; https://doi.org/10.3390/rs17030560 - 6 Feb 2025
Viewed by 780
Abstract
Rain backscatter corrupts Ku-band scatterometer wind retrieval by mixing with the signatures of the σ (backscatter measurements) on the sea surface. The measurements are sensitive to rain clouds due to the short wavelength, and the rain-contaminated measurements in a wind vector cell [...] Read more.
Rain backscatter corrupts Ku-band scatterometer wind retrieval by mixing with the signatures of the σ (backscatter measurements) on the sea surface. The measurements are sensitive to rain clouds due to the short wavelength, and the rain-contaminated measurements in a wind vector cell (WVC) deviate from the simulated measurements using the wind geophysical model function (GMF). Therefore, quality control (QC) is essential to guarantee the retrieved winds’ quality and consistency. The normalized maximum likelihood estimator (MLE) residual (Rn) is a QC indicator representing the distance between the σ measurements and the wind GMF; it works locally for one WVC. JOSS is another QC indicator. It is the speed component of the observation cost function, which is sensitive to spatial inconsistencies in the wind field. RnJ is a combined indicator, and it takes both local information (Rn) and spatial consistency (JOSS) into account. This paper focuses on the QC for WindRAD, a dual-frequency (C and Ku band) rotating-fan-beam scatterometer. The Rn and RnJ have been established and thoroughly investigated for Ku-band-only and combined C–Ku wind retrieval. An additional 0.4% of WVCs are rejected with RnJ, as compared to Rn for both Ku-band-only and combined C–Ku wind retrievals. The number of accepted WVCs with high rain rates (>7 mm/h) is reduced by half, and the wind verification with respect to ECMWF winds is generally improved. The C-band measurements are little influenced by rain, so the Ku-based Rn is more effective for the combined C–Ku wind retrieval than the total Rn from both the C and Ku bands. The rejection rate of the combined C–Ku retrievals reduces by about half compared to the Ku-band-only retrieval, with similar wind verification statistics. Therefore, adding the C band into the retrieval suppresses the rain effect, and acceptable QC capabilities can be achieved with fewer rejected winds. Full article
(This article belongs to the Special Issue Observations of Atmospheric and Oceanic Processes by Remote Sensing)
Show Figures

Figure 1

27 pages, 5200 KB  
Article
Assessing the Future ODYSEA Satellite Mission for the Estimation of Ocean Surface Currents, Wind Stress, Energy Fluxes, and the Mechanical Coupling Between the Ocean and the Atmosphere
by Marco Larrañaga, Lionel Renault, Alexander Wineteer, Marcela Contreras, Brian K. Arbic, Mark A. Bourassa and Ernesto Rodriguez
Remote Sens. 2025, 17(2), 302; https://doi.org/10.3390/rs17020302 - 16 Jan 2025
Cited by 2 | Viewed by 1416
Abstract
Over the past decade, several studies based on coupled ocean–atmosphere simulations have shown that the oceanic surface current feedback to the atmosphere (CFB) leads to a slow-down of the mean oceanic circulation and, overall, to the so-called eddy killing effect, i.e., a sink [...] Read more.
Over the past decade, several studies based on coupled ocean–atmosphere simulations have shown that the oceanic surface current feedback to the atmosphere (CFB) leads to a slow-down of the mean oceanic circulation and, overall, to the so-called eddy killing effect, i.e., a sink of kinetic energy from oceanic eddies to the atmosphere that damps the oceanic mesoscale activity by about 30%, with upscaling effects on large-scale currents. Despite significant improvements in the representation of western boundary currents and mesoscale eddies in numerical models, some discrepancies remain when comparing numerical simulations with satellite observations. These discrepancies include a stronger wind and wind stress response to surface currents and a larger air–sea kinetic energy flux from the ocean to the atmosphere in numerical simulations. However, altimetric gridded products are known to largely underestimate mesoscale activity, and the satellite observations operate at different spatial and temporal resolutions and do not simultaneously measure surface currents and wind stress, leading to large uncertainties in air–sea mechanical energy flux estimates. ODYSEA is a new satellite mission project that aims to simultaneously monitor total surface currents and wind stress with a spatial sampling interval of 5 km and 90% daily global coverage. This study evaluates the potential of ODYSEA to measure surface winds, currents, energy fluxes, and ocean–atmosphere coupling coefficients. To this end, we generated synthetic ODYSEA data from a high-resolution coupled ocean–wave–atmosphere simulation of the Gulf Stream using ODYSIM, the Doppler scatterometer simulator for ODYSEA. Our results indicate that ODYSEA would significantly improve the monitoring of eddy kinetic energy, the kinetic energy cascade, and air–sea kinetic energy flux in the Gulf Stream region. Despite the improvement over the current measurements, the estimates of the coupling coefficients between surface currents and wind stress may still have large uncertainties due to the noise inherent in ODYSEA, and also due to measurement capabilities related to wind stress. This study evidences that halving the measurement noise in surface currents would lead to a more accurate estimation of the surface eddy kinetic energy and wind stress coupling coefficients. Since measurement noise in surface currents strongly depends on the square root of the transmit power of the Doppler scatterometer antenna, noise levels can be reduced by increasing the antenna length. However, exploring other alternatives, such as the use of neural networks, could also be a promising approach. Additionally, the combination of wind stress estimation from ODYSEA with other satellite products and numerical simulations could improve the representation of wind stress in gridded products. Future efforts should focus on the assessment of the potential of ODYSEA in quantifying the production of eddy kinetic energy through horizontal energy fluxes and air–sea energy fluxes related to divergent and rotational motions. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

17 pages, 10112 KB  
Article
Typhoon Storm Surge Simulation Study Based on Reconstructed ERA5 Wind Fields—A Case Study of Typhoon “Muifa”, the 12th Typhoon of 2022
by Xu Zhang, Changsheng Zuo, Zhizu Wang, Chengchen Tao, Yaoyao Han and Juncheng Zuo
J. Mar. Sci. Eng. 2024, 12(11), 2099; https://doi.org/10.3390/jmse12112099 - 19 Nov 2024
Cited by 1 | Viewed by 2732
Abstract
A storm surge, classified as an extreme natural disaster, refers to unusual sea level fluctuations induced by severe atmospheric disturbances such as typhoons. Existing reanalysis data, such as ERA5, significantly underestimates the location and maximum wind speed of typhoons. Therefore, this study initially [...] Read more.
A storm surge, classified as an extreme natural disaster, refers to unusual sea level fluctuations induced by severe atmospheric disturbances such as typhoons. Existing reanalysis data, such as ERA5, significantly underestimates the location and maximum wind speed of typhoons. Therefore, this study initially assesses the accuracy of tropical cyclone positions and peak wind speeds in the ERA5 reanalysis dataset. These results are compared against tropical cyclone parameters from the IBTrACS (International Best Track Archive for Climate Stewardship). The position deviation of tropical cyclones in ERA5 is mainly within the range of 10 to 60 km. While the correlation of maximum wind speed is significant, there is still considerable underestimation. A wind field reconstruction model, incorporating tropical cyclone characteristics and a distance correction factor, was employed. This model considers the effects of the surrounding environment during the movement of the tropical cyclone by introducing a decay coefficient. The reconstructed wind field significantly improved the representation of the typhoon eyewall and high-wind-speed regions, showing a closer match with wind speeds observed by the HY-2B scatterometer. Through simulations using the FVCOM (Finite Volume Community Ocean Model) storm surge model, the reconstructed wind field demonstrated higher accuracy in reproducing water level changes at Tanxu, Gaoqiao, and Zhangjiabang stations. During the typhoon’s landfall in Shanghai, the area with the greatest water level increase was primarily located in the coastal waters of Pudong New Area, Shanghai, where the highest total water level reached 5.2 m and the storm surge reached 4 m. The methods and results of this study provide robust technical support and a valuable reference for further storm surge forecasting, marine disaster risk assessment, and coastal disaster prevention and mitigation efforts. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

27 pages, 7418 KB  
Article
Assessment of CCMP in Capturing High Winds with Respect to Individual Satellite Datasets
by Pingping Rong and Hui Su
Remote Sens. 2024, 16(22), 4215; https://doi.org/10.3390/rs16224215 - 12 Nov 2024
Cited by 2 | Viewed by 1448
Abstract
High-wind structures were identified in the Cross-Calibrated Multi-Platform (CCMP) ocean wind vector reanalysis for comparison with winds measured by satellite radiometers, scatterometers, and synthetic aperture radar (SAR) instruments from February to October 2023. The comparison aims to evaluate bias, uncertainty, and spatial correlations [...] Read more.
High-wind structures were identified in the Cross-Calibrated Multi-Platform (CCMP) ocean wind vector reanalysis for comparison with winds measured by satellite radiometers, scatterometers, and synthetic aperture radar (SAR) instruments from February to October 2023. The comparison aims to evaluate bias, uncertainty, and spatial correlations with the goal of enhancing the accuracy of ocean wind datasets during tropical cyclones (TCs). In 10° longitude × 10° latitude blocks, each containing a TC, Soil Moisture Active Passive (SMAP) and Advanced Microwave Scanning Radiometer 2 (AMSR2) winds are 6.5 and 4.8% higher than CCMP, while Advanced Scatterometer (ASCATB) is 0.8% lower. For extratropical cyclones, AMSR2 and SMAP also show stronger winds with a 5% difference, and ASCATB is about 0.3% weaker compared to CCMP. The comparison between SAR and CCMP for TC winds, sampled at the locations and time frames of SAR tiles, indicates that SAR winds around TCs are about 9% higher than CCMP winds. Using empirically defined TC structural indices, we find that the TCs observed by CCMP are shifted in locations and lack a compact core region. A Random Forest (RF) regressor was applied to TCs in CCMP with corresponding SAR observations, nearly correcting the full magnitude of low bias in CCMP statistically, with a 15 m/s correction in the core region. The hierarchy of importance among the predictors is as follows: CCMP wind speed (62%), distance of SAR pixels to the eye region (21%) and eye center (7%), and distance of CCMP pixels to the eye region (5%) and eye center (5%). Full article
Show Figures

Figure 1

17 pages, 16284 KB  
Article
NRCS Recalibration and Wind Speed Retrieval for SWOT KaRIn Radar Data
by Lin Ren, Xiao Dong, Limin Cui, Jingsong Yang, Yi Zhang, Peng Chen, Gang Zheng and Lizhang Zhou
Remote Sens. 2024, 16(16), 3103; https://doi.org/10.3390/rs16163103 - 22 Aug 2024
Cited by 1 | Viewed by 1407
Abstract
In this study, wind speed sensitivity and calibration bias were first determined for Surface Water and Ocean Topography (SWOT) satellite Ka-band Radar Interferometer (KaRIn) Normalized Radar Backscatter Cross Section (NRCS) data at VV and HH polarizations. Here, the calibration bias was estimated by [...] Read more.
In this study, wind speed sensitivity and calibration bias were first determined for Surface Water and Ocean Topography (SWOT) satellite Ka-band Radar Interferometer (KaRIn) Normalized Radar Backscatter Cross Section (NRCS) data at VV and HH polarizations. Here, the calibration bias was estimated by comparing the KaRIn NRCS with collocated simulations from a model developed using Global Precipitation Measurement (GPM) satellite Dual-frequency Precipitation Radar (DPR) data. To recalibrate the bias, the correlation coefficient between the KaRIn data and the simulations was estimated, and the data with the corresponding top 10% correlation coefficients were used to estimate the recalibration coefficients. After recalibration, a Ka-band NRCS model was developed from the KaRIn data to retrieve ocean surface wind speeds. Finally, wind speed retrievals were evaluated using the collocated European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis winds, Haiyang-2C scatterometer (HY2C-SCAT) winds and National Data Buoy Center (NDBC) and Tropical Atmosphere Ocean (TAO) buoy winds. Evaluation results show that the Root Mean Square Error (RMSE) at both polarizations is less than 1.52 m/s, 1.34 m/s and 1.57 m/s, respectively, when compared to ECMWF, HY2C-SCAT and buoy collocated winds. Moreover, both the bias and RMSE were constant with the incidence angles and polarizations. This indicates that the winds from the SWOT KaRIn data are capable of correcting the sea state bias for sea surface height products. Full article
Show Figures

Figure 1

22 pages, 14452 KB  
Article
Detecting Melt Pond Onset on Landfast Arctic Sea Ice Using a Dual C-Band Satellite Approach
by Syeda Shahida Maknun, Torsten Geldsetzer, Vishnu Nandan, John Yackel and Mallik Mahmud
Remote Sens. 2024, 16(12), 2091; https://doi.org/10.3390/rs16122091 - 9 Jun 2024
Viewed by 2044
Abstract
The presence of melt ponds on the surface of Arctic Sea ice affects its albedo, thermal properties, and overall melting rate; thus, the detection of melt pond onset is of significant importance for understanding the Arctic’s changing climate. This study investigates the utility [...] Read more.
The presence of melt ponds on the surface of Arctic Sea ice affects its albedo, thermal properties, and overall melting rate; thus, the detection of melt pond onset is of significant importance for understanding the Arctic’s changing climate. This study investigates the utility of a novel method for detecting the onset of melt ponds on sea ice using a satellite-based, dual-sensor C-band approach, whereby Sentinel-1 provides horizontally polarized (HH) data and Advanced SCATterometer (ASCAT) provides vertically polarized (VV) data. The co-polarized ratio (VV/HH) is used to detect the presence of melt ponds on landfast sea ice in the Canadian Arctic Archipelago in 2017 and 2018. ERA-5 air temperature and wind speed re-analysis datasets are used to establish the VV/HH threshold for pond onset detection, which have been further validated by Landsat-8 reflectance. The co-polarized ratio threshold of three standard deviations from the late winter season (April) mean co-pol ratio values are used for assessing pond onset detection associated with the air temperature and wind speed data, along with visual observations from Sentinel-1 and cloud-free Sentinel-2 imagery. In 2017, the pond onset detection rates were 70.59% for FYI and 92.3% for MYI. Results suggest that this method, because of its dual-platform application, has potential for providing large-area coverage estimation of the timing of sea ice melt pond onset using different earth observation satellites. Full article
Show Figures

Figure 1

9 pages, 2716 KB  
Communication
A Land-Corrected ASCAT Coastal Wind Product
by Jur Vogelzang and Ad Stoffelen
Remote Sens. 2024, 16(12), 2053; https://doi.org/10.3390/rs16122053 - 7 Jun 2024
Cited by 2 | Viewed by 1153
Abstract
A new ASCAT coastal wind product based on a 12.5 km grid size is presented. The new product contains winds up to the coast line and is identical to the current operational coastal product over the open ocean. It is based on the [...] Read more.
A new ASCAT coastal wind product based on a 12.5 km grid size is presented. The new product contains winds up to the coast line and is identical to the current operational coastal product over the open ocean. It is based on the assumption that within a wind vector cell land and sea have constant radar cross section. With an accurate land fraction calculated from ASCAT’s spatial response function and a detailed land mask, the land correction can be obtained with a simple linear regression. The coastal winds stretch all the way to the coast, filling the coastal gap in the operational coastal ASCAT product, resulting in three times more winds within a distance of 20 km from the coast. The Quality Control (QC), based on the regression error and the regression bias error, reduces this abundance somewhat. A comparison of wind speed pdfs with those from NWP forecasts shows that the influence of land in the land-corrected scatterometer product appears more reasonable and starts not as far offshore as that in the NWP forecasts. The VRMS difference with moored buoys increases slightly from about 2.4 m/s at 20 km or more from the coast to 4.2 m/s at less than 5 km, where coastal wind effects clearly contribute to the latter difference. While the QC based on the regression bias error flags many WVCs that compare well with buoys, the land-corrected coastal product with more abundant coastal winds appears useful for nowcasting and other coastal wind applications. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

17 pages, 4891 KB  
Article
A Technique for SAR Significant Wave Height Retrieval Using Azimuthal Cut-Off Wavelength Based on Machine Learning
by Shaijie Leng, Mengyu Hao, Weizeng Shao, Armando Marino and Xingwei Jiang
Remote Sens. 2024, 16(9), 1644; https://doi.org/10.3390/rs16091644 - 5 May 2024
Cited by 3 | Viewed by 2412
Abstract
This study introduces a new machine learning-based algorithm for the retrieving significant wave height (SWH) using synthetic aperture radar (SAR) images. This algorithm is based on the azimuthal cut-off wavelength and was developed in quad-polarized stripmap (QPS) mode in coastal waters. The collected [...] Read more.
This study introduces a new machine learning-based algorithm for the retrieving significant wave height (SWH) using synthetic aperture radar (SAR) images. This algorithm is based on the azimuthal cut-off wavelength and was developed in quad-polarized stripmap (QPS) mode in coastal waters. The collected images are collocated with a wave simulation from the numeric model, called WAVEWATCH-III (WW3), and the current speed from the HYbrid Coordinate Ocean Model (HYCOM). The sea surface wind is retrieved from the image at the vertical–vertical polarization channel, using the geophysical model function (GMF) CSARMOD-GF. The results of the algorithm were validated against the measurements obtained from the Haiyang-2B (HY-2B) scatterometer, yielding a root mean squared error (RMSE) of 1.99 m/s with a 0.82 correlation (COR) and 0.27 scatter index of wind speed. It was found that the SWH depends on the wind speed and azimuthal cut-off wavelength. However, the current speed has less of an influence on azimuthal cut-off wavelength. Following this rationale, four widely known machine learning methods were employed that take the SAR-derived azimuthal cut-off wavelength, wind speed, and radar incidence angle as inputs and then output the SWH. The validation result shows that the SAR-derived SWH by eXtreme Gradient Boosting (XGBoost) against the HY-2B altimeter products has a 0.34 m RMSE with a 0.97 COR and a 0.07 bias, which is better than the results obtained using an existing algorithm (i.e., a 1.10 m RMSE with a 0.77 COR and a 0.44 bias) and the other three machine learning methods (i.e., a >0.58 m RMSE with a <0.95 COR), i.e., convolutional neural networks (CNNs), Support Vector Regression (SVR) and the ridge regression model (RR). As a result, XGBoost is a highly efficient approach for GF-3 wave retrieval at the regular sea state. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

18 pages, 9257 KB  
Article
Polarized Bidirectional Reflectance Distribution Function Matrix Derived from Two-Scale Roughness Theory and Its Applications in Active Remote Sensing
by Lingli He, Fuzhong Weng, Jinghan Wen and Tong Jia
Remote Sens. 2024, 16(9), 1551; https://doi.org/10.3390/rs16091551 - 26 Apr 2024
Cited by 4 | Viewed by 1750
Abstract
A polarized bidirectional reflectance distribution function (pBRDF) matrix was developed based on the two-scale roughness theory to provide consistent simulations of fully polarized microwave emission and scattering, required for the ocean–atmosphere-coupled radiative transfer model. In this study, the potential of the two-scale pBRDF [...] Read more.
A polarized bidirectional reflectance distribution function (pBRDF) matrix was developed based on the two-scale roughness theory to provide consistent simulations of fully polarized microwave emission and scattering, required for the ocean–atmosphere-coupled radiative transfer model. In this study, the potential of the two-scale pBRDF matrix was explored for simulating ocean full-polarization backscattering and bistatic-scattering normalized radar cross sections (NRCSs). Comprehensive numerical simulations of the two-scale pBRDF matrix across the L-, C-, X-, and Ku-bands were carried out, and the simulations were compared with experimental data, classical electromagnetic, and GMFs. The results show that the two-scale pBRDF matrix demonstrates reasonable dependencies on ocean surface wind speeds, relative wind direction (RWD), geometries, and frequencies and has a reliable accuracy in general. In addition, the two-scale pBRDF matrix simulations were compared with the observations from the advanced scatterometer (ASCAT) onboard MetOP-C satellites, with a correlation coefficient of 0.9634 and a root mean square error (RMSE) of 2.5083 dB. In the bistatic case, the two-scale pBRDF matrix simulations were compared with Cyclone Global Navigation Satellite System (CYGNSS) observations, demonstrating a good correlation coefficient of 0.8480 and an RMSE of 1.2859 dB. In both cases, the two-scale pBRDF matrix produced fairly good simulations at medium-to-high wind speeds. The relatively large differences at low wind speeds (<5 m/s) were due probably to the swell effects. This study proves that the two-scale pBRDF matrix is suitable for the applications of multiple types of active instruments and can consistently simulate the ocean surface passive and active signals. Full article
Show Figures

Figure 1

19 pages, 6517 KB  
Article
Concept of Spaceborne Ocean Microwave Dual-Function Integrated Sensor for Wind and Wave Measurement
by Hang Li, Wenkang Liu, Guangcai Sun, Changhong Chen, Mengdao Xing, Zhenhua Zhang and Jie Zhang
Remote Sens. 2024, 16(8), 1472; https://doi.org/10.3390/rs16081472 - 21 Apr 2024
Cited by 1 | Viewed by 1515
Abstract
Dedicated to synchronously acquiring large-area, high-precision, and multi-scale ocean wind and wave information, a novel concept of a spaceborne ocean microwave dual-function integrated sensor is proposed in this paper. It integrates the functions of a scatterometer and SAR by sharing a single phased-array [...] Read more.
Dedicated to synchronously acquiring large-area, high-precision, and multi-scale ocean wind and wave information, a novel concept of a spaceborne ocean microwave dual-function integrated sensor is proposed in this paper. It integrates the functions of a scatterometer and SAR by sharing a single phased-array antenna. An overview of the scientific requirements and motivations for the sensor are outlined firstly. In order to fulfill the observation requirements of both the functions, the constraints on the system parameters such as frequency, antenna size, and incidence angle are analyzed. Then, the selection principles of these parameters are discussed within the limitations of antenna area, bandwidth, available time, and cost. Additionally, the constraints on the time sequence of transmitting and receiving pulses are derived to ensure that there is no conflict when the two functions operate simultaneously. Subsequently, a method for jointly designing the pulse repetition frequency (PRF) of both the functions is introduced, along with zebra maps to verify its effectiveness. At the end of the paper, the system and performance parameters of the sensor are given for further insight into it. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Ocean Observation (Second Edition))
Show Figures

Figure 1

22 pages, 12059 KB  
Article
A Novel Rain Identification and Rain Intensity Classification Method for the CFOSAT Scatterometer
by Meixuan Quan, Jie Zhang and Rui Zhang
Remote Sens. 2024, 16(5), 887; https://doi.org/10.3390/rs16050887 - 2 Mar 2024
Cited by 3 | Viewed by 1755
Abstract
The China–France oceanography satellite scatterometer (CSCAT) is a rotating fan-beam scanning observation scatterometer operating in the Ku-band, and its product quality is affected by rain contamination. The multiple azimuthal NRCS measurements provided by CSCAT L2A, the retrieved wind speed and wind direction provided [...] Read more.
The China–France oceanography satellite scatterometer (CSCAT) is a rotating fan-beam scanning observation scatterometer operating in the Ku-band, and its product quality is affected by rain contamination. The multiple azimuthal NRCS measurements provided by CSCAT L2A, the retrieved wind speed and wind direction provided by CSCAT L2B, as well as the rain data provided by GPM, are used to construct a new rain identification and rain intensity classification model for CSCAT. The EXtreme Gradient Boosting (XGBoost) model, optimized by the Dung Beetle Optimizer (DBO) algorithm, is developed and evaluated. The performance of the DBO-XGBoost exceeds that of the CSCAT rain flag in terms of rain identification ability. Also, compared with XGBoost without parameter optimization, K-nearest Neighbor with K = 5 (KNN5) and K-nearest Neighbor with K = 3 (KNN3), the performance of DBO-XGBoost is better. Its rain identification achieves an accuracy of about 90% and a precision of about 80%, which enhances the quality control of rain. DBO-XGBoost has also shown good results in the classification of rain intensity. This ability is not available in traditional rain flags. In the global regional and local regional tests, most of the accuracy and precision in rain intensity classification have reached more than 80%. This technology makes full use of the rich observed information of CSCAT, realizes rain identification, and can also classify the rain intensity so as to further evaluate the degree of rain contamination of CSCAT products. Full article
Show Figures

Figure 1

15 pages, 5229 KB  
Article
Super Resolution Mapping of Scatterometer Ocean Surface Wind Speed Using Generative Adversarial Network: Experiments in the Southern China Sea
by Xianci Wan, Baojian Liu, Zhizhou Guo, Zhenghuan Xia, Tao Zhang, Rui Ji and Wei Wan
J. Mar. Sci. Eng. 2024, 12(2), 228; https://doi.org/10.3390/jmse12020228 - 27 Jan 2024
Cited by 4 | Viewed by 2065
Abstract
This paper designed a Generative Adversarial Network (GAN)-based super-resolution framework for scatterometer ocean surface wind speed (OSWS) mapping. An improved GAN, WSGAN, was well-trained to generate high-resolution OSWS (~1/64 km) from low-resolution OSWS (~12.5 km) retrieved from scatterometer observations. The generator of GAN [...] Read more.
This paper designed a Generative Adversarial Network (GAN)-based super-resolution framework for scatterometer ocean surface wind speed (OSWS) mapping. An improved GAN, WSGAN, was well-trained to generate high-resolution OSWS (~1/64 km) from low-resolution OSWS (~12.5 km) retrieved from scatterometer observations. The generator of GAN incorporated Synthetic Aperture Radar (SAR) information in the training phase. Therefore, the pre-trained model could reconstruct high-resolution OSWS with historical local spatial and texture information. The training experiments were executed in the South China Sea using the OSWS generated from the Advanced SCATterometer (ASCAT) scatterometer and Sentinel-1 SAR OSWS set. Several GAN-based methods were compared, and WSGAN performed the best in most sea states, enabling more detail mining with fewer checkerboard artifacts at a scale factor of eight. The model reaches an overall root mean square error (RMSE) of 0.81 m/s and an overall mean absolute error (MAE) of 0.68 m/s in the collocation region of ASCAT and Sentinel-1. The model also exhibits excellent generalization capability in another scatterometer with an overall RMSE of 1.11 m/s. This study benefits high-resolution OSWS users when no SAR observation is available. Full article
Show Figures

Figure 1

Back to TopTop