Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = scandium extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2600 KB  
Article
Scandium(III) Solvation and Association and Water Structure in the Gigapascal Pressure Range Investigated by Neutron Scattering
by Toshio Yamaguchi, Sinichi Machida and Takanori Hattori
Molecules 2025, 30(16), 3417; https://doi.org/10.3390/molecules30163417 - 19 Aug 2025
Viewed by 997
Abstract
Scandium(III) (Sc(III)) is the smallest among the trivalent ions in Group 3, which includes yttrium(III) and lanthanides (III) with a hydration number of 8 and 8–9, respectively. The hydration number of Sc(III) in aqueous solutions reported so far varies from six to ten [...] Read more.
Scandium(III) (Sc(III)) is the smallest among the trivalent ions in Group 3, which includes yttrium(III) and lanthanides (III) with a hydration number of 8 and 8–9, respectively. The hydration number of Sc(III) in aqueous solutions reported so far varies from six to ten and remains an open question. In general, applying pressure and temperature to aqueous solutions perturbs the water structure and ion solvation, providing insight into the nature of ion solvation. In the present study, we perform neutron scattering measurements of a 1 m (mol/kg) ScCl3 aqueous solution in D2O (hereafter H is used to symbolize the hydrogen atom instead of D) under the thermodynamic conditions from 0.1 MPa/298 K to 4 GPa/523 K. Using the empirical potential structure refinement (EPSR) method, the neutron scattering data are analyzed to extract the site–site pair distribution functions, coordination number distributions, angle distributions, and spatial density functions (3D structure). A predominant Sc(III) species is [Sc(OH2)7]3+ with a distorted pentagonal bipyramidal geometry together with appreciable amounts of contact ion pair species [ScCln(OH2)(6−n)](3−n)+ (n = 1–3) and [Sc(OH2)8]3+ with mean Sc–Cl and Sc–OH2 distances of 2.42 and 2.11 Å, respectively. An aqua chloride ion is surrounded on average by 7.8 and 10.9 water molecules with a Cl–H2O distance of 3.10 Å at 0.1 MPa/298 K and 4 GPa/523 K, respectively. Applying GPa pressure transforms the tetrahedral network structure of water under ambient conditions to a dense, randomly packed structure with a mean coordination number of 12.6, resulting in an increase in the first-neighbor distance from 2.77 to 2.89 Å. The hydrogen bonds between water molecules remain linear but are largely distorted at high temperatures and high pressures. The present results provide a hint for understanding the underlying mechanism of high-pressure and temperature coordination chemistry and in applied fields, such as processes in geochemistry of the Earth’s upper mantle and pressure-induced protein denaturation. Full article
(This article belongs to the Special Issue Influence of Solvent Molecules in Coordination Chemistry)
Show Figures

Graphical abstract

12 pages, 1145 KB  
Article
Solvent Extraction of Rare-Earth Elements (REEs) from Lignite Coal In Situ
by Ian K. Feole and Bruce C. Folkedahl
Fuels 2025, 6(3), 61; https://doi.org/10.3390/fuels6030061 - 19 Aug 2025
Viewed by 787
Abstract
Plugs of lignite coal from multiple formations were subjected to a series of tests to determine the amount of rare-earth elements (REEs) to be extracted from coal in an in situ mining operation. These tests were used to determine if extraction of REEs [...] Read more.
Plugs of lignite coal from multiple formations were subjected to a series of tests to determine the amount of rare-earth elements (REEs) to be extracted from coal in an in situ mining operation. These tests were used to determine if extraction of REEs and other critical minerals in an in situ environment would be possible for future attempts as an alternative to extraction mining. The tests involved subjecting whole lignite coal plugs from the Twin Butte coal seams in North Dakota to flow-through tests of water, and concentrations of 1.0 M ammonium nitrate, 1.0 M and 1.5 M sulfuric acid, and 1.0 M and 1.5 M hydrochloric acid (HCl) solvents at different concentrations and combinations. The flow-through testing was conducted by alternating the solvent and water flow-through to simulate an in situ mining scenario. The samples were analyzed for their concentrations of REEs (lanthanum [La], cerium [Ce], praseodymium [Pr], neodymium [Nd], samarium [Sm], europium [Eu], gadolinium [Gd], terbium [Tb], dysprosium [Dy], holmium [Ho], erbium [Er], thulium [Tm], ytterbium [Yb], lutetium [Lu], yttrium [Y], and scandium [Sc], as well as germanium [Ge] and cobalt [Co], manganese [Mn], nickel [Ni], and barium [Ba]). Results from the testing showed that REEs were extracted in concentrations that were on average higher using sulfuric acid (8.9%) than with HCl (5.8%), which had a higher recovery than ammonium nitrate. Tests were performed over a standard time interval for comparison between solvents, while a second set of testing was done to determine recovery rates of REEs and critical minerals under certain static and constant flow-through times to determine extraction in relation to time. Critical minerals had a higher recovery rate than the REEs across all tests, with a slightly higher recovery of light REEs over heavy REEs. Full article
Show Figures

Figure 1

26 pages, 2032 KB  
Review
A Cross-Disciplinary Review of Rare Earth Elements: Deposit Types, Mineralogy, Machine Learning, Environmental Impact, and Recycling
by Mustafa Rezaei, Gabriela Sanchez-Lecuona and Omid Abdolazimi
Minerals 2025, 15(7), 720; https://doi.org/10.3390/min15070720 - 9 Jul 2025
Cited by 3 | Viewed by 5041
Abstract
Rare-earth elements (REEs), including lanthanides, scandium, and yttrium, are important for advanced technologies such as renewable energy systems, electronics, medical diagnostics, and precision agriculture. Despite their relative crustal abundance, REE extraction is impeded by complex geochemical behavior, dispersed distribution, and environmental challenges. This [...] Read more.
Rare-earth elements (REEs), including lanthanides, scandium, and yttrium, are important for advanced technologies such as renewable energy systems, electronics, medical diagnostics, and precision agriculture. Despite their relative crustal abundance, REE extraction is impeded by complex geochemical behavior, dispersed distribution, and environmental challenges. This review presents a comprehensive overview of REE geochemistry, mineralogy, and major deposit types including carbonatites, alkaline igneous rocks, laterites, placer deposits, coal byproducts, and marine sediments. It also highlights the global distribution and economic potential of key REE projects. The integration of machine learning has further enhanced exploration by enabling deposit classification and geochemical modeling, especially in data-limited regions. Environmental and health challenges associated with REE mining, processing, and electronic waste (e-waste) recycling are studied, along with the expanding use of REEs in agriculture and medicine. Some recycling efforts offer promise for supply diversification, but significant technological and economic barriers remain. Ensuring a secure and sustainable REE supply will require integrated approaches combining advanced analytics, machine learning, responsible extraction, and coordinated policy efforts. The present review offers a general overview that can be useful for informing future studies and resource-related discussions. Full article
Show Figures

Figure 1

16 pages, 2256 KB  
Article
Ultrasound-Assisted Extraction Followed by Inductively Coupled Plasma Mass Spectrometry and Multivariate Profiling of Rare Earth Elements in Coffee
by Aleksandra Savić, Jelena Mutić, Milica Lučić, Jelena Vesković, Andrijana Miletić and Antonije Onjia
Foods 2025, 14(2), 275; https://doi.org/10.3390/foods14020275 - 16 Jan 2025
Cited by 6 | Viewed by 2162
Abstract
A rapid and efficient ultrasound-assisted extraction (UAE) procedure followed by inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of 14 rare earth elements (REEs) (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), along with [...] Read more.
A rapid and efficient ultrasound-assisted extraction (UAE) procedure followed by inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of 14 rare earth elements (REEs) (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), along with yttrium (Y) and scandium (Sc), in coffee samples. The method was validated using certified reference material (NIST SRM 1547), recovery tests at four fortification levels, and comparisons with microwave-assisted digestion (MAD). Excellent accuracy and precision were achieved, with recovery rates ranging from 80.1% to 112% and relative standard deviations (RSD%) below 14%. Limits of detection (LODs) ranged from 0.2 ng/kg (Yb) to 0.16 µg/kg (Nd). Total REE concentrations varied between 8.3 µg/kg and 1.1 mg/kg, with the highest individual mean concentrations (µg/kg) observed for Ce (11.7), La (6.0), and Sc (4.7). The lowest individual mean concentrations (µg/kg) were for Ho (0.16), Lu (0.066), and Tm (0.063). Multivariate analysis of REE profiles from 92 coffee samples collected in Serbia revealed clear distinctions between ground roasted and instant coffees, as well as between different surrogate blends. This study indicated that the determination of coffee’s geographical origin was not possible due to the diverse types, blends, and additives. However, differences in REE profiles suggest potential classification based on variety. REEs pose a negligible health risk to coffee consumers, with HI values ranging from 4.7 × 10−8 to 6.3 × 10−6 and TCR ranging from 2.6 × 10−14 to 3.5 × 10−12. Full article
Show Figures

Figure 1

12 pages, 1497 KB  
Article
Selective Scandium Elution from D2EHPA-Impregnated Ion-Exchange Resin After Metal Loading from Acidic Chloride Solutions
by Eleni Mikeli, Danai Marinos, Efthymios Balomenos and Dimitrios Panias
Materials 2024, 17(24), 6089; https://doi.org/10.3390/ma17246089 - 13 Dec 2024
Viewed by 1197
Abstract
This paper investigates the elution behavior of scandium from D2EHPA (Di-(2-ethylhexyl) phosphoric acid)-impregnated resins that proceed with metal loading from acidic chloride solutions. D2EHPA resins stem from their recognized selectivity for Sc extraction from acidic solutions. This study focuses [...] Read more.
This paper investigates the elution behavior of scandium from D2EHPA (Di-(2-ethylhexyl) phosphoric acid)-impregnated resins that proceed with metal loading from acidic chloride solutions. D2EHPA resins stem from their recognized selectivity for Sc extraction from acidic solutions. This study focuses on the elution process after ion-exchange extraction and examines various elution systems to achieve selective Sc recovery. Among the tested elution media, fluoride-based systems were proven effective for Sc desorption. The elution of the resins was demonstrated in a column set-up, where complete and selective elution of Sc was achieved. Τhis study contributes to the advancement of Sc extraction methods from chloride solutions, offering valuable insights for industrial applications, especially emphasizing the importance of optimizing the elution step for achieving efficient recovery of Sc. Full article
Show Figures

Figure 1

12 pages, 4143 KB  
Article
Efficient Extraction and Separation of Scandium from Scandium-Bearing Solid Waste and Acid by Synergistically Leaching Followed by Solvent Extraction
by Wen Cao, Jinmao Hua, Xi Jin, Minyu He, Yuntao Xin and Weizao Liu
Molecules 2024, 29(19), 4766; https://doi.org/10.3390/molecules29194766 - 9 Oct 2024
Cited by 3 | Viewed by 2377
Abstract
The solid waste and waste acid generated during the production of titanium dioxide contain considerable amount of scandium, which are valuable secondary resources. In this study, the titanium dioxide waste acid was used to leach the scandium-containing solid waste, and the leached solution [...] Read more.
The solid waste and waste acid generated during the production of titanium dioxide contain considerable amount of scandium, which are valuable secondary resources. In this study, the titanium dioxide waste acid was used to leach the scandium-containing solid waste, and the leached solution was pretreated for iron removal by reduction-crystallization process. After that, scandium was recovered from the leached solution by using the P204-TBP co-extraction system. The process parameters were investigated systematically. The results showed that iron powder reduction-crystallization for iron removal at molar ratio of Fe:Fe3+ = 0.25 was most suitable for subsequent extraction, and the scandium extraction efficiency could reach 100% using 15% P204-5% TBP at 25 °C with A/O = 8. This study provided a novel process for treating scandium-bearing solid waste with scandium-bearing waste acid, showing great potential for industrial application. Full article
(This article belongs to the Special Issue Solid Waste and Fly Ash Chemical Treatment Methods)
Show Figures

Figure 1

12 pages, 2864 KB  
Article
Ionic Liquid-Based Extraction Strategy for the Efficient and Selective Recovery of Scandium
by Sheli Zhang, Yuerong Yan, Qiang Zhou and Yunchang Fan
Molecules 2024, 29(17), 4007; https://doi.org/10.3390/molecules29174007 - 24 Aug 2024
Viewed by 1861
Abstract
The recovery of scandium (Sc) from highly acidic industrial effluents is currently hindered by the use of large quantities of flammable and toxic organic solvents. This study developed an extraction system using ionic liquids (ILs) and phenylphosphinic acid (PPAH) as diluents and an [...] Read more.
The recovery of scandium (Sc) from highly acidic industrial effluents is currently hindered by the use of large quantities of flammable and toxic organic solvents. This study developed an extraction system using ionic liquids (ILs) and phenylphosphinic acid (PPAH) as diluents and an extractant, respectively, to selectively recover Sc from the aqueous phase. The effect of IL chemical structure, aqueous pH and temperature on the extraction of Sc was systematically investigated and the findings revealed that ILs with longer alkyl side chains had reduced Sc extraction ability due to the presence of continuous nonpolar domains formed by the self-aggregation of the IL alkyl side chain. The IL/PPAH system maintained high extraction ability toward Sc across a wide temperature range (288 K to 318 K) and the extraction efficiency of Sc could be improved significantly by increasing the aqueous pH. The extraction process involved proton exchange, resulting in the formation of a metal−ligand complex (Sc(PPA)3). Full article
Show Figures

Figure 1

17 pages, 9723 KB  
Article
Study of the Adsorption and Separation Behavior of Scandium and Zirconium by Trialkyl Phosphine Oxide-Modified Resins in Sulfuric and Hydrochloric Acid Media
by Botao Xu, Xiangbiao Yin, Shunyan Ning, Yilai Zhong, Xinpeng Wang, Toyohisa Fujita, Mohammed F. Hamza and Yuezhou Wei
Toxics 2024, 12(5), 350; https://doi.org/10.3390/toxics12050350 - 10 May 2024
Cited by 6 | Viewed by 2235
Abstract
Zirconium is recognized as one of the main impurities of the rare earth element scandium during purification. It presents significant challenges due to its similar chemical properties, making separating it difficult. This study used trialkyl phosphine oxide (TRPO) as a functional ligand, and [...] Read more.
Zirconium is recognized as one of the main impurities of the rare earth element scandium during purification. It presents significant challenges due to its similar chemical properties, making separating it difficult. This study used trialkyl phosphine oxide (TRPO) as a functional ligand, and the effects of carrier type and acidity on adsorption performance were first investigated. Among these, the novel extraction resin SiO2-P as a carrier for TRPO demonstrated more prominent separation performance in 0.2 M H2SO4 and 5 M HCl solutions. The kinetic and isotherm data were consistent with the pseudo-secondary kinetics and Langmuir model, respectively, and the adsorption process could be regarded as homogeneous monolayer adsorption subject to the dual effects of chemisorption and internal diffusion. In addition, thermodynamic analysis showed that the adsorption process of zirconium under the experimental conditions was a spontaneous endothermic process. Combined with the results of SEM-EDS, FT-IR, and XPS analyses, scandium and zirconium were successfully adsorbed by the resin and uniformly distributed on its surface, and the greater affinity of the P=O groups on the resin for zirconium was the critical factor contributing to the separation of scandium and zirconium. Finally, scandium and zirconium in sulfuric acid and hydrochloric acid media were extracted and separated by column experiments, and the purity of scandium could reach 99.8% and 99.99%, respectively. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

23 pages, 6356 KB  
Article
Influence of Organic Matter Thermal Maturity on Rare Earth Element Distribution: A Study of Middle Devonian Black Shales from the Appalachian Basin, USA
by Shailee Bhattacharya, Shikha Sharma, Vikas Agrawal, Michael C. Dix, Giovanni Zanoni, Justin E. Birdwell, Albert S. Wylie and Tom Wagner
Energies 2024, 17(9), 2107; https://doi.org/10.3390/en17092107 - 28 Apr 2024
Cited by 4 | Viewed by 2205
Abstract
This study focuses on understanding the association of rare earth elements (REE; lanthanides + yttrium + scandium) with organic matter from the Middle Devonian black shales of the Appalachian Basin. Developing a better understanding of the role of organic matter (OM) and thermal [...] Read more.
This study focuses on understanding the association of rare earth elements (REE; lanthanides + yttrium + scandium) with organic matter from the Middle Devonian black shales of the Appalachian Basin. Developing a better understanding of the role of organic matter (OM) and thermal maturity in REE partitioning may help improve current geochemical models of REE enrichment in a wide range of black shales. We studied relationships between whole rock REE content and total organic carbon (TOC) and compared the correlations with a suite of global oil shales that contain TOC as high as 60 wt.%. The sequential leaching of the Appalachian shale samples was conducted to evaluate the REE content associated with carbonates, Fe–Mn oxyhydroxides, sulfides, and organics. Finally, the residue from the leaching experiment was analyzed to assess the mineralogical changes and REE extraction efficiency. Our results show that heavier REE (HREE) have a positive correlation with TOC in our Appalachian core samples. However, data from the global oil shales display an opposite trend. We propose that although TOC controls REE enrichment, thermal maturation likely plays a critical role in HREE partitioning into refractory organic phases, such as pyrobitumen. The REE inventory from a core in the Appalachian Basin shows that (1) the total REE ranges between 180 and 270 ppm and the OM-rich samples tend to contain more REE than the calcareous shales; (2) there is a relatively higher abundance of middle REE (MREE) to HREE than lighter REE (LREE); (3) there is a disproportionate increase in Y and Tb with TOC likely due to the rocks being over-mature; and (4) the REE extraction demonstrates that although the OM has higher HREE concentration, the organic leachates contain more LREE, suggesting it is more challenging to extract HREE from OM than using traditional leaching techniques. Full article
Show Figures

Figure 1

20 pages, 2202 KB  
Article
Adsorption of Scandium Ions by Amberlite XAD7HP Polymeric Adsorbent Loaded with Tri-n-Octylphosphine Oxide
by Diana Daminescu, Narcis Duteanu, Mihaela Ciopec, Adina Negrea, Petru Negrea, Nicoleta Sorina Nemeş, Bogdan Pascu, Cătălin Ianăşi and Lucian Cotet
Molecules 2024, 29(7), 1578; https://doi.org/10.3390/molecules29071578 - 1 Apr 2024
Cited by 5 | Viewed by 1747
Abstract
In an actual economic context, the demand for scandium has grown due to its applications in top technologies. However, further development of new technologies will lead to an increase in the market for Sc related to such technologies. The present study aims to [...] Read more.
In an actual economic context, the demand for scandium has grown due to its applications in top technologies. However, further development of new technologies will lead to an increase in the market for Sc related to such technologies. The present study aims to improve and upgrade existing technology in terms of efficient scandium recovery, proposing a new material with selective adsorptive properties for scandium recovery. To highlight the impregnation of Amberlite XAD7HP resin with tri-n-octylphosphine oxide extractant by the solvent-impregnated resin method, the obtained adsorbent material was characterized by physico-chemical techniques. Further, the specific surface of the adsorbent and the zero-point charge of the adsorbent surface have been determined. Different parameters, such as initial concentration, adsorbent amount, contact time, or temperature, have been studied. The initial pH effect was investigated when a maximum adsorption capacity of 31.84 mg g−1 was obtained at pH > 3, using 0.1 g of adsorbent and a contact time of 90 min and 298 K. An attempt was made to discuss and provide a clear representation of the studied adsorption process, proposing a specific mechanism for Sc(III) recovery from aqueous solutions through kinetic, thermodynamic, and equilibrium studies. Adsorption/desorption studies reveal that the prepared adsorbent material can be reused five times. Full article
Show Figures

Figure 1

28 pages, 32029 KB  
Article
Target Development towards First Production of High-Molar- Activity 44gSc and 47Sc by Mass Separation at CERN-MEDICIS
by Edgars Mamis, Charlotte Duchemin, Valentina Berlin, Cyril Bernerd, Mathieu Bovigny, Eric Chevallay, Bernard Crepieux, Vadim Maratovich Gadelshin, Reinhard Heinke, Ronaldo Mendez Hernandez, Jake David Johnson, Patrīcija Kalniņa, Alexandros Koliatos, Laura Lambert, Ralf Erik Rossel, Sebastian Rothe, Julien Thiboud, Felix Weber, Klaus Wendt, Rudolfs Jānis Zabolockis, Elīna Pajuste and Thierry Storaadd Show full author list remove Hide full author list
Pharmaceuticals 2024, 17(3), 390; https://doi.org/10.3390/ph17030390 - 18 Mar 2024
Cited by 3 | Viewed by 5914
Abstract
The radionuclides 43Sc,  44g/mSc, and 47Sc can be produced cost-effectively in sufficient yield for medical research and applications by irradiating  natTi and  natV target materials with protons. Maximizing [...] Read more.
The radionuclides 43Sc,  44g/mSc, and 47Sc can be produced cost-effectively in sufficient yield for medical research and applications by irradiating  natTi and  natV target materials with protons. Maximizing the production yield of the therapeutic 47Sc in the highest cross section energy range of 24–70 MeV results in the co-production of long-lived, high-γ-ray-energy 46Sc and 48Sc contaminants if one does not use enriched target materials. Mass separation can be used to obtain high molar activity and isotopically pure Sc radionuclides from natural target materials; however, suitable operational conditions to obtain relevant activity released from irradiated  natTi and  natV have not yet been established at CERN-MEDICIS and ISOLDE. The objective of this work was to develop target units for the production, release, and purification of Sc radionuclides by mass separation as well as to investigate target materials for the mass separation that are compatible with high-yield Sc radionuclide production in the 9–70 MeV proton energy range. In this study, the in-target production yield obtained at MEDICIS with 1.4 GeV protons is compared with the production yield that can be reached with commercially available cyclotrons. The thick-target materials were irradiated at MEDICIS and comprised of metallic  natTi,  natV metallic foils, and  natTiC pellets. The produced radionuclides were subsequently released, ionized, and extracted from various target and ion source units and mass separated. Mono-atomic Sc laser and molecule ionization with forced-electron-beam-induced arc-discharge ion sources were investigated. Sc radionuclide production in thick  natTi and  natV targets at MEDICIS is equivalent to low- to medium-energy cyclotron-irradiated targets at medically relevant yields, furthermore benefiting from the mass separation possibility. A two-step laser resonance ionization scheme was used to obtain mono-atomic Sc ion beams. Sc radionuclide release from irradiated target units most effectively could be promoted by volatile scandium fluoride formation. Thus, isotopically pure  44g/mSc, 46Sc, and 47Sc were obtained as mono-atomic and molecular ScF 2+ ion beams and collected for the first time at CERN-MEDICIS. Among all the investigated target materials,  natTiC is the most suitable target material for Sc mass separation as molecular halide beams, due to high possible operating temperatures and sustained release. Full article
Show Figures

Figure 1

12 pages, 1918 KB  
Article
The Efficacy of Different Laser Applications on Dentin Sealing in Preventing Discoloration Induced by Mineral Trioxide Aggregate
by Yesim Sesen Uslu, Burçin Arıcan Alpay, Pinar Sesen and Taha Özyürek
Materials 2024, 17(5), 1015; https://doi.org/10.3390/ma17051015 - 22 Feb 2024
Cited by 4 | Viewed by 1953
Abstract
The aim of this in vitro study was to evaluate the effect of the pre-application of a dentin-bonding agent and the application of different lasers on the prevention of tooth discoloration caused by mineral trioxide aggregate (MTA) in the presence of blood. Sixty [...] Read more.
The aim of this in vitro study was to evaluate the effect of the pre-application of a dentin-bonding agent and the application of different lasers on the prevention of tooth discoloration caused by mineral trioxide aggregate (MTA) in the presence of blood. Sixty extracted human anterior teeth were selected, with root lengths standardized to 10 mm and root canals shaped using Gates-Glidden drills #3 to #5. The samples were divided into six groups (n = 10): Group 1 with no surface treatment and Groups 2 to 6 with Optibond universal adhesive and Neodymium yttrium aluminum garnet (Nd:YAG), Erbium yttrium aluminum garnet (Er:YAG), Erbium-chromium-yttrium-scandium-gallium-garnet (Er:Cr:YSGG), and diode laser applications, respectively. Root canals were filled with fresh human blood, and ProRoot MTA and a collagen barrier were then placed. Color changes were measured with a spectrophotometer at 0, 7, 30, 90, and 180 days post MTA placement. Color differences (∆E) were analyzed using a two-factor mixed-design ANOVA with the Sidak method (p = 0.05). All treatment groups exhibited discoloration above the acceptability threshold. Although all treatment approaches exhibited less color change compared to the control group (p < 0.05), there was no significant difference among them in terms of preventing color change (p > 0.05). It was determined that none of the methods could guarantee 100% prevention of discoloration caused by MTA–blood contact. Full article
(This article belongs to the Special Issue Biomaterials and Mechanics in Dentistry)
Show Figures

Figure 1

24 pages, 7446 KB  
Article
Controlling Crystal Growth of a Rare Earth Element Scandium Salt in Antisolvent Crystallization
by Josia Tonn, Andreas Roman Fuchs, Leon Libuda and Andreas Jupke
Crystals 2024, 14(1), 94; https://doi.org/10.3390/cryst14010094 - 19 Jan 2024
Cited by 3 | Viewed by 2518
Abstract
Recovering scandium from hydrometallurgical residue bears the potential of a better supply of an industry depending on imports from countries with more mineral resources than Europe. To recover scandium from unused metal production residue, strip liquors from a solvent extraction process are treated [...] Read more.
Recovering scandium from hydrometallurgical residue bears the potential of a better supply of an industry depending on imports from countries with more mineral resources than Europe. To recover scandium from unused metal production residue, strip liquors from a solvent extraction process are treated with an antisolvent to crystallize the ammonium scandium fluoride salt (NH4)3ScF6 with high product yields. However, high local supersaturation leads to strong nucleation, resulting in small crystals, which are difficult to handle in the subsequent solid-liquid separation. Reducing local supersaturation makes it possible to reduce nucleation and control crystal growth. Key operation parameters are the concentration of ethanol in the feed and its addition rate. The concentration of the antisolvent in the feed causes a shorter mixing time in the proximity of the antisolvent inlet, which leads to a smaller local supersaturation and therefore less nucleation and more crystal growth. Lowering the antisolvent addition rate enhances this effect. The crystal size distribution during and at the end of the fed-batch process is analyzed by SEM imagery of sampled and dried crystals. To produce reproducible crystal size distribution from SEM images the neural network Mask R-CNN has been trained for the automated crystal detection and size analysis. Full article
(This article belongs to the Special Issue Crystallization Process and Simulation Calculation, Second Edition)
Show Figures

Figure 1

13 pages, 9941 KB  
Article
Kinetics of Aluminum and Scandium Extraction from Desilicated Coal Fly Ash by High-Pressure HCl Leaching
by Andrei Shoppert, Dmitry Valeev and Irina Loginova
Metals 2023, 13(12), 1994; https://doi.org/10.3390/met13121994 - 9 Dec 2023
Cited by 5 | Viewed by 2917
Abstract
Coal fly ash (CFA) is a waste that forms via coal combustion in thermal power stations. CFA consists of numerous components, whose recovery can address environmental and resource concerns associated with sustainable development. Most of the alumina (Al2O3) and [...] Read more.
Coal fly ash (CFA) is a waste that forms via coal combustion in thermal power stations. CFA consists of numerous components, whose recovery can address environmental and resource concerns associated with sustainable development. Most of the alumina (Al2O3) and rare-earth elements (REEs) in CFA are contained in the amorphous glassy mass and in the refractory mullite phase (3Al2O3·SiO2), which can be dissolved only using high-pressure acid leaching (HPAL). In this paper, the method of preactivation of CFA by treatment with a highly concentrated NaOH solution is used to increase the efficiency of Al and Sc extraction during HPAL. This method allows for the elimination of an inert aluminosilicate layer from the surface of mullite, transferring the REEs into an acid-soluble form. The Al and Sc extraction can reach 80% after HCl HPAL at T = 170 °C and a 90 min duration. According to the kinetic data, the dissolution of Al follows the surface chemical reaction and intraparticle diffusion shrinking core models in the initial and later stages of leaching, respectively. A high activation energy of 52.78 kJ mol−1 was observed at low temperatures, and a change in the mechanism occurred after 170 °C when the activation energy decreased to 26.34 kJ mol–1. The obtained activation energy value of 33.51 kJ mol−1 for Sc leaching indicates that diffusion has a strong influence at all studied temperatures. The residue was analysed by SEM-EDX, XRF, BET, and XRD methods in order to understand the mechanism of DCFA HPAL process. Full article
(This article belongs to the Special Issue Selective Separation and Comprehensive Recovery of Valuable Metals)
Show Figures

Figure 1

14 pages, 3021 KB  
Article
Kinetic Modelling the Solid–Liquid Extraction Process of Scandium from Red Mud: Influence of Acid Composition, Contact Time and Temperature
by Diana Daminescu, Narcis Duteanu, Mihaela Ciopec, Adina Negrea, Petru Negrea, Nicoleta Sorina Nemeş, Bogdan Pascu, Radu Lazău and Adina Berbecea
Materials 2023, 16(21), 6998; https://doi.org/10.3390/ma16216998 - 1 Nov 2023
Cited by 10 | Viewed by 2560
Abstract
Industry represents a fundamental component of modern society, with the generation of massive amounts of industrial waste being the inevitable result of development activities in recent years. Red mud is an industrial waste generated during alumina production using the Bayer process of refining [...] Read more.
Industry represents a fundamental component of modern society, with the generation of massive amounts of industrial waste being the inevitable result of development activities in recent years. Red mud is an industrial waste generated during alumina production using the Bayer process of refining bauxite ore. It is a highly alkaline waste due to the incomplete removal of NaOH. There are several opinions in both the literature and legislation on the hazards of red mud. According to European and national legislation, this mud is not on the list of hazardous wastes; however, if the list of criteria are taken into account, it can be considered as hazardous. The complex processing of red mud is cost-effective because it contains elements such as iron, manganese, sodium, calcium, magnesium, zinc, strontium, lead, copper, cadmium, bismuth, barium and rare earths, especially scandium. Therefore, the selection of an extraction method depends on the form in which the element is present in solution. Extraction is one of the prospective separation and concentration methods. In this study, we evaluated the kinetic modelling of the solid–liquid acid extraction process of predominantly scandium as well as other elements present in red mud. Therefore, three acids (HCl, HNO3 and H2SO4) at different concentrations (10, 20 and 30%) were targeted for the extraction of Sc(III) from solid red mud. Specific parameters of the kinetics of the extraction process were studied, namely the solid:liquid ratio, initial acid concentration, contact time and temperature. The extraction kinetics of Sc(III) with acids was evaluated using first- and second-order kinetic models, involving kinetic parameters, rate constants, saturation concentration and activation energy. The second-order kinetic model was able to describe the mechanism of Sc(III) extraction from red mud. In addition, this study provides an overview on the mechanism of mass transfer involved in the acid extraction process of Sc(III), thereby enabling the design, optimization and control of large-scale processes for red mud recovery. Full article
Show Figures

Figure 1

Back to TopTop