Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (207)

Search Parameters:
Keywords = salt ion inhibition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1013 KiB  
Article
Investigating the Effect of Zinc Salts on Escherichia coli and Enterococcus faecalis Biofilm Formation
by Sara Deumić, Ahmed El Sayed, Mahmoud Hsino, Andrzej Kulesa, Neira Crnčević, Naida Vladavić, Aja Borić and Monia Avdić
Appl. Sci. 2025, 15(15), 8383; https://doi.org/10.3390/app15158383 - 29 Jul 2025
Viewed by 558
Abstract
Water supply and sewage drainage pipes have a critical role to play in the provision of clean water and sanitation, and pipe material selection influences infrastructure life, water quality, and microbial communities. Zinc-containing compounds are highly valued due to their mechanical properties, anticorrosion [...] Read more.
Water supply and sewage drainage pipes have a critical role to play in the provision of clean water and sanitation, and pipe material selection influences infrastructure life, water quality, and microbial communities. Zinc-containing compounds are highly valued due to their mechanical properties, anticorrosion behavior, and antimicrobial properties. However, the effect of zinc salts, such as zinc sulfate heptahydrate and zinc chloride, on biofilm-forming bacteria, including Escherichia coli and Enterococcus faecalis, is not well established. This study investigates the antibacterial properties of these zinc salts under simulated pipeline conditions using minimum inhibitory concentration assays, biofilm production assays, and antibiotic sensitivity tests. Findings indicate that zinc chloride is more antimicrobial due to its higher solubility and bioavailability of Zn2+ ions. At higher concentrations, zinc salts inhibit the development of a biofilm, whereas sub-inhibitory concentrations enhance the growth of biofilm, suggesting a stress response in bacteria. zinc chloride also enhances antibiotic efficacy against E. coli but induces resistance in E. faecalis. These findings highlight the dual role of zinc salts in preventing biofilm formation and modulating antimicrobial resistance, necessitating further research to optimize material selection for water distribution networks and mitigate biofilm-associated risks in pipeline systems. Full article
Show Figures

Figure 1

23 pages, 4385 KiB  
Article
Melatonin Enhances Tomato Salt Tolerance by Improving Water Use Efficiency, Photosynthesis, and Redox Homeostasis
by Chen Ru, Yuxuan Liu, Xingjiao Yu, Chuanliu Xie and Xiaotao Hu
Agronomy 2025, 15(7), 1746; https://doi.org/10.3390/agronomy15071746 - 20 Jul 2025
Viewed by 281
Abstract
Salinity stress is a primary abiotic constraint limiting global crop productivity, with progressive soil salinization inducing growth inhibition and physiological dysfunction in plants. Although melatonin (MT) has been extensively documented to enhance stress adaptation, the underlying mechanisms through which it mediates salt tolerance [...] Read more.
Salinity stress is a primary abiotic constraint limiting global crop productivity, with progressive soil salinization inducing growth inhibition and physiological dysfunction in plants. Although melatonin (MT) has been extensively documented to enhance stress adaptation, the underlying mechanisms through which it mediates salt tolerance by integrating physiological processes remain unclear. This study investigated the effects of varying MT concentrations on photosynthetic performance, plant water relations, water-use efficiency, and stress-responsive physiological parameters in tomatoes, aiming to identify the key physiological pathways for MT-mediated salt stress mitigation. The results showed that salt stress significantly reduced the leaf relative water content and root hydraulic conductivity, suppressed the photosynthetic rate, and ultimately caused significant reductions in the aboveground and root biomass. MT spraying effectively improved leaf water status and root water uptake capacity, enhancing the photosynthetic rate and water-use efficiency, thereby providing material and energy support for plant growth. Furthermore, MT spraying increased the total antioxidant capacity in leaves and promoted the synthesis of phenolic and flavonoid compounds, thereby reducing oxidative damage. Simultaneously, it stimulated the accumulation of osmolytes to enhance cellular osmotic adjustment capacity and optimized ion uptake to maintain cellular ion homeostasis. Among the tested concentrations, 100 μM MT showed the most significant alleviative effects. This concentration comprehensively enhanced the salt tolerance and growth performance of tomato plants by synergistically optimizing water use, photosynthetic function, antioxidant defense, and ion balance. In conclusion, these findings provide experimental evidence for elucidating the physiological mechanisms underlying MT-mediated salt tolerance in tomatoes and offer theoretical references for the rational application of MT in crop production under saline conditions. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

14 pages, 1342 KiB  
Article
Mitigating Deicer-Induced Salinity Through Activated Carbon and Salt-Tolerant Grass Integration: A Case of Pennisetum alopecuroides
by Jae-Hyun Park, Hyo-In Lim, Myung-Hun Lee, Yong-Han Yoon and Jin-Hee Ju
Environments 2025, 12(7), 250; https://doi.org/10.3390/environments12070250 - 20 Jul 2025
Viewed by 577
Abstract
The use of chloride-based deicing salts, particularly sodium chloride (NaCl) and calcium chloride (CaCl2), is a common practice in cold regions for maintaining road safety during winter. However, the accumulation of salt residues in adjacent soils poses serious environmental threats, including [...] Read more.
The use of chloride-based deicing salts, particularly sodium chloride (NaCl) and calcium chloride (CaCl2), is a common practice in cold regions for maintaining road safety during winter. However, the accumulation of salt residues in adjacent soils poses serious environmental threats, including reduced pH, increased electrical conductivity (EC), disrupted soil structure, and plant growth inhibition. This study aimed to evaluate the combined effect of activated carbon (AC) and Pennisetum alopecuroides, a salt-tolerant perennial grass, in alleviating salinity stress under deicer-treated soils. A factorial greenhouse experiment was conducted using three fixed factors: (i) presence or absence of Pennisetum alopecuroides, (ii) deicer type (NaCl or CaCl2), and (iii) activated carbon mixing ratio (0, 1, 2, 5, and 10%). Soil pH, EC, and ion concentrations (Na+, Cl, Ca2+) were measured, along with six plant growth indicators. The results showed that increasing AC concentrations significantly increased pH and reduced EC and ion accumulation, with the 5% AC treatment being optimal in both deicer systems. Plant physiological responses were improved in AC-amended soils, especially under CaCl2 treatment, indicating less ion toxicity and better root zone conditions. The interaction effects between AC, deicer type, and plant presence were statistically significant (p < 0.05), supporting a synergistic remediation mechanism involving both adsorption and biological uptake. Despite the limitations of short-term controlled conditions, this study offers a promising phytomanagement strategy using natural adsorbents and salt-tolerant plants for sustainable remediation of salt-affected soils in road-adjacent and urban environments. Full article
Show Figures

Figure 1

15 pages, 1490 KiB  
Article
Comparative Transcriptome and Hormonal Analysis Reveals the Mechanisms of Salt Tolerance in Rice
by Dingsha Jin, Yanchao Xu, Asif Iqbal, Yuqing Liu, Yage Zhang, Youzhen Lin, Liqiong Tang, Xinhua Wang, Junjie Wang, Mengshu Huang, Peng Xu and Xiaoning Wang
Int. J. Mol. Sci. 2025, 26(14), 6660; https://doi.org/10.3390/ijms26146660 - 11 Jul 2025
Viewed by 258
Abstract
Salt stress is a major constraint to seed germination and early seedling growth in rice, affecting crop establishment and productivity. To understand the mechanisms underlying salt tolerance, we investigated two rice varieties with contrasting responses as follows: salt-tolerant sea rice 86 (SR86) and [...] Read more.
Salt stress is a major constraint to seed germination and early seedling growth in rice, affecting crop establishment and productivity. To understand the mechanisms underlying salt tolerance, we investigated two rice varieties with contrasting responses as follows: salt-tolerant sea rice 86 (SR86) and salt-sensitive P559. Germination assays under increasing NaCl concentrations (50–300 mM) revealed that 100 mM NaCl induced clear phenotypic divergence. SR86 maintained bud growth and showed enhanced root elongation under moderate salinity, while P559 exhibited significant growth inhibition. Transcriptomic profiling of buds and roots under 100 mM NaCl identified over 3724 differentially expressed genes (DEGs), with SR86 showing greater transcriptional plasticity, particularly in roots. Gene ontology enrichment revealed tissue- and genotype-specific responses. Buds showed enrichment in photosynthesis-related and redox-regulating pathways, while roots emphasized ion transport, hormonal signaling, and oxidative stress regulation. SR86 specifically activated genes related to photosystem function, DNA repair, and transmembrane ion transport, while P559 showed activation of oxidative stress-related and abscisic acid (ABA)-regulated pathways. Hormonal profiling supported transcriptomic findings as follows: both varieties showed increased gibberellin 3 (GA3) and gibberellin 4 (GA4) levels under salt stress. SR86 showed elevated auxin (IAA) and reduced jasmonic acid (JA), whereas P559 maintained stable IAA and JA levels. Ethylene precursor and salicylic acid levels declined in both varieties. ABA levels rose slightly but not significantly. These findings suggest that SR86’s superior salt tolerance results from rapid growth, robust transcriptional reprogramming, and coordinated hormonal responses. This study offers key insights into early-stage salt stress adaptation and identifies molecular targets for improving stress resilience in rice. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 15772 KiB  
Article
Impact of Inorganic Salts on Rheology, Strength, and Microstructure of Excess-Sulfate Phosphogypsum Slag Cement
by Zhe Chen, Zixin Xue, Yong Xia, Chunli Wu, Junming Mai, Weisen Liu, Yuan Feng and Jianhe Xie
Buildings 2025, 15(13), 2348; https://doi.org/10.3390/buildings15132348 - 4 Jul 2025
Viewed by 267
Abstract
Excess-sulfate phosphogypsum slag cement (EPSC), offering the potential for large-scale phosphogypsum (PG) utilization, has drawn significant attention. However, its susceptibility to salt erosion in marine/saline environments remains unquantified, hindering engineering applications. This study, therefore, systematically investigates the effect of various salts (NaCl, MgCl [...] Read more.
Excess-sulfate phosphogypsum slag cement (EPSC), offering the potential for large-scale phosphogypsum (PG) utilization, has drawn significant attention. However, its susceptibility to salt erosion in marine/saline environments remains unquantified, hindering engineering applications. This study, therefore, systematically investigates the effect of various salts (NaCl, MgCl2, KCl, and Na2SO4) at different concentrations (0.5–1.5%) on the hydration mechanism and performance of EPSC using rheometry, strength tests, and microstructural characterization (XRD/SEM-EDS). The findings reveal that EPSC exhibits low initial yield stress and plastic viscosity, both of which increase over time. The addition of Na+, Cl, and SO42− ions promotes hydration and flocculent structure formation in the EPSC paste, thereby enhancing the yield stress and plastic viscosity. In contrast, Mg2+ and K+ ions inhibit the hydration reaction, although Mg2+ temporarily increases the plastic viscosity by forming Mg(OH)2 during the initial stage of the reaction. Both Na2SO4 and NaCl improve mechanical properties when their concentrations are within the 0.5–1.0% range; however, excessive amounts (>1%) negatively impact these properties. Significantly, adding 0.5% NaCl significantly improves the mechanical properties of EPSC, achieving a 28-day compressive strength of 51.06 MPa—a 9.5% increase compared to the control group. XRD and SEM-EDX analyses reveal that NaCl enhances pore structure via Friedel’s salt formation, while Na2SO4 promotes the early nucleation of ettringite. However, excessive ettringite formation in the later stages of the hydration reaction due to Na2SO4 may negatively affect compressive strength due to the inherent abundance of SO42− in the EPSC system. Therefore, attention should be paid to the effect of excessive SO42− on the system. These results establish salt-type/dosage thresholds for EPSC design, enabling its rational use in coastal infrastructure where salt resistance is critical. Full article
Show Figures

Figure 1

8 pages, 2004 KiB  
Article
Updating the Mechanism of Bicarbonate (HCO3) Activation of Soluble Adenylyl Cyclase (sAC)
by Jacob Ferreira, Hayden Belliveau, Clemens Steegborn, Jochen Buck and Lonny R. Levin
Int. J. Mol. Sci. 2025, 26(13), 6401; https://doi.org/10.3390/ijms26136401 - 3 Jul 2025
Viewed by 267
Abstract
Soluble adenylyl cyclase (sAC) is molecularly and biochemically distinct from other mammalian nucleotidyl cyclases. It is uniquely regulated directly by bicarbonate (HCO3) and calcium (Ca2+) ions and is responsive to physiologic fluctuations in levels of its substrate, adenosine [...] Read more.
Soluble adenylyl cyclase (sAC) is molecularly and biochemically distinct from other mammalian nucleotidyl cyclases. It is uniquely regulated directly by bicarbonate (HCO3) and calcium (Ca2+) ions and is responsive to physiologic fluctuations in levels of its substrate, adenosine triphosphate (ATP). Our initial in vitro biochemical studies suggested two mechanisms for HCO3-dependent elevation of sAC activity: increasing catalytic rate and relieving inhibition observed in the presence of supraphysiological levels of substrate, ATP. Structural and mutational studies revealed that HCO3 increases catalytic rate via the disruption of a salt bridge that facilitates productive interactions with the substrate. Here, we demonstrate that the HCO3 stimulation observed under supraphysiological ATP concentrations is due to the mitigation of ATP-dependent acidification. Therefore, we conclude that the sole physiologically relevant mechanism of HCO3 regulation of sAC is through its pH-independent effect facilitating productive substrate binding to the catalytic site. Full article
Show Figures

Figure 1

12 pages, 1019 KiB  
Article
Purification and Characterization of a Protease Using Aspergillus oryzae Under Submerged Fermentation Using Dairy By-Products as a Substrate
by Aline Ferreira Sobral, Diego Gomes Ramos, Bárbara Cibele Souza Lima, Tatiana Pereira Shiu Lin Liu, Maria Rafaele Oliveira Bezerra da Silva, Luiz Henrique Svintiskas Lino, Kethylen Barbara Barbosa Cardoso, Wendell Wagner Campos Albuquerque, Thiago Pajeú Nascimento and Romero Marcos Pedrosa Brandão Costa
Catalysts 2025, 15(6), 575; https://doi.org/10.3390/catal15060575 - 10 Jun 2025
Viewed by 1067
Abstract
Whey, a large-scale dairy industry by-product, can be converted into whey protein concentrate (WPC), providing a cost-effective nutrient-rich substrate for microbial fermentation. We investigated protease production by Aspergillus oryzae using WPC as the sole substrate in submerged fermentation. Following fermentation, the protease was [...] Read more.
Whey, a large-scale dairy industry by-product, can be converted into whey protein concentrate (WPC), providing a cost-effective nutrient-rich substrate for microbial fermentation. We investigated protease production by Aspergillus oryzae using WPC as the sole substrate in submerged fermentation. Following fermentation, the protease was purified sequentially from the crude extract by salting-out, which yielded a substantial purification factor (~39), and subsequent ion-exchange chromatography. The non-adsorbed chromatographic fraction showed the highest protease activity (92.6 U/mL) and revealed one main protein band ~45 kDa via SDS-PAGE. Enzyme characterization demonstrated activity across neutral-to-alkaline conditions, optimal at pH 9.0 and 37 °C, with stability maintained between 30 °C and 37 °C. The enzyme was classified as a serine protease based on strong inhibition by PMSF and SDS; its activity was also inhibited by Zn2+, Mg2+, and K+, but enhanced by Ca2+. This work validates WPC as an efficient substrate for protease production by A. oryzae and presents a promising strategy for valorizing industrial by-products through sustainable biotechnology. Full article
Show Figures

Figure 1

19 pages, 2223 KiB  
Article
The Effect of Salinity on Heavy Metal Tolerance in Two Energy Willow Varieties
by Kinga Drzewiecka, Zuzanna Kaźmierczak, Magdalena Woźniak and Michał Rybak
Plants 2025, 14(12), 1747; https://doi.org/10.3390/plants14121747 - 7 Jun 2025
Cited by 1 | Viewed by 573
Abstract
This study evaluated the response of two willow varieties, Salix × smithiana Willd. and Salix viminalis L. var. Gigantea, to selected heavy metals and elevated soil salinity, simulating complex environmental conditions during phytoremediation. Plants propagated from stem cuttings were cultivated in pots under [...] Read more.
This study evaluated the response of two willow varieties, Salix × smithiana Willd. and Salix viminalis L. var. Gigantea, to selected heavy metals and elevated soil salinity, simulating complex environmental conditions during phytoremediation. Plants propagated from stem cuttings were cultivated in pots under field conditions in soil artificially contaminated with a mixture of Cd, Ni, Cu, Zn, and Pb salts at two concentration levels representing lower and higher guideline thresholds. Sodium chloride was added to induce salinity stress. S. × smithiana exhibited enhanced growth under combined metal and salinity stress, suggesting efficient tolerance mechanisms. This was reflected in elevated relative water content (RWC) and increased accumulation of Zn and Cd in shoots. In contrast, Gigantea showed growth inhibition and primarily sequestered metals in roots, indicating a stress-avoidance strategy and reduced metal translocation. While salinity alone negatively affected both varieties, its combination with metals mitigated growth reduction in S. × smithiana, possibly due to improved ion homeostasis or cross-tolerance. Zn and Cd displayed the highest bioconcentration and mobility. Based on bioconcentration factor (BCF) and translocation factor (TF), S. × smithiana appears suitable for phytoextraction, whereas S. viminalis var. Gigantea appears suitable for phytostabilization. These results support species-specific approaches to phytoremediation in multi-contaminant environments. Full article
(This article belongs to the Special Issue Plant Functioning Under Abiotic Stress)
Show Figures

Figure 1

14 pages, 1279 KiB  
Review
Urushiol-Based Antimicrobial Coatings: Molecular Mechanisms, Structural Innovations, and Multifunctional Applications
by Tianyi Wang, Jiangyan Hou, Yao Wang, Xinhao Feng and Xinyou Liu
Polymers 2025, 17(11), 1500; https://doi.org/10.3390/polym17111500 - 28 May 2025
Viewed by 661
Abstract
Urushiol, the principal bioactive component of natural lacquer, has emerged as a promising candidate for developing eco-friendly antimicrobial coatings due to its unique catechol structure and long alkyl chains. This review systematically elucidates the molecular mechanisms underpinning urushiol’s broad-spectrum antimicrobial activity, including membrane [...] Read more.
Urushiol, the principal bioactive component of natural lacquer, has emerged as a promising candidate for developing eco-friendly antimicrobial coatings due to its unique catechol structure and long alkyl chains. This review systematically elucidates the molecular mechanisms underpinning urushiol’s broad-spectrum antimicrobial activity, including membrane disruption via hydrophobic interactions, oxidative stress induction through redox-active phenolic groups, and enzyme inhibition via hydrogen bonding. Recent advances in urushiol-based composite systems—such as metal coordination networks, organic–inorganic hybrids, and stimuli-responsive platforms—are critically analyzed, highlighting their enhanced antibacterial performance, environmental durability, and self-healing capabilities. Case studies demonstrate that urushiol derivatives achieve >99% inhibition against both Gram-positive and Gram-negative pathogens, outperforming conventional agents like silver ions and quaternary ammonium salts. Despite progress, challenges persist in balancing antimicrobial efficacy, mechanical stability, and biosafety for real-world applications. Future research directions emphasize precision molecular engineering, synergistic multi-target strategies, and lifecycle toxicity assessments to advance urushiol coatings in medical devices, marine antifouling, and antiviral surfaces. This work provides a comprehensive framework for harnessing natural phenolic compounds in next-generation sustainable antimicrobial materials. Full article
Show Figures

Figure 1

15 pages, 2347 KiB  
Article
Synthesis of Porous Lithium Ion Sieve with High Purity for Li+ Adsorption
by Jing Zhu, Xiyun Yang, Yongqiang Huang and Rongzheng Yao
Materials 2025, 18(10), 2373; https://doi.org/10.3390/ma18102373 - 20 May 2025
Cited by 1 | Viewed by 401
Abstract
With the depletion of solid lithium ore, extracting lithium from salt lake brine has become a critical focus for future endeavors. A four-step method was used to synthesize high-purity H1.6Mn1.6O4 for extracting Li+. Porous cubic Mn [...] Read more.
With the depletion of solid lithium ore, extracting lithium from salt lake brine has become a critical focus for future endeavors. A four-step method was used to synthesize high-purity H1.6Mn1.6O4 for extracting Li+. Porous cubic Mn2O3 was hydrothermally synthesized with carbon spheres and surfactants as templates. Then, it was converted to LiMnO2 by calcining with Li2CO3. After roasting and acid pickling, H1.6Mn1.6O4 was successfully synthesized. The impacts of calcination temperature, Li/Mn molar ratio and glucose addition on LiMnO2 composition, loss percentage of dissolved Mn in precursor, and the adsorption characteristics of the lithium ion sieve were studied. Glucose inhibited the formation of LiMn2O4 and promoted the formation of pure LiMnO2. The resulting precursor without impurities showed porous structure. After acid pickling, H1.6Mn1.6O4 showed a high-adsorption performance and excellent cycle performance. After five cycles, adsorption capacity remained above 30 mg/g, and the loss percentage of dissolved Mn stabilized at about 1%. The Li+–H+ exchange conformed to pseudo-second-order adsorption dynamics and the Langmuir adsorption isotherm equation, indicating that the adsorption process can be classified as monolayer chemical adsorption. Full article
Show Figures

Figure 1

18 pages, 4886 KiB  
Article
Kinetics of Different Substituted Phenolic Compounds’ Aqueous OH Oxidation in Atmosphere
by Dandan Hu, Zixuan Wang, Eleonora Aruffo, Xuanli Dai, Zhuzi Zhao and Zhaolian Ye
Atmosphere 2025, 16(5), 567; https://doi.org/10.3390/atmos16050567 - 9 May 2025
Cited by 1 | Viewed by 962
Abstract
Atmospheric aqueous-phase reactions have been recognized as an important source of secondary organic aerosols (SOAs). However, the unclear reaction kinetics and mechanics hinder the in-depth understanding of the SOA sources and formation processes. This study selected ten different substituted phenolic compounds (termed as [...] Read more.
Atmospheric aqueous-phase reactions have been recognized as an important source of secondary organic aerosols (SOAs). However, the unclear reaction kinetics and mechanics hinder the in-depth understanding of the SOA sources and formation processes. This study selected ten different substituted phenolic compounds (termed as PhCs) emitted from biomass burning as precursors, to investigate the kinetics using OH oxidation reactions under simulated sunlight. The factors influencing reaction rates were examined, and the contribution of reactive oxygen species (ROS) was evaluated through quenching and kinetic analysis experiments. The results showed that the pseudo-first-order rate constants (kobs) for the OH oxidation of phenolic compounds ranged from 1.03 × 10−4 to 7.85 × 10−4 s−1 under simulated sunlight irradiation with an initial H2O2 concentration of 3 mM. Precursors with electron-donating groups (-OH, -OCH3, -CH3, etc.) exhibited higher electrophilic radical reactivity due to the enhanced electron density of the benzene ring, leading to higher reaction rates than those with electron-withdrawing groups (-NO2, -CHO, -COOH). At pH 2, the second-order reaction rate (kPhCs, OH) was lower than at pH 5. However, the kobs did not show dependence on pH. The presence of O2 facilitated substituted phenols’ photodecay. Inorganic salts and transition metal ions exhibited varying effects on reaction rates. Specifically, NO3 and Cu2+ promoted kPhCs, OH, Cl significantly enhanced the reaction at pH 2, while SO42− inhibited the reaction. The kPhCs, OH were determined to be in the range of 109~1010 L mol−1 s−1 via the bimolecular rate method, and a modest relationship with their oxidation potential was found. Additionally, multiple substituents can suppress the reactivity of phenolic compounds toward •OH based on Hammett plots. Quenching experiments revealed that •OH played a dominant role in phenolic compound degradation (exceeding 65%). Electron paramagnetic resonance confirmed the generation of singlet oxygen (1O2) in the system, and probe-based quantification further explored the concentrations of •OH and 1O2 in the system. Based on reaction rates and concentrations, the atmospheric aqueous-phase lifetimes of phenolic compounds were estimated, providing valuable insights for expanding atmospheric kinetic databases and understanding the chemical transformation and persistence of phenolic substances in the atmosphere. Full article
(This article belongs to the Special Issue Coordinated Control of PM2.5 and O3 and Its Impacts in China)
Show Figures

Figure 1

12 pages, 3026 KiB  
Article
Salt Stress-Induced Ascorbic Acid Accumulation and Its Trade-Off with Mannan Content in Tomato
by Chiaki Hasegawa, Kaori Yamada, Natsuki Hoyano, Mao Sano, Kiei Soyama and Hiroaki Iwai
Horticulturae 2025, 11(4), 400; https://doi.org/10.3390/horticulturae11040400 - 9 Apr 2025
Viewed by 631
Abstract
Salt stress causes osmotic stress and ion toxicity, often inhibiting plant growth and metabolism. However, salt-stressed tomato plants accumulate ascorbic acid, resulting in fruits with high commercial value. However, it was not well understood how mannose, the material for the synthesis of ascorbic [...] Read more.
Salt stress causes osmotic stress and ion toxicity, often inhibiting plant growth and metabolism. However, salt-stressed tomato plants accumulate ascorbic acid, resulting in fruits with high commercial value. However, it was not well understood how mannose, the material for the synthesis of ascorbic acid, and its metabolism are affected under salt stress conditions. In this study, we found that tomatoes grown under salinity stress had increased levels of ascorbic acid, which correlated with decreased levels of mannan in the skin and seeds. Expression analysis of the ascorbic acid synthase gene showed increased expression in early ripening stages under salt stress. In addition, the expression of cellulose synthase-like A (CSLA), genes involved in mannan metabolism, increased significantly during mid-ripening in the control condition. Since ascorbic acid and mannan share mannose as a precursor, they are likely to compete for it. This suggests that salt-stressed tomatoes may be deficient in both ascorbic acid and mannose, thereby affecting mannan synthesis. To investigate this trade-off, we developed a culture system with added mannose. The results showed that in salt-stressed tomatoes supplemented with mannose, ascorbic acid levels in unripe green peels reached those of fully ripe fruit, highlighting the influence of mannose availability on ascorbic acid accumulation. Full article
Show Figures

Graphical abstract

16 pages, 2720 KiB  
Article
Ultrapure Water Production by a Saline Industrial Effluent Treatment
by Adriana Hernández Miraflores, Karina Hernández Gómez, Claudia Muro, María Claudia Delgado Hernández, Vianney Díaz Blancas, Jesús Álvarez Sánchez and German Eduardo Devora Isordia
Membranes 2025, 15(4), 116; https://doi.org/10.3390/membranes15040116 - 7 Apr 2025
Cited by 1 | Viewed by 875
Abstract
A membrane system was applied for ultrapure water production from the treatment of saline effluent from the canned food industry. The industrial effluent presented a high saline concentration, including sodium chloride, calcium carbonate, calcium sulfates, and magnesium. The effluent was treated using a [...] Read more.
A membrane system was applied for ultrapure water production from the treatment of saline effluent from the canned food industry. The industrial effluent presented a high saline concentration, including sodium chloride, calcium carbonate, calcium sulfates, and magnesium. The effluent was treated using a system of reverse osmosis (RO) and a post-treatment process consisting of ion exchange resins (IEXRs). The RO was accompanied by the addition of a hexametaphosphate dose (2, 6, and 10 mg/L) as an antiscalant to avoid the RO membrane scaling by minerals. In turn, IEXRs were used for water deionization to produce ultrapure water with a reduced concentration of monovalent ions. The antiscalant dose was 6 mg/L, producing clean water from RO permeates with an efficiency of 65–70%. The brine from RO was projected for its reuse in food industry processes. The clean water quality from RO showed 20% total dissolved solids (TDS) removal (equivalent to salts). The antiscalant inhibited the formation of calcium salt incrustation > 200 mg/L, showing low fouling. In turn, anionic resins removed 99.8% of chloride ions, whereas the monovalent salts were removed by a mix of cationic–anionic resin, producing ultrapure water with electrical conductivity < 3.3 µS/cm. The cost of ultrapure water production was 2.62 USD/m3. Full article
Show Figures

Figure 1

20 pages, 849 KiB  
Review
Exploring the Biological Activities of Ionic Liquids and Their Potential to Develop Novel Vaccine Adjuvants
by Snehitha Akkineni, Mutasem Rawas-Qalaji, Samir A. Kouzi, Christiane Chbib and Mohammad N. Uddin
Vaccines 2025, 13(4), 365; https://doi.org/10.3390/vaccines13040365 - 28 Mar 2025
Viewed by 974
Abstract
Ionic liquids (ILs) are salts with poorly coordinated ions, allowing them to exist in a liquid phase below 100 °C or at room temperature. Therefore, they are best described as room temperature ionic liquids (RTILs). In ionic liquids, the presence of a delocalized [...] Read more.
Ionic liquids (ILs) are salts with poorly coordinated ions, allowing them to exist in a liquid phase below 100 °C or at room temperature. Therefore, they are best described as room temperature ionic liquids (RTILs). In ionic liquids, the presence of a delocalized charge in at least one ion, coupled with an organic component, inhibits the establishment of a stable solid crystal lattice. Due to their flexible properties and several distinctive characteristics, such as high ionic conductivity, high solvation power, thermal stability, low volatility, and recyclability, ILs have been extensively used in chemical industries. In addition to their various other applications, they also hold potential for drug formulation development. Ionic liquids can be used as solubility enhancers, permeability enhancers, stabilizers, targeted delivery inducers, stealth property providers, or bioavailability enhancers. Moreover, ILs hold significant potential in vaccine formulation. Many new vaccines are in the pipeline with different types of antigens; however, the existence of only a limited number of adjuvants hinder their potential use. Thus, developing new, highly effective, low-cost adjuvant preparations is a central interest among formulation scientists. With their unique properties and biological functions, ILs can be highly promising candidates for new types of vaccines. Full article
(This article belongs to the Special Issue Novel Adjuvants and Delivery Systems for Vaccines)
Show Figures

Figure 1

35 pages, 4055 KiB  
Review
Water-in-Salt Electrolytes: Advances and Chemistry for Sustainable Aqueous Monovalent-Metal-Ion Batteries
by Rashmi Nidhi Mishra, Anil Kumar Madikere Raghunatha Reddy, Marc-Antoni Goulet and Karim Zaghib
Batteries 2025, 11(4), 120; https://doi.org/10.3390/batteries11040120 - 22 Mar 2025
Cited by 1 | Viewed by 3228
Abstract
Electrolytes play a vital role in the performance and safety of electrochemical energy storage devices, such as lithium-ion batteries (LIBs). While traditional LIBs rely on organic electrolytes, these flammable solutions pose safety risks and require expensive, moisture-sensitive manufacturing processes. Aqueous electrolytes offer a [...] Read more.
Electrolytes play a vital role in the performance and safety of electrochemical energy storage devices, such as lithium-ion batteries (LIBs). While traditional LIBs rely on organic electrolytes, these flammable solutions pose safety risks and require expensive, moisture-sensitive manufacturing processes. Aqueous electrolytes offer a safer, more cost-effective alternative, but their narrow electrochemical window, corrosivity to electrodes, and enabling of dendritic growth on metal anodes limit their practical applications. Water-in-salt electrolytes (WiSEs) have emerged as a promising solution to these challenges. By significantly reducing water activity and forming a stable solid–electrolyte interphase (SEI), WiSEs can expand the electrochemical stability window, inhibit material dissolution, and suppress dendritic growth. This unique SEI formation mechanism, which is similar to that observed in organic electrolytes, contributes to the improved performance and stability of WiSE-based batteries. Additionally, the altered solvation structure of WiSEs minimizes the presence of free water molecules, further stabilizing the SEI and reducing water activity. This review comprehensively examines the composition, mechanisms, and characterization of WiSEs and their application in monovalent-metal-ion batteries. Full article
(This article belongs to the Section Aqueous Batteries)
Show Figures

Graphical abstract

Back to TopTop