Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (317)

Search Parameters:
Keywords = rural drinking water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 596 KiB  
Article
Household Satisfaction and Drinking Water Quality in Rural Areas: A Comparison with Official Access Data
by Zhanerke Bolatova, Riza Sharapatova, Kaltay Kanagat, Yerlan Kabiyev, Ronny Berndtsson and Kamshat Tussupova
Sustainability 2025, 17(15), 7107; https://doi.org/10.3390/su17157107 - 5 Aug 2025
Abstract
Background: Access to safe and reliable water and sanitation remains a critical public health and development challenge, with rural and low-income communities being disproportionately affected by inadequate services and heightened exposure to waterborne diseases. Despite global efforts and infrastructure-based progress indicators, significant disparities [...] Read more.
Background: Access to safe and reliable water and sanitation remains a critical public health and development challenge, with rural and low-income communities being disproportionately affected by inadequate services and heightened exposure to waterborne diseases. Despite global efforts and infrastructure-based progress indicators, significant disparities persist, and these often overlook users’ perceptions of water quality, reliability, and safety. This study explores the determinants of household satisfaction with drinking water in rural areas, comparing subjective user feedback with official access data to reveal gaps in current monitoring approaches and support more equitable, user-centered water governance. Methods: This study was conducted in Kazakhstan’s Atyrau Region, where 1361 residents from 86 rural villages participated in a structured survey assessing household access to drinking water and perceptions of its quality. Data were analyzed using descriptive statistics and multinomial logistic regression to identify key predictors of user satisfaction, with results compared against official records to evaluate discrepancies between reported experiences and administrative data. Results: The field survey results revealed substantial discrepancies between official statistics and residents’ reports, with only 58.1% of respondents having in-house tap water access despite claims of universal coverage. Multinomial logistic regression analysis identified key predictors of user satisfaction, showing that uninterrupted supply and the absence of complaints about turbidity, odor, or taste significantly increased the likelihood of higher satisfaction levels with drinking water quality. Conclusions: This study underscores the critical need to align official water access statistics with household-level experiences, revealing that user satisfaction—strongly influenced by supply reliability and sensory water quality—is essential for achieving equitable and effective rural water governance. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

19 pages, 1359 KiB  
Article
Spatial Barriers to Improved Water and Sanitation in Rural Zambia
by Sarah L. Smiley, Angela G. Subulwa and Sav Herald
Water 2025, 17(14), 2132; https://doi.org/10.3390/w17142132 - 18 Jul 2025
Viewed by 338
Abstract
The Sustainable Development Goals seek to achieve universal, adequate, and equitable access to drinking water and sanitation by the year 2030. Yet, significant and persistent disparities in water and sanitation access exist, with rural and low-income households in Sub-Saharan Africa exhibiting some of [...] Read more.
The Sustainable Development Goals seek to achieve universal, adequate, and equitable access to drinking water and sanitation by the year 2030. Yet, significant and persistent disparities in water and sanitation access exist, with rural and low-income households in Sub-Saharan Africa exhibiting some of the lowest levels. This paper uses household surveys from rural villages in Zambia’s Western Province to identify, highlight, and examine spatial barriers to improved water and sanitation. Most households included in the study area drink unimproved water, including surface water, and either use unimproved sanitation facilities or practice open defecation. Access to improved water sources and improved sanitation in the study area lags behind the rest of rural Zambia. Beyond the distance to urban areas that makes piped water and sanitation expensive, the location of these villages in the Barotse Floodplain necessitates seasonal migration, which creates barriers to universal access to improved water and sanitation. Full article
(This article belongs to the Special Issue Groundwater Quality and Human Health Risk, 2nd Edition)
Show Figures

Figure 1

23 pages, 6037 KiB  
Article
Integrated Assessment of Groundwater Vulnerability and Drinking Water Quality in Rural Wells: Case Study from Ceanu Mare Commune, Northern Transylvanian Basin, Romania
by Nicolae-Leontin Petruța, Ioana Monica Sur, Tudor Andrei Rusu, Timea Gabor and Tiberiu Rusu
Sustainability 2025, 17(14), 6530; https://doi.org/10.3390/su17146530 - 17 Jul 2025
Viewed by 467
Abstract
Groundwater contamination by nitrates (NO3) and nitrites (NO2) is an urgent problem in rural areas of Eastern Europe, with profound public health and sustainability implications. This paper presents an integrated assessment of groundwater vulnerability and water quality [...] Read more.
Groundwater contamination by nitrates (NO3) and nitrites (NO2) is an urgent problem in rural areas of Eastern Europe, with profound public health and sustainability implications. This paper presents an integrated assessment of groundwater vulnerability and water quality in rural wells in the Ceanu Mare commune, Cluj County, Romania—a representative area of the Northern Transylvania Basin, characterized by diverse geological structures, intensive agricultural activities, and incomplete public water infrastructure. This study combines detailed hydrochemical analyses, household-level studies, and geological context to identify and quantify key factors influencing nitrate and microbial contamination in rural wells, providing a comprehensive perspective on water quality challenges in the central part of Romania. This study adopts a multidisciplinary approach, integrating detailed geotechnical investigations conducted through four strategically located boreholes. These are complemented by extensive hydrogeological and lithological characterization, as well as rigorous chemical and microbiological analyses of nearby wells. The results reveal persistently elevated concentrations of NO3 and NO2, commonly associated with inadequate livestock waste management and the proximity of manure storage areas. Microbiological contamination was also frequent. In this study, the NO3 levels in well water ranged from 39.7 to 48 mg/L, reaching up to 96% of the EU/WHO threshold (50 mg/L), while the NO2 concentrations varied from 0.50 to 0.69 mg/L, exceeding the legal limit (0.5 mg/L) in 87% of the sampled wells. Ammonium (NH4+) was detected (0.25–0.34 mg/L) in all the wells, below the maximum allowed limit (0.5 mg/L) but indicative of ongoing organic pollution. All the well water samples were non-compliant for microbiological parameters, with E. coli detected in 100% of cases (5–13 CFU/100 mL). The regional clay–marl substrate offers only limited natural protection against pollutant infiltration, primarily due to lithological heterogeneity and discontinuities observed within the clay–marl layers in the study area. This research delivers a replicable model for rural groundwater assessment and addresses a critical gap in regional and European water safety studies. It also provides actionable recommendations for sustainable groundwater management, infrastructure development, and community risk reduction in line with EU water directives. Full article
Show Figures

Figure 1

11 pages, 473 KiB  
Article
Investigating Antibiotic Susceptibility of Pathogenic Micro-Organisms in Groundwater from Boreholes and Shallow Wells in T/A Makhwira, Chikwawa
by Baleke Vinjeru Banda, Harold Wilson Tumwitike Mapoma and Bernard Thole
Microbiol. Res. 2025, 16(7), 137; https://doi.org/10.3390/microbiolres16070137 - 30 Jun 2025
Viewed by 771
Abstract
Many rural communities in Malawi use groundwater from boreholes and shallow wells for drinking and cooking with limited or no treatment because it is considered as a safe source of water. The contamination of groundwater sources by antimicrobial resistant bacteria renders the water [...] Read more.
Many rural communities in Malawi use groundwater from boreholes and shallow wells for drinking and cooking with limited or no treatment because it is considered as a safe source of water. The contamination of groundwater sources by antimicrobial resistant bacteria renders the water unsafe to use. This study investigated the antibiotic susceptibility of pathogenic micro-organisms isolated from groundwater sources in T/A Makhwira, Chikwawa. Water samples were collected from 13 boreholes and 7 protected shallow wells from T/A Makhwira, Chikwawa. E. coli, Salmonella enterica ssp. Arizona, K. pneumoniae, ESBL E. coli, and ESBL K. pneumoniae were detected in some water samples. Antibiotic susceptibility tests showed that the isolates had a high resistance to Ampicillin (42%), followed by Trimethoprim-sulfamethoxazole (26%), Ciprofloxacin (21%), Doxycycline, and Amoxicillin/clavulanic acid (16%). The isolates had a very high sensitivity to Gentamicin (89%). The study revealed that the water from some boreholes and shallow wells in T/A Makhwira is highly contaminated and needs to be treated before consumption. Drinking untreated water from these sources could transfer antibiotic-resistant bacteria to humans because the groundwater may act as a vehicle for the transmission of these antibiotic-resistant bacteria. Full article
Show Figures

Figure 1

21 pages, 865 KiB  
Article
A Transect Through the Living Environments of Slovakia’s Roma Population: Urban, Sub-Urban, and Rural Settlements, and Exposure to Environmental and Water-Related Health Risks
by Lukáš Ihnacik, Ingrid Papajová, Júlia Šmigová, Mark Brussel, Musa Manga, Ján Papaj, Ingrid Schusterová and Carmen Anthonj
Int. J. Environ. Res. Public Health 2025, 22(7), 988; https://doi.org/10.3390/ijerph22070988 - 23 Jun 2025
Cited by 1 | Viewed by 566
Abstract
The Roma population is one of Europe’s largest ethnic minorities, often living in inadequate living conditions, worse than those of the majority population. They frequently lack access to essential services, even in high-income countries. This lack of basic services—particularly in combination with proximity [...] Read more.
The Roma population is one of Europe’s largest ethnic minorities, often living in inadequate living conditions, worse than those of the majority population. They frequently lack access to essential services, even in high-income countries. This lack of basic services—particularly in combination with proximity to (stray) animals and human and solid waste—significantly increases environmental health risks, and leads to a higher rate of endoparasitic infections. Our study sheds light on the living conditions and health situation in Roma communities in Slovakia, focusing on the prevalence of intestinal endoparasitic infections across various settlement localisations. It highlights disparities and challenges in access to safe drinking water, sanitation, and hygiene (WASH) and other potentially disease-exposing factors among these marginalised populations. This study combines a comprehensive review of living conditions as per national data provided through the Atlas of Roma communities with an analysis of empirical data on parasitological infection rates in humans, animals, and the environment in settlements, applying descriptive statistical methods. It is the first study in Europe to provide detailed insights into how living conditions vary and cause health risks across Roma settlements, ranging from those integrated within villages (inside, urban), to those isolated on the outskirts (edge, sub-urban) or outside villages (natural/rural). Our study shows clear disparities in access to services, and in health outcomes, based on where people live. Our findings underscore the fact that (i) place—geographical centrality in particular—in an already challenged population group plays a major role in health inequalities and disease exposure, as well as (ii) the urgent need for more current and comprehensive data. Our study highlights persistent disparities in living conditions within high-income countries and stresses the need for greater attention and more sensitive targeted health-promoting approaches with marginalised communities in Europe that take into consideration any and all of the humans, ecology, and animals affected (=One Health). Full article
(This article belongs to the Topic Diversity Competence and Social Inequalities)
Show Figures

Figure 1

20 pages, 4612 KiB  
Review
A Review of Low-Cost Point-of-Use Water Treatment Solutions Addressing Water Access and Quality in Resource-Limited Settings
by Dorcas Cheptoo Sombei, Cleophas Achisa Mecha and Martha N. Chollom
Water 2025, 17(12), 1827; https://doi.org/10.3390/w17121827 - 19 Jun 2025
Viewed by 895
Abstract
Access to safe, clean drinking water is a critical challenge across many resource-constrained settings, especially in developing economies. Large-scale water treatment technologies are often available in urban areas, whereas such centralized systems are unavailable in rural and remote areas due to high infrastructure [...] Read more.
Access to safe, clean drinking water is a critical challenge across many resource-constrained settings, especially in developing economies. Large-scale water treatment technologies are often available in urban areas, whereas such centralized systems are unavailable in rural and remote areas due to high infrastructure costs, rugged terrains, and maintenance challenges. To address this challenge, point-of-use (PoU) water treatment systems can fill this critical gap. This study critically evaluates the role low-cost PoU water treatment solutions play as a promising alternative to address water access and quality aspects in remote rural areas. The study explores the present state of global water sources, the challenges of water scarcity and pollution, and the limitations of existing large-scale treatment technologies. It highlights the motivation behind PoU systems and provides an in-depth analysis of various low-cost technologies, including operational principles, performance efficiency, and economic viability. Embedded in this study is a concise evaluation of the sustainability of these solutions in addressing water access and quality challenges in resource-limited regions. Finally, the study proposes solutions and perspectives on improving PoU systems and scale-up of the systems for large-scale applications to facilitate increased access to clean and safe water. Full article
(This article belongs to the Special Issue Advanced Technologies on Water and Wastewater Treatment)
Show Figures

Figure 1

19 pages, 2511 KiB  
Article
Electrochemical Production of Hypochlorous Acid and Sodium Hydroxide Using Ion Exchange Membranes
by Juan Taumaturgo Medina Collana, Kevin Azorza Guillen, Edgar Williams Villanueva Martinez, Carlos Ancieta Dextre, Luis Carrasco Venegas, Oscar Rodriguez Taranco, Jorge Lopez Herrera, Pablo Diaz Bravo, Jose Porlles Loarte and Jorge Montaño Pisfil
Sustainability 2025, 17(12), 5465; https://doi.org/10.3390/su17125465 - 13 Jun 2025
Viewed by 851
Abstract
Given the problems related to drinking water supplies in rural and economically disadvantaged regions, point-of-use disinfection technologies are a viable alternative to improve access to drinking. Electrochlorinators are devices that produce chlorine-based disinfectants onsite via the electrolysis of a sodium chloride solution. In [...] Read more.
Given the problems related to drinking water supplies in rural and economically disadvantaged regions, point-of-use disinfection technologies are a viable alternative to improve access to drinking. Electrochlorinators are devices that produce chlorine-based disinfectants onsite via the electrolysis of a sodium chloride solution. In this research, we have constructed an innovative laboratory-scale three-compartment cell that includes two ion exchange membranes, fixed between two electrodes; in the anodic compartment, an acidic mixture of chlorine-based species (Cl2, HClO, HCl and ClO) is obtained, and, in the cathodic compartment, an alkaline solution is present (NaOH and hydrogen gas), while the central compartment is fed with a sodium chloride solution. The Taguchi methodology was used to examine the impact of the process operating conditions on the results obtained. The effects of the electrical potential levels (4.5, 6 and 7 V), electrolysis times (30, 60 and 90 min) and initial sodium chloride concentrations (5, 15 and 30 g/L) on the physical and chemical characteristics (concentrations of available chlorine and sodium hydroxide and pH of the solutions) and energy consumption were investigated. Variations in the electrical potential significantly influenced the concentration levels of active chlorine and sodium hydroxide produced, as well as the pH values of the respective solutions. The most favorable conditions for the production of electrolyzed water were an electrical potential of 7 volts, an electrolysis time of 90 min and a concentration of 30 g/L of sodium chloride, which was verified by ANOVA. The maximum concentration of active chlorine reached 290 mg/L and that of sodium hydroxide reached 1450 mg/L without the presence of hypochlorite ions under the best synthesis conditions. The energy consumption was 18.6 kWh/kg Cl2 and 4.4 kWh/kg NaOH, while the average electric current efficiency for sodium hydroxide formation reached 88.9%. Similarly, the maximum conversion of chloride ions reached 24.37% under the best operating conditions. Full article
Show Figures

Figure 1

18 pages, 5141 KiB  
Article
Comprehensive Statistical Analysis for Characterizing Water Quality Assessment in the Mekong Delta: Trends, Variability, and Key Influencing Factors
by Vu Thanh Doan, Chinh Cong Le, Hung Van Tien Le, Ngoc Anh Trieu, Phu Le Vo, Dang An Tran, Hai Van Nguyen, Toshinori Tabata and Thu Thi Hoai Vu
Sustainability 2025, 17(12), 5375; https://doi.org/10.3390/su17125375 - 11 Jun 2025
Viewed by 663
Abstract
The Mekong Delta, an important agricultural and economic hub in Vietnam, has suffered from severe water quality issues caused by both natural and anthropogenic forces. This paper aims to conduct a rational statistical approach to evaluate the current situation of surface water quality [...] Read more.
The Mekong Delta, an important agricultural and economic hub in Vietnam, has suffered from severe water quality issues caused by both natural and anthropogenic forces. This paper aims to conduct a rational statistical approach to evaluate the current situation of surface water quality in the Mekong Delta, applying Factor Analysis (FA), Principal Component Analysis (PCA), and Agglomerative Hierarchical Clustering (AHC) to a database of 3117 samples collected by national and provincial monitoring stations. The results revealed significant contamination with organic pollutants (BOD5: 3.50–172.870 mg/L, COD: 6.493–472.984 mg/L), pesticides (e.g., DDTs: n.d to 1.227 mg/L), trace metals (As: 0.006–0.046 mg/L, Cr: n.d–1.960 mg/L), and microbial indicators (Coliforms: n.d–45,100 MPN/100 mL), often higher than the WHO drinking water threshold. PCA/AHC analysis identified the following five major pollution components: (1) organic pollution and sewage/industrial and deposited chemicals (PCA1—23.08% variance); (2) pesticide and agricultural runoff derived contamination with Hg (PCA2—15.44%); (3) microbial pollution of the water was found to correlate positively with Zn and Cu content (PCA3—8.90%); (4) salinity was found to mobilize As and Cr (PCA4—8.00%); (5) nutrient/microbial pollution presumably from agricultural and sewage inputs (PCA5—7.22%). AHC showed some spatial variability that grouped samples in urban/industrial (Cluster 1), rural/agricultural (Cluster 2), and a highly contaminated one, where water was toxic and presented with microbial and Cd contamination (Cluster 3). Levels of pesticides, Cr, and microbial pollution were higher than reported in previous Mekong Delta studies and exceeded regional trends. These results emphasize the importance of holistic water management strategies, including better wastewater treatment, pesticide control, sustainable farming, and climate-adaptive measures to reduce saltwater intrusion and safeguard drinking water quality for the Mekong Delta. Full article
Show Figures

Figure 1

14 pages, 698 KiB  
Article
Mycobacterium appelbergii sp. nov., a Novel Species Isolated from a Drinking Water Fountain in a Rural Community
by Inês Cravo Roxo, Susana Alarico, Ana Fonseca, Daniela Machado, Ana Maranha, Igor Tiago, Raquel Duarte and Nuno Empadinhas
Microorganisms 2025, 13(6), 1259; https://doi.org/10.3390/microorganisms13061259 - 29 May 2025
Viewed by 563
Abstract
Three isolates of a novel, rapidly growing, non-pigmented Mycobacterium species were recovered from the water and runoff of a public fountain in a rural village in central Portugal, formerly used by the local population as a source of drinking water and not accessible [...] Read more.
Three isolates of a novel, rapidly growing, non-pigmented Mycobacterium species were recovered from the water and runoff of a public fountain in a rural village in central Portugal, formerly used by the local population as a source of drinking water and not accessible to animals. High-quality draft genome sequencing, in silico DNA–DNA hybridization, and phylogenetic analyses confirmed that isolates 21AC1T, 21AC14, and 21AC21 represent a previously undescribed species within the genus Mycobacterium, forming a distinct phylogenetic lineage closely related to Mycobacterium wolinskyi, Mycobacterium goodii and Mycobacterium smegmatis. MALDI-TOF MS analysis of the type strain 21AC1T revealed a unique spectral profile. A comprehensive polyphasic characterization was performed, including chemotaxonomic analyses of fatty acid and mycolic acid composition, as well as an extensive biochemical characterization. Their susceptibility to 12 antimicrobials was also assessed. The identification and characterization of novel nontuberculous mycobacteria species are of increasing environmental and clinical relevance, as infections by these opportunistic pathogens are on the rise globally. Based on our findings, we propose that isolates 21AC1T, 21AC14, and 21AC21 represent a novel species, for which we propose the name Mycobacterium appelbergii sp. nov., with the type strain designated as 21AC1T (=BCCM/ITM 501212 = DSM 113570) and the additional two strains as 21AC14 (=BCCM/ITM 501447 = DSM 118402) and 21AC21 (=BCCM/ITM 501448 = DSM 118403). Full article
Show Figures

Figure 1

18 pages, 3010 KiB  
Article
Assessment of Pesticide Contamination of Groundwater from Titu-Sarata Plain, Romania
by Crinela Dumitrescu, Claudia Stihi, Diana Costinel, Elisabeta Irina Geana, Corina Teodora Ciucure, Diana Ionela Popescu (Stegarus), Danut Tanislav and Petre Bretcan
Appl. Sci. 2025, 15(11), 5880; https://doi.org/10.3390/app15115880 - 23 May 2025
Viewed by 450
Abstract
In Romania, groundwater is an important source of drinking water, especially in rural areas. This study investigated the concentrations of organophosphorus, carbamate, and triazine pesticides (OPs) along with organochlorine pesticides (OCPs) in groundwater samples collected from the Titu-Sarata Plain. Sensitive analytical techniques were [...] Read more.
In Romania, groundwater is an important source of drinking water, especially in rural areas. This study investigated the concentrations of organophosphorus, carbamate, and triazine pesticides (OPs) along with organochlorine pesticides (OCPs) in groundwater samples collected from the Titu-Sarata Plain. Sensitive analytical techniques were employed, including Ultrahigh-Performance Liquid Chromatography coupled with Q Exactive™ HF Hybrid Quadrupole-Orbitrap™ Mass Spectrometry (UHPLC-Orbitrap-MS/MS) and Gas Chromatography coupled with an electron capture detector (GC-ECD). Environmental and human health risks were assessed in the case of pesticides that exceeded the maximum allowed concentration. The environmental risk assessment (ERA) revealed significant risks associated with Phosdrin, Phorate, and pp’DDE. Additionally, particular concerns arose from the presence of Aldrin and Dieldrin, which pose a high carcinogenic risk, especially through groundwater consumption in agricultural areas. The results of this research highlight the need for the implementation of a continuous quality monitoring program for groundwater in the agricultural regions that were studied. Full article
(This article belongs to the Special Issue Novel Approaches for Water Resources Assessment)
Show Figures

Figure 1

23 pages, 2972 KiB  
Article
Groundwater Quality in a Rural and Urbanized Region in Limpopo Province, South Africa
by Ebrahim Shokoohi and Ngoni Moyo
Environments 2025, 12(6), 174; https://doi.org/10.3390/environments12060174 - 23 May 2025
Viewed by 735
Abstract
The Limpopo Province, situated in the northern part of South Africa, is mainly comprising rural areas that lack adequate facilities for drinking water. Boreholes are the main source of drinking water in rural and urbanized areas of Limpopo Province. Sixty-three water samples, from [...] Read more.
The Limpopo Province, situated in the northern part of South Africa, is mainly comprising rural areas that lack adequate facilities for drinking water. Boreholes are the main source of drinking water in rural and urbanized areas of Limpopo Province. Sixty-three water samples, from three locations in Limpopo Province, namely Mankweng, Dalmada, and Polokwane, plus two samples from a river in Magoebaskloof and still water as controls, were collected and subjected to analysis. The Sodium Absorption Ratio (SAR) analysis ranged from 1.4 to 35.6, revealing that 25% of the samples from Mankweng bear low quality with a high amount of sodium. Piper plot showed that two major water types exist in the samples, 33% and 67% of the water samples were of Na-Cl and Ca-Cl types, respectively. To identify the leading natural and anthropogenic processes causing variation in groundwater chemistry, principal component analysis (PCA) was used. The most detected heavy metal was V (vanadium) with 0.00 to 0.59 (mg/mL). The PCA results grouped all water samples from Dalmada together. However, the water samples from Mankweng were divided into three groups by PCA, with borehole samples showing a correlation with heavy metals. In conclusion, the study revealed that natural and anthropogenic activities cause groundwater variation in the Limpopo Province. All the boreholes sampled showed the presence of total coliform, but no E. coli was detected. In addition, regarding microbial contamination, water samples were suitable for drinking and irrigation purposes. Full article
(This article belongs to the Special Issue Research Progress in Groundwater Contamination and Treatment)
Show Figures

Figure 1

22 pages, 4275 KiB  
Article
Legionella in Urban and Rural Water, a Tale of Two Environments
by Zandice Faith Mnisi, Zaakirah Delair and Atheesha Singh
Water 2025, 17(10), 1491; https://doi.org/10.3390/w17101491 - 15 May 2025
Cited by 1 | Viewed by 1060
Abstract
Legionella pneumophila (L. pneumophila), the bacteria causing Legionnaires’ disease, a severe pneumonia with high morbidity and mortality globally. The underreporting of this disease is marked particularly in low-income African countries, where data on Legionellosis remains extremely limited. Gauteng, South Africa’s most [...] Read more.
Legionella pneumophila (L. pneumophila), the bacteria causing Legionnaires’ disease, a severe pneumonia with high morbidity and mortality globally. The underreporting of this disease is marked particularly in low-income African countries, where data on Legionellosis remains extremely limited. Gauteng, South Africa’s most densely populated province, faces challenges such as rapid urbanisation, limited access to sanitary facilities, and ageing infrastructure, which can compromise drinking water quality by increasing the presence of bacteria within the water distribution systems. Although research on Legionella in South Africa has been conducted, no research has compared its prevalence in urban and rural households in the country. This study examines the presence and distribution of L. pneumophila and amoeba-associated strains in water distribution systems in both urban (Hillbrow and Atteridgeville) and rural (Zandspruit and Melusi) areas in Gauteng province in South Africa. In total, 134 water samples were obtained from tap faucets and storage containers, and 260 biofilm samples were obtained from tap faucets, storage containers, and toilet bowls. Water samples were analysed for Escherichia coli (E. coli) using the IDEXX Colilert® and for L. pneumophila using the IDEXX LegiolertTM assay. Both water and biofilm samples were analysed for evidence of amoeba-associated Legionella using the amoeba enrichment technique. The Colilert assay detected total coliforms in 13% of the urban samples and 25% of the rural samples. The LegiolertTM assay detected L. pneumophila in 52% of urban and 78% of rural samples. Amoeba-associated L. pneumophila was confirmed in 35% of urban samples and 25% in rural samples. The conventional PCR confirmed L. pneumophila in 81% of both urban and rural samples, while real-time PCR detected L. pneumophila in 97% of urban and 100% of rural samples. In total, 111 water and 19 biofilm samples tested positive for the presence of L. pneumophila across the four areas. These results revealed that L. pneumophila is prevalent in both urban and rural water systems in Gauteng. Full article
(This article belongs to the Section Water and One Health)
Show Figures

Figure 1

13 pages, 936 KiB  
Article
Seroprevalence and Shifting Endemicities of Hepatitis A Virus Infection in Two Contrasting Geographical Areas in Indonesia
by Dwi Prasetyo, Yudith Setiati Ermaya, Gustavo Hernandez-Suarez, Adriana Guzman-Holst and Cissy B. Kartasasmita
Medicina 2025, 61(5), 806; https://doi.org/10.3390/medicina61050806 - 26 Apr 2025
Viewed by 533
Abstract
Background and Objectives: Hepatitis A is an infectious disease caused by the hepatitis A virus (HAV), which is transmitted via the fecal–oral route, either through the consumption of contaminated food and water or through direct contact with an infected individual. The incidence of [...] Read more.
Background and Objectives: Hepatitis A is an infectious disease caused by the hepatitis A virus (HAV), which is transmitted via the fecal–oral route, either through the consumption of contaminated food and water or through direct contact with an infected individual. The incidence of HAV is closely associated with socioeconomic factors, access to clean drinking water, sanitation safety, and hygiene. This study aimed to determine HAV seroprevalence and shifting endemicities of hepatitis A virus infection. The seroprevalence and endemicity status were assessed based on the age at the midpoint of population immunity (AMPI). Materials and Methods: A cross-sectional seroprevalence study was conducted in two contrasting areas (urban vs. rural) in Bandung, Indonesia. All participants underwent serological testing for anti-HAV IgG using a chemiluminescent microparticle immunoassay (CMIA) and participated in questionnaire interviews. Socioeconomic status was assessed using the Water/sanitation, Assets, Maternal education, and Income (WAMI) index. All statistical analyses were performed using SPSS 18, with a p-value of <0.05 considered significant. Results: A total of 1280 participants were tested (640 living in urban areas; 640 living in rural areas). The total prevalence of HAV seropositivity was 50.5% (95% confidence interval [CI]: 47.7–53.3%), with prevalences of 46.1% (95% CI: 42.5–54.4%) across urban sites and 54.7% (95% CI: 50.7–58.6%) across rural sites. The AMPI was within the 20–24-year age group, with an age point of 22 years, classified as an intermediate HAV endemicity status. Conclusions: the study found a shift in HAV endemicity status from low to intermediate, supporting the need for large-scale national hepatitis A vaccination in Indonesia. Full article
(This article belongs to the Section Epidemiology & Public Health)
Show Figures

Figure 1

21 pages, 4677 KiB  
Article
Arsenic Removal from Drinking Water in Huanuara, Peru, Using Metalworking Residues: Characterization and Optimization
by Carlos R. Costa Gil, Edilberto P. Mamani López, Edgardo O. Avendaño Cáceres, Erika V. Vargas Conde, Nancy Flores Cotrado, Diego M. Salazar Delgado and Otto A. Quispe Jiménez
Processes 2025, 13(4), 1190; https://doi.org/10.3390/pr13041190 - 15 Apr 2025
Viewed by 1425
Abstract
Arsenic contamination in drinking water poses a critical environmental and public health threat, particularly in rural areas such as Huanuara, Peru, where concentrations exceed the 10 µg·L−1 limit established by the World Health Organization (WHO). This study explores the potential use of [...] Read more.
Arsenic contamination in drinking water poses a critical environmental and public health threat, particularly in rural areas such as Huanuara, Peru, where concentrations exceed the 10 µg·L−1 limit established by the World Health Organization (WHO). This study explores the potential use of iron-rich metalworking residues as an alternative adsorbent. Characterization using Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM–EDS), X-ray Diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis revealed a specific surface area of 0.7469 m2·g−1, with magnetite (Fe3O4) and metallic iron (Fe0) as the predominant phases. Arsenic concentrations were quantified by Inductively Coupled Plasma Mass Spectrometry (ICP–MS). A batch reactor system treated 16 L per cycle under conditions of 293–298 K and 95.46 kPa. Adsorption parameters were optimized using a Central Composite Rotatable Design (CCRD), with adsorbent mass (31.72–88.28 g) and contact time (4.17–9.83 h) as variables. Under optimal conditions (80 g, 9 h), 99.07% arsenic removal was achieved, reducing concentrations from 530.03 µg·L−1 to ≤4.91 µg·L−1. The quadratic regression model (R2 = 0.90, p = 0.0006) was validated by ANOVA (p < 0.05; F = 22.02). These results demonstrate that metalworking residues offer a scalable and sustainable solution for arsenic remediation, supporting circular economy principles and decentralized water treatment. Full article
Show Figures

Figure 1

16 pages, 1224 KiB  
Article
Associations Between Landfill Proximity and Water Quality Analytes from Private Domestic Wells in Rural Virginia
by Bianca D. Owens, Joseph Boyle, Dana Adkins, Stephen Adkins, Hillary Boucher, James Burch, Maria D. Thomson and Katherine Y. Tossas
Environments 2025, 12(4), 103; https://doi.org/10.3390/environments12040103 - 28 Mar 2025
Viewed by 608
Abstract
The Chickahominy T.R.U.T.H. (Trust, Research, Understand, Teach, and Heal) Project investigates water quality concerns, including potential contamination from a nearby landfill, and their corresponding health implications among residents of rural Charles City County, Virginia. This rural, majority-racial-minority county includes citizens of the Chickahominy [...] Read more.
The Chickahominy T.R.U.T.H. (Trust, Research, Understand, Teach, and Heal) Project investigates water quality concerns, including potential contamination from a nearby landfill, and their corresponding health implications among residents of rural Charles City County, Virginia. This rural, majority-racial-minority county includes citizens of the Chickahominy Indian tribe. The T.R.U.T.H. Project utilizes a community-based participatory research approach and environmental justice-focused lens to study water quality and health; the present study represents the first comprehensive analysis of the drinking water quality of homes with domestic groundwater wells. We collected water samples from 121 participants located within a four-mile radius of the landfill, analyzing over 200 potential analytes that may affect water quality. Among the measured analytes, water pH, aluminum, iron, manganese, and hardness as CaCO3 were most frequently identified as having ratings outside of established EPA limits (“Bad”). Logistic regression models demonstrated that proximity to streams near the landfill was associated with significantly greater odds of worse water quality for several analytes. Specifically, residing within a mile of these streams was associated with greater odds of “Fair” or worse turbidity (OR = 4.31, 95% CI 1.31–19.53) and zinc levels (OR = 2.63, 95% CI 1.23–5.86). Additionally, residing within half a mile of a proximate stream was linked with “Poor” or worse hardness ratings (OR = 10.71, 95% CI 1.64–86.96); residing within a mile of the landfill was associated with “Bad” water pH levels (OR = 10.50, 95% CI 1.16–95.68). Though many tested analytes did not have concerning ratings or were not significantly associated with proximity to the landfill or streams, the above findings suggest that anthropogenic factors, particularly landfill proximity, may influence water quality with regard to specific analytes. Therefore, addressing water quality through enhanced monitoring, contaminant remediation, and community education is crucial for restoring trust in drinking water and improving public health outcomes. Full article
(This article belongs to the Special Issue Environmental Risk Assessment of Aquatic Ecosystem, 2nd Edition)
Show Figures

Figure 1

Back to TopTop