Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (456)

Search Parameters:
Keywords = rotor bearing system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 15885 KiB  
Article
Comparative Analysis of Fully Floating and Semi-Floating Ring Bearings in High-Speed Turbocharger Rotordynamics
by Kyuman Kim and Keun Ryu
Lubricants 2025, 13(8), 338; https://doi.org/10.3390/lubricants13080338 - 31 Jul 2025
Viewed by 190
Abstract
This study presents a detailed experimental comparison of the rotordynamic and thermal performance of automotive turbochargers supported by two distinct hydrodynamic bearing configurations: fully floating ring bearings (FFRBs) and semi-floating ring bearings (SFRBs). While both designs are widely used in commercial turbochargers, they [...] Read more.
This study presents a detailed experimental comparison of the rotordynamic and thermal performance of automotive turbochargers supported by two distinct hydrodynamic bearing configurations: fully floating ring bearings (FFRBs) and semi-floating ring bearings (SFRBs). While both designs are widely used in commercial turbochargers, they exhibit significantly different dynamic behaviors due to differences in ring motion and fluid film interaction. A cold air-driven test rig was employed to assess vibration and temperature characteristics across a range of controlled lubricant conditions. The test matrix included oil supply pressures from 2 bar (g) to 4 bar (g) and temperatures between 30 °C and 70 °C. Rotor speeds reached up to 200 krpm (thousands of revolutions per minute), and data were collected using a high-speed data acquisition system, triaxial accelerometers, and infrared (IR) thermal imaging. Rotor vibration was characterized through waterfall and Bode plots, while jump speeds and thermal profiles were analyzed to evaluate the onset and severity of instability. The results demonstrate that the FFRB configuration is highly sensitive to oil supply parameters, exhibiting strong subsynchronous instabilities and hysteresis during acceleration–deceleration cycles. In contrast, the SFRB configuration consistently provided superior vibrational stability and reduced sensitivity to lubricant conditions. Changes in lubricant supply conditions induced a jump speed variation in floating ring bearing (FRB) turbochargers that was approximately 3.47 times larger than that experienced by semi-floating ring bearing (SFRB) turbochargers. Furthermore, IR images and oil outlet temperature data confirm that the FFRB system experiences greater heat generation and thermal gradients, consistent with higher energy dissipation through viscous shear. This study provides a comprehensive assessment of both bearing types under realistic high-speed conditions and highlights the advantages of the SFRB configuration in improving turbocharger reliability, thermal performance, and noise suppression. The findings support the application of SFRBs in high-performance automotive systems where mechanical stability and reduced frictional losses are critical. Full article
(This article belongs to the Collection Rising Stars in Tribological Research)
Show Figures

Figure 1

21 pages, 7459 KiB  
Article
Design and Analysis of a Bearing-Integrated Rotary Transformer
by Xiaoou Fan, Shaohua Ma, Dezhi Chen and Chaoqun Liu
Energies 2025, 18(15), 3991; https://doi.org/10.3390/en18153991 - 25 Jul 2025
Viewed by 232
Abstract
In this paper, a bearing- and transformer-integrated electric excitation synchronous motor excitation system (bearing-integrated rotary transformer) is proposed to support the motor rotor and energy transmission of excitation systems. Firstly, the working principle of the bearing-integrated rotary transformer is discussed. Secondly, the structure [...] Read more.
In this paper, a bearing- and transformer-integrated electric excitation synchronous motor excitation system (bearing-integrated rotary transformer) is proposed to support the motor rotor and energy transmission of excitation systems. Firstly, the working principle of the bearing-integrated rotary transformer is discussed. Secondly, the structure and electromagnetism of the bearing-integrated rotary transformer are designed through the processes and principles of pole slot matching, stator/rotor size, winding, and the magnetic regulating needle. Thirdly, the bearing-integrated rotary transformer undergoes an electromagnetic–thermal simulation. Finally, a prototype of the bearing-integrated rotary transformer is manufactured, and the electromagnetic and transmission characteristics are tested, verifying the correctness of the proposed scheme and providing additional ideas for the improvement of synchronous motor excitation systems. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

22 pages, 12545 KiB  
Article
Denoised Improved Envelope Spectrum for Fault Diagnosis of Aero-Engine Inter-Shaft Bearing
by Danni Li, Longting Chen, Hanbin Zhou, Jinyuan Tang, Xing Zhao and Jingsong Xie
Appl. Sci. 2025, 15(15), 8270; https://doi.org/10.3390/app15158270 - 25 Jul 2025
Viewed by 224
Abstract
The inter-shaft bearing is an important component of aero-engine rotor systems. It works between a high-pressure rotor and a low-pressure rotor. Effective fault diagnosis of it is significant for an aero-engine. The casing vibration signals can promptly and intuitively reflect changes in the [...] Read more.
The inter-shaft bearing is an important component of aero-engine rotor systems. It works between a high-pressure rotor and a low-pressure rotor. Effective fault diagnosis of it is significant for an aero-engine. The casing vibration signals can promptly and intuitively reflect changes in the operational health status of an aero-engine’s support system. However, affected by a complex vibration transmission path and vibration of the dual-rotor, the intrinsic vibration information of the inter-shaft bearing is faced with strong noise and a dual-frequency excitation problem. This excitation is caused by the wide span of vibration source frequency distribution that results from the quite different rotational speeds of the high-pressure rotor and low-pressure rotor. Consequently, most existing fault diagnosis methods cannot effectively extract inter-shaft bearing characteristic frequency information from the casing signal. To solve this problem, this paper proposed the denoised improved envelope spectrum (DIES) method. First, an improved envelope spectrum generated by a spectrum subtraction method is proposed. This method is applied to solve the multi-source interference with wide-band distribution problem under dual-frequency excitation. Then, an improved adaptive-thresholding approach is subsequently applied to the resultant subtracted spectrum, so as to eliminate the influence of random noise in the spectrum. An experiment on a public run-to-failure bearing dataset validates that the proposed method can effectively extract an incipient bearing fault characteristic frequency (FCF) from strong background noise. Furthermore, the experiment on the inter-shaft bearing of an aero-engine test platform validates the effectiveness and superiority of the proposed DIES method. The experimental results demonstrate that this proposed method can clearly extract fault-related information from dual-frequency excitation interference. Even amid strong background noise, it precisely reveals the inter-shaft bearing’s fault-related spectral components. Full article
Show Figures

Figure 1

19 pages, 3193 KiB  
Article
Theoretical Analysis and Research on Support Reconstruction Control of Magnetic Bearing with Redundant Structure
by Huaqiang Sun, Zhiqin Liang and Baixin Cheng
Sensors 2025, 25(14), 4517; https://doi.org/10.3390/s25144517 - 21 Jul 2025
Viewed by 271
Abstract
At present, the redundant structures are one of the most effective methods for solving magnetic levitation bearing coil failure. Coil failure causes residual effective magnetic poles to form different support structures and even asymmetrical structures. For the magnetic bearing with redundant structures, how [...] Read more.
At present, the redundant structures are one of the most effective methods for solving magnetic levitation bearing coil failure. Coil failure causes residual effective magnetic poles to form different support structures and even asymmetrical structures. For the magnetic bearing with redundant structures, how to construct the electromagnetic force (EMF) that occurs under different support structures to achieve support reconstruction is the key to realizing fault tolerance control. To reveal the support reconstruction mechanism of magnetic bearing with a redundant structure, firstly, this paper takes a single-degree-of-freedom magnetic suspension body as an example to conduct a linearization theory analysis of the offset current, clarifying the concept of the current distribution matrix (CDM) and its function; then, the nonlinear EMF mode of magnetic bearing with an eight-pole is constructed, and it is linearized by using the theory of bias current linearization. Furthermore, the conditions of no coils fail, the 8th coil fails, and the 6–8th coils fail are considered, and, with the maximum principle function of EMF, the corresponding current matrices are obtained. Meanwhile, based on the CDM, the corresponding magnetic flux densities were calculated, proving that EMF reconstruction can be achieved under the three support structures. Finally, with the CDM and position control law, a fault-tolerant control system was constructed, and the simulation of the magnetic bearing with a redundant structure was carried out. The simulation results reveal the mechanism of support reconstruction with three aspects of rotor displacement, the value and direction of currents that occur in each coil. The simulation results show that, in the 8-pole magnetic bearing, this study can achieve support reconstruction in the case of faults in up to two coils. Under the three working conditions of wireless no coil failure, the 8th coil fails and the 6–8th coils fail, the current distribution strategy was adjusted through the CDM. The instantaneous displacement disturbance during the support reconstruction process was less than 0.28 μm, and the EMF after reconstruction was basically consistent with the expected value. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

22 pages, 10008 KiB  
Article
Design and Testing of a Device to Investigate Dynamic Performance of Aero-Engine Rotor–Stator Rubbing Dynamics
by Qinqin Mu, Qun Yan, Peng Sun, Yonghui Chen, Jiaqi Chang and Shiyu Huo
Eng 2025, 6(7), 162; https://doi.org/10.3390/eng6070162 - 17 Jul 2025
Viewed by 211
Abstract
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was [...] Read more.
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was evaluated in terms of its critical speed, vibration characteristics, component strength under operational conditions, and response characteristics in abnormal extreme scenarios. A ball screw-type feeding system is employed to achieve precise rotor–stator rubbing during rotation by controlling the coating feed. Additionally, a quartz lamp heating system is used to apply thermal loads to coating specimens, and the appropriate heat insulation and cooling measures are implemented. Furthermore, a high-frequency rubbing force test platform is developed to capture the key characteristics caused by rubbing. The test rig can conduct response tests of the system with rotor–stator rubbing and abrasion tests with tip speeds reaching 425 m/s, feed rates ranging from 2 to 2000 μm/s, and heating temperatures up to 1200 °C. Test debugging has confirmed these specifications and successfully executed rubbing tests, which demonstrate stability throughout the process and provide reliable rubbing force test results. This designed test rig and analysis methodology offers valuable insights for developing high-speed rotating machinery. Full article
Show Figures

Figure 1

21 pages, 4199 KiB  
Article
Time–Frequency-Domain Fusion Cross-Attention Fault Diagnosis Method Based on Dynamic Modeling of Bearing Rotor System
by Shiyu Xing, Zinan Wang, Rui Zhao, Xirui Guo, Aoxiang Liu and Wenfeng Liang
Appl. Sci. 2025, 15(14), 7908; https://doi.org/10.3390/app15147908 - 15 Jul 2025
Viewed by 277
Abstract
Deep learning (DL) and machine learning (ML) have advanced rapidly. This has driven significant progress in intelligent fault diagnosis (IFD) of bearings. However, methods like self-attention have limitations. They only capture features within a single sequence. They fail to effectively extract and fuse [...] Read more.
Deep learning (DL) and machine learning (ML) have advanced rapidly. This has driven significant progress in intelligent fault diagnosis (IFD) of bearings. However, methods like self-attention have limitations. They only capture features within a single sequence. They fail to effectively extract and fuse time- and frequency-domain characteristics from raw signals. This is a critical bottleneck. To tackle this, a dual-channel cross-attention dynamic fault diagnosis network for time–frequency signals is proposed. This model’s intrinsic correlations between time-domain and frequency-domain features, which overcomes single-sequence limitations. The simulation and experimental data validate the method. It achieves over 95% diagnostic accuracy. It effectively captures complex fault patterns. This work provides a theoretical basis for better fault identification in bearing–rotor systems. Full article
Show Figures

Figure 1

24 pages, 6540 KiB  
Article
A Hybrid Control Approach Integrating Model-Predictive Control and Fractional-Order Admittance Control for Automatic Internal Limiting Membrane Peeling Surgery
by Hongcheng Liu, Xiaodong Zhang, Yachun Wang, Zirui Zhao and Ning Wang
Actuators 2025, 14(7), 328; https://doi.org/10.3390/act14070328 - 1 Jul 2025
Viewed by 221
Abstract
As the prevalence of related diseases continues to rise, a corresponding increase in the demand for internal limiting membrane (ILM) peeling surgery has been observed. However, significant challenges are encountered in ILM peeling surgery, including limited force feedback, inadequate depth perception, and surgeon [...] Read more.
As the prevalence of related diseases continues to rise, a corresponding increase in the demand for internal limiting membrane (ILM) peeling surgery has been observed. However, significant challenges are encountered in ILM peeling surgery, including limited force feedback, inadequate depth perception, and surgeon hand tremors. Research on fully autonomous ILM peeling surgical robots has been conducted to address the imbalance between medical resource availability and patient demand while enhancing surgical safety. An automatic control framework for break initiation in ILM peeling is proposed in this study, which integrates model-predictive control with fractional-order admittance control. Additionally, a multi-vision task surgical scene perception method is introduced based on target detection, key point recognition, and sparse binocular matching. A surgical trajectory planning strategy for break initiation in ILM peeling aligned with operative specifications is proposed. Finally, validation experiments for automatic break initiation in ILM peeling were performed using eye phantoms. The results indicated that the positional error of the micro-forceps tip remained within 40 μm. At the same time, the contact force overshoot was limited to under 6%, thereby ensuring both the effectiveness and safety of break initiation during ILM peeling. Full article
(This article belongs to the Special Issue Motion Planning, Trajectory Prediction, and Control for Robotics)
Show Figures

Figure 1

16 pages, 4741 KiB  
Article
Plug-In Repetitive Control for Magnetic Bearings Based on Equivalent-Input-Disturbance
by Gang Huang, Bolong Liu, Songlin Yuan and Xinyi Shi
Eng 2025, 6(7), 141; https://doi.org/10.3390/eng6070141 - 28 Jun 2025
Viewed by 212
Abstract
The radial magnetic bearing system is an open-loop, unstable, strong nonlinear system with a high rotor speed, predisposition to jitter, and poor interference immunity. The system is subjected to the main interference generated by gravity, and rotor imbalance and sensor runout seriously affect [...] Read more.
The radial magnetic bearing system is an open-loop, unstable, strong nonlinear system with a high rotor speed, predisposition to jitter, and poor interference immunity. The system is subjected to the main interference generated by gravity, and rotor imbalance and sensor runout seriously affect the system’s rotor position control performance. A plug-in repetitive control method based on equivalent-input-disturbance (EID) is presented to address the issue of decreased control accuracy of the magnetic bearing system caused by disturbances from gravity, rotor imbalance, and sensor runout. First, a linearized model of the magnetic bearing rotor containing parameter fluctuations due to the eddy current effect and temperature rise effect is established, and a plug-in repetitive controller (PRC) is designed to enhance the rejection effect of periodic disturbances. Next, an EID system is introduced, and a Luenberger observer is used to estimate the state variables and disturbances of the system. The estimates of the EID are then used for feedforward compensation to address the issue of large overshoot in the system. Finally, simulations are conducted for comparison with the PID control method and PRC control method. The plug-in repetitive controller method assessed in this paper improves control performance by an average of 87.9% and 57.7% and reduces the amount of over-shooting by an average of 66.5% under various classes of disturbances, which proves the efficiency of the control method combining a plug-in repetitive controller with the EID theory. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

19 pages, 5751 KiB  
Article
Gyro-System for Guidance with Magnetically Suspended Gyroscope, Using Control Laws Based on Dynamic Inversion
by Romulus Lungu, Constantin-Adrian Mihai and Alexandru-Nicolae Tudosie
Actuators 2025, 14(7), 316; https://doi.org/10.3390/act14070316 - 25 Jun 2025
Viewed by 318
Abstract
The authors have designed a gyro-system for orientation (guidance) and stabilization, with two gimbals and a rotor in magnetic suspension (AMB—Active Magnetic Bearing) usable for self-guided rockets. The gyro-system (DGMSGG—double gimbal magnetic suspension gyro-system for guidance) orients and stabilizes the target coordinator’s axis [...] Read more.
The authors have designed a gyro-system for orientation (guidance) and stabilization, with two gimbals and a rotor in magnetic suspension (AMB—Active Magnetic Bearing) usable for self-guided rockets. The gyro-system (DGMSGG—double gimbal magnetic suspension gyro-system for guidance) orients and stabilizes the target coordinator’s axis (CT) and, at the same time, the AMB–rotor’s axis so that they overlap the guidance line (the target line). DGMSGG consists of two decoupled systems: one for canceling the AMB–rotor translations along the precession axes (induced by external disturbing forces), the other for canceling the AMB–rotor rotations relative to the CT-axis (induced by external disturbing moments) and, at the same time, for controlling the gimbals’ rotations, so that the AMB–rotor’s axis overlaps the guidance line. The nonlinear DGMSGG model is decomposed into two sub-models: one for the AMB–rotor’s translation, the other for the AMB–rotor’s and gimbals’ rotation. The second sub-model is described first by nonlinear state equations. This model is reduced to a second order nonlinear matrix—vector form with respect to the output vector. The output vector consists of the rotation angles of the AMB–rotor and the rotation angles of the gimbals. For this purpose, a differential geometry method, based on the use of the output vector’s gradient with respect to the nonlinear state functions, i.e., based on Lie derivatives, is used. This equation highlights the relative degree (equal to 2) with respect to the variables of the output vector and allows for the use of the dynamic inversion method in the design of stabilization and guidance controllers (of P.I.D.- and PD-types), as well as in the design of the related linear state observers. The controller of the subsystem intended for AMB–rotor’s translations control is chosen as P.I.D.-type, which leads to the cancellation of both its translations and its translation speeds. The theoretical results are validated through numerical simulations, using Simulink/Matlab models. Full article
Show Figures

Figure 1

16 pages, 3210 KiB  
Article
Performance Improvement of Tin-Based Babbitt Alloy Through Control of Microstructure
by Zhang Wei, Honglin Shu, Gaixiao Qiao, Qunfeng Zeng, Guoping Wang and Qian Jia
Alloys 2025, 4(3), 11; https://doi.org/10.3390/alloys4030011 - 20 Jun 2025
Viewed by 304
Abstract
Babbitt alloys are among the most commonly used materials for sliding bearings. However, with the high speeds and heavy loads of modern machinery, as well as the demands of extreme working conditions, the temperature resistance, strength, and hardness of traditional Babbitt alloys are [...] Read more.
Babbitt alloys are among the most commonly used materials for sliding bearings. However, with the high speeds and heavy loads of modern machinery, as well as the demands of extreme working conditions, the temperature resistance, strength, and hardness of traditional Babbitt alloys are often insufficient to meet these requirements. To address this issue, it is essential to improve the properties of Babbitt alloys, particularly their performance at high temperatures. The present study explored a technical approach for incorporating copper powder to improve the high-temperature performance of Babbitt alloys. Copper powder was added to the traditional Babbitt alloy in mass percentages of 1, 2, 3, and 4%. After fabrication, the samples were examined using metallographic structure analysis, high-temperature compression testing, and friction and wear testing. The experiments investigated the effects of copper powder addition on the properties of the Babbitt alloy and determined the optimal amount of copper powder required to enhance its performance. Full article
Show Figures

Figure 1

30 pages, 5714 KiB  
Article
Analysis of Unbalance Response and Vibration Reduction of an Aeroengine Gas Generator Rotor System
by Haibiao Zhang, Xing Heng, Ailun Wang, Tao Liu, Qingshan Wang and Kun Liu
Lubricants 2025, 13(6), 266; https://doi.org/10.3390/lubricants13060266 - 15 Jun 2025
Viewed by 438
Abstract
To ensure the vibration safety of rotor support systems in modern aeroengines, this study develops a dynamic model of the aeroengine gas generator rotor system and analyzes its complex unbalance response characteristics. Subsequently, it investigates vibration reduction strategies based on these response patterns. [...] Read more.
To ensure the vibration safety of rotor support systems in modern aeroengines, this study develops a dynamic model of the aeroengine gas generator rotor system and analyzes its complex unbalance response characteristics. Subsequently, it investigates vibration reduction strategies based on these response patterns. This study begins by developing individual dynamic models for the disk–blade system, the circular arc end-teeth connection structure and the squeeze film damper (SFD) support system. These models are then integrated using the differential quadrature finite element method (DQFEM) to create a comprehensive dynamic model of the gas generator rotor system. The unbalance response characteristics of the rotor system are calculated and analyzed, revealing the impact of the unbalance mass distribution and the combined support system characteristics on the unbalance response of the rotor system. Drawing on the obtained unbalance response patterns, the vibration reduction procedures for the rotor support system are explored and experimentally verified. The results demonstrate that the vibration response of the modern aeroengine rotor support system can be reduced by adjusting the unbalance mass distribution, decreasing the bearing stiffness and increasing the bearing damping, thereby enhancing the vibration safety of the rotor system. This study introduces a novel integration of DQFEM with detailed component-level modeling of circular arc end-teeth connections, disk–blade interactions and SFD dynamics. This approach uniquely captures the coupled effects of unbalance distribution and support system characteristics, offering a robust framework for enhancing vibration safety in aeroengine rotor systems. The methodology provides both theoretical insights and practical guidelines for optimizing rotor dynamic performance under unbalance-induced excitations. Full article
Show Figures

Figure 1

21 pages, 3324 KiB  
Article
The Influence of Axial-Bearing Position of Active Magnetic Suspension Flywheel Energy Storage System on Vibration Characteristics of Flywheel Rotor
by Lei Wang, Tielei Li and Zhengyi Ren
Actuators 2025, 14(6), 290; https://doi.org/10.3390/act14060290 - 13 Jun 2025
Viewed by 394
Abstract
This study introduces a flywheel rotor support structure for an active magnetic suspension flywheel energy storage system. In this structure, there is an axial offset between the axial-bearing position and the mass-center of the flywheel rotor, which affects the tilting rotation of the [...] Read more.
This study introduces a flywheel rotor support structure for an active magnetic suspension flywheel energy storage system. In this structure, there is an axial offset between the axial-bearing position and the mass-center of the flywheel rotor, which affects the tilting rotation of the flywheel rotor and which causes the coupling between its tilting rotation and radial motion. Therefore, the influence of the bearing position on the vibration characteristics of the flywheel rotor is explored in this paper. The tilting rotation constraint of the flywheel rotor by axial active magnetic bearing (AAMB) is analyzed, and the radial active magnetic bearing (RAMB) is equivalently treated with dynamic stiffness and dynamic damping. Based on this, a dynamic model of the active magnetic suspension rigid flywheel rotor, considering the position parameter of the axial bearing, is established. To quantify the axial offset between the position of the AAMB and the mass-center of the flywheel rotor, the axial-bearing position offset ratio γ is defined. The variation trend of the vibration characteristics of flywheel rotor with γ is discussed, and its correctness is validated through experiments. It is indicated that, with the increase of γ, the second-order positive precession frequency of the flywheel rotor decreases obviously, and the influence of the gyroscope torque gradually weakens. Meanwhile, its second-order critical speed ω2c decreases significantly (when γ is 0.5, ω2c decreases by about 62%); ω2c corresponds to the inclined mode, revealing that the offset ratio γ has a prominent influence on the critical speed under this mode. In addition, as γ increases, the mass unbalance response amplitude of the flywheel rotor under the speed of ω2c decreases significantly. The reasonable design of the axial-bearing position parameter can effectively improve the operational stability of the active magnetic suspension flywheel energy storage system. Full article
(This article belongs to the Special Issue Actuators in Magnetic Levitation Technology and Vibration Control)
Show Figures

Figure 1

24 pages, 4655 KiB  
Article
Effect of Bearing Support Parameters on the Radial and Angular Deformation of Rotor Shaft Gear Based on CRDRS Support Configuration with Intermediate Bearing Support
by Xiaojie Yuan, Xiaoyu Che, Rupeng Zhu and Weifang Chen
Machines 2025, 13(6), 513; https://doi.org/10.3390/machines13060513 - 12 Jun 2025
Viewed by 1198
Abstract
The rotor shaft is a critical component responsible for transmitting engine power to the helicopter’s rotor. Deformation of the rotor shaft can affect the meshing performance of the output stage gears in the main gearbox, thereby affecting load transfer efficiency. By adjusting the [...] Read more.
The rotor shaft is a critical component responsible for transmitting engine power to the helicopter’s rotor. Deformation of the rotor shaft can affect the meshing performance of the output stage gears in the main gearbox, thereby affecting load transfer efficiency. By adjusting the support parameters of the rotor shaft, deformation at critical positions can be minimized, and the meshing performance of the output stage gears can be improved. Therefore, it is imperative to investigate the influence of rotor shaft support parameters on the deformation of the rotor shaft. This paper takes coaxial reversing dual rotor shaft (CRDRS) support configuration with intermediate bearing support as object. Utilizing Timoshenko beam theory, a rotor shaft model is developed, and static equations are derived based on the Lagrange equations. The relaxation iteration method is employed for a two-level iterative solution, and the effects of bearing support positions and support stiffness on the radial and angular deformations of rotor shaft gears under two support configurations, simply supported outer rotor shaft–cantilever-supported inner rotor shaft, and simply supported outer rotor shaft–simply supported inner rotor shaft, are analyzed. The findings indicate that the radial and angular deformations of gear s1 are consistently smaller than those of gear s2 in the CRDRS system. This difference is particularly pronounced in the selection of support configuration. The bearing support position plays a dominant role in gear deformation, exhibiting a monotonic linear relationship. In contrast, although adjustments in bearing support stiffness also follow a linear pattern in influencing deformation, their impact is relatively limited. Overall, optimal design should prioritize the adjustment of bearing positions, particularly the layout of b3 relative to s2, while complementing it with coordinated modifications to the stiffness of bearings b2, b3, and b4 to effectively enhance the static characteristics of the dual-rotor shaft gears. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

20 pages, 10062 KiB  
Article
Experimental Study on Vibration Characteristics of Journal Bearing-Rotor System Under Base Roll and Pitch Motions
by Fangcheng Xu, Jiyu Wang, Kaidi Zhu, Guilong Wang, Jingwei Yi and Zhongliang Xie
Lubricants 2025, 13(6), 242; https://doi.org/10.3390/lubricants13060242 - 27 May 2025
Viewed by 576
Abstract
Currently, there is limited experimental research on the stability of journal bearing-rotor systems under base motion, and the influence of rocking motion on the stability of such systems remains unclear. This study develops an experimental test rig for a journal bearing-rotor system and [...] Read more.
Currently, there is limited experimental research on the stability of journal bearing-rotor systems under base motion, and the influence of rocking motion on the stability of such systems remains unclear. This study develops an experimental test rig for a journal bearing-rotor system and employs a six-degrees-of-freedom shaking table to apply complex alternating loads, with the aim of investigating the effects of rocking amplitude and frequency on the vibration characteristics of the shaft system. The experimental results show that, under the excitation of base roll and pitch motions, the critical speed of the sliding bearing-rotor system remains nearly unchanged, while the resonance amplitude increases significantly, and the instability speed occurs earlier. In addition, base rocking motion not only induces periodic and uniform changes in the vibration amplitude of the shaft system but also demonstrates a strong positive correlation between the amplitude of system vibration and the amplitude of base rocking. Full article
Show Figures

Figure 1

22 pages, 7227 KiB  
Article
Analytical and Experimental Investigation of Nonlinear Dynamic Characteristics of Hydrodynamic Bearings for Oil Film Instability Detection
by Yang Chen, Zequn Zhao, Hao Zhang, Xin Li and Zhanqun Shi
Machines 2025, 13(6), 444; https://doi.org/10.3390/machines13060444 - 22 May 2025
Viewed by 377
Abstract
Nonlinear vibration phenomena, such as oil whirl and oil whip, are common indicators of oil film instability in hydrodynamic bearings and are key signs of potential faults in rotating machinery. Excessive vibrations caused by oil film instability can accelerate bearing wear and lead [...] Read more.
Nonlinear vibration phenomena, such as oil whirl and oil whip, are common indicators of oil film instability in hydrodynamic bearings and are key signs of potential faults in rotating machinery. Excessive vibrations caused by oil film instability can accelerate bearing wear and lead to the failure of the rotating system. This paper presents a model for nonlinear dynamic coefficients, aimed at providing a quantitative approach for monitoring and predicting oil film instability. The impact of operational parameters and perturbation values on both linear and nonlinear stiffness and damping coefficients is investigated. Simulation results and experimental rotor vibration signals demonstrate that the nonlinear dynamic coefficient model effectively characterizes oil film instability and accurately predicts rotor trajectory, while traditional linear models are only applicable under low-speed and small-disturbance conditions. Compared to traditional analytical models and numerical solutions, the nonlinear dynamic coefficients have higher accuracy and efficiency and can reliably identify the onset frequency of oil film instability. This study clarifies the relationship between nonlinear dynamic coefficients and rotor dynamic response, laying a theoretical foundation for the monitoring and prediction of oil film instability. Full article
Show Figures

Figure 1

Back to TopTop