Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = rose hydrosol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2668 KiB  
Article
Pharmaceutical Potential Evaluation of Damask Rose By-Products from Volatile Oil Extraction
by Nutthawut Charoimek, Piyachat Sunanta, Tibet Tangpao, Ratchuporn Suksathan, Wisinee Chanmahasathien, Sasithorn Sirilun, Kuo-Feng Hua, Hsiao-Hang Chung, Sarana Rose Sommano and Taepin Junmahasathien
Plants 2024, 13(12), 1605; https://doi.org/10.3390/plants13121605 - 9 Jun 2024
Cited by 7 | Viewed by 3996
Abstract
Despite its well-known fragrance in cosmetics and medicine, a complete understanding of the phytochemical properties within by-products generated during commercial extraction of Damask rose remains elusive. Cultivated in Thailand for their essential oil, Damask rose varieties, including Mon Dang Prasert, Mon Klai Kangwon, [...] Read more.
Despite its well-known fragrance in cosmetics and medicine, a complete understanding of the phytochemical properties within by-products generated during commercial extraction of Damask rose remains elusive. Cultivated in Thailand for their essential oil, Damask rose varieties, including Mon Dang Prasert, Mon Klai Kangwon, and Bishop’s Castle, share phenylethyl alcohol (57.62–61.11%) as the dominant component, which is responsible for their characteristic floral, sweet, rosy, and bready aroma. Through a circular hydro-distillation process, three different by-product fractions, including distilled water (D), hydrosol (H), and rose dreg (R), were recovered. Subsequently, we assessed their pharmaceutical potential, including the antioxidant, antimicrobial, anti-inflammatory, and anti-melanogenesis properties of these residual substances. The H fraction displayed the highest total phenolics (10.56 mgGAE/g) and flavonoids (6.93 mgCE/g) and significant antioxidant activity (IC50, 0.67–0.97 µg/mL). While the H fraction inhibited melanin formation at 50 μg/mL, the R fraction of MK (100 μg/mL) surprisingly promoted melanin production in B16-F10 cells. Nevertheless, the antimicrobial assay against Staphylococcus aureus, Cutibacterium acnes, Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans revealed no antimicrobial activity in any fraction. Murine macrophage stimulation (J774A.1) with lipopolysaccharide revealed no anti-inflammatory effects from the by-products, as measured by IL-1β production. In summary, the H fraction exhibited the highest level of phenolic and flavonoid contents, as well as antioxidant and anti-melanogenesis activities. Therefore, this by-product is a desirable choice for the development of value-added products such as functional food, cosmetics, and pharmaceutical products. Full article
Show Figures

Figure 1

19 pages, 2925 KiB  
Article
Genotoxic and Anti-Genotoxic Potential of Hydrosols from Water–Steam Distillation of Oil-Bearing Roses Rosa centifolia L. and Rosa gallica L. from Bulgaria
by Svetla Gateva, Gabriele Jovtchev, Tsveta Angelova, Tsvetelina Gerasimova, Ana Dobreva and Milka Mileva
Pharmaceuticals 2024, 17(5), 657; https://doi.org/10.3390/ph17050657 - 20 May 2024
Cited by 4 | Viewed by 2135
Abstract
Rosa centifolia L. and Rosa gallica L. (Rosaceae) are grown as raw materials for valuable essential oils and hydrosols. There are scarce data about the biological activities and the genoprotective potential of the hydrosols of these roses. The aim of the study was [...] Read more.
Rosa centifolia L. and Rosa gallica L. (Rosaceae) are grown as raw materials for valuable essential oils and hydrosols. There are scarce data about the biological activities and the genoprotective potential of the hydrosols of these roses. The aim of the study was to provide information on their cytotoxic/genotoxic activity and anti-cytotoxic/anti-genotoxic capacity against mutagenic N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). The evaluation was performed using classical tests for chromosomal aberrations and micronuclei in the higher plant Hordeum vulgare and human lymphocyte test systems. The experimental schemes included combined hydrosol and mutagen treatment. Both hydrosols (6, 14, 20%) had no cytotoxic effect on barley and showed low genotoxicity in both test systems as the injuries were enhanced to a lesser extent compared to the controls. Lymphocytes were more susceptible than H. vulgare. Under the conditions of combined treatment, it was found that the two hydrosols possessed good anti-cytotoxic and anti-genotoxic potential against MNNG. Both rose products exerted genoprotective potential to a similar extent, decreasing the frequencies of aberrations in chromosomes and micronuclei to a significant degree in both types of cells when non-toxic concentrations of hydrosols were applied before MNNG. This was performed both with and without any inter-treatment time. The observed cytoprotective/genoprotective potential suggests that these hydrosols are promising for further application in phytotherapy and medicine. Full article
Show Figures

Figure 1

14 pages, 3091 KiB  
Article
Cytogenetic Studies on Genoprotective Effect of Rosa damascena Mill. Hydrosol in Plant and Lymphocyte Test Systems
by Svetla Gateva, Gabriele Jovtchev, Tsveta Angelova, Tsvetelina Gerasimova, Ana Dobreva and Milka Mileva
Life 2023, 13(8), 1753; https://doi.org/10.3390/life13081753 - 16 Aug 2023
Cited by 2 | Viewed by 1403
Abstract
Bulgarian Rosa damascena Mill. is has been known since ancient times for its high-quality oil, hydrosol, and other aromatic products. Rose hydrosol has various biological activities, but no research on its anticytotoxic/antigenotoxic effects exists. This study aimed to assess its defense potential against [...] Read more.
Bulgarian Rosa damascena Mill. is has been known since ancient times for its high-quality oil, hydrosol, and other aromatic products. Rose hydrosol has various biological activities, but no research on its anticytotoxic/antigenotoxic effects exists. This study aimed to assess its defense potential against the genotoxin N-methyl-N′-nitro-N-nitrosoguanidine and to test its cytotoxic/genotoxic activity in plant and human lymphocyte test systems. Endpoints for cytotoxicity (mitotic index and nuclear division index) and genotoxicity (chromosome aberration and micronuclei) were used. Hydrosol was applied as a single treatment in concentrations ranging from 3% to 20% (4 h) to assess its cytotoxic and genotoxic effects. Its protective potential against MNNG was tested by applying an experimental scheme involving (i) conditioning treatment with non-toxic or slightly toxic concentrations of hydrosol, followed by genotoxin challenge (50 μg/mL) with a 4 h intertreatment time and (ii) treatment with hydrosol and mutagen with no time between the treatments. Hydrosol induces low cytotoxicity and clastogenicity, demonstrating cytoprotective/genoprotective effects against the mutagen in both applied test systems. The hydrosol defense potential was expressed by a more than twofold reduction in both chromosomal aberrations and micronuclei and by enhancing the mitotic activity compared with that of the mutagen, regardless of the experimental conditions. The results are promising for further hydrosol applications in pharmaceutical and medical practice. Full article
Show Figures

Graphical abstract

10 pages, 1093 KiB  
Article
Comparative Study of the Yield and Chemical Profile of Rose Oils and Hydrosols Obtained by Industrial Plantations of Oil-Bearing Roses in Bulgaria
by Ana Dobreva, Deyana Nedeva and Milka Mileva
Resources 2023, 12(7), 83; https://doi.org/10.3390/resources12070083 - 10 Jul 2023
Cited by 14 | Viewed by 6411
Abstract
Bulgaria is famous for its oil-bearing rose. R. damascena Mill. and R. alba L. are mainly cultivated in the country, but a recent survey of industrial plantations in 2020 revealed that R. centifolia L. and hybrids of R. damascena Mill. X R. gallica [...] Read more.
Bulgaria is famous for its oil-bearing rose. R. damascena Mill. and R. alba L. are mainly cultivated in the country, but a recent survey of industrial plantations in 2020 revealed that R. centifolia L. and hybrids of R. damascena Mill. X R. gallica L. are also common in the rose valley. Although their essential oil cannot be compared in quality with the classic, these species are preferred by farmers with high yields of flowers and resistance to diseases and pests. All these roses are also used to produce rose water and extracts. The aim of this investigation was to compare the yield and chromatographic fingerprints of seven rose oils and hydrosols produced in Bulgaria. The quantitative composition of the main components of the oils was compared with the norms of the world standards. Our study showed that the yield of essential oil from these roses was in the range of 0.015–0.048%. The main group in the chemical composition is terpene alcohols, which vary in range: geraniol (15.85–34.02%), citronellol (6.70–28.72%), and nerol (5.80–11.90%) but with a different ratio. Hydrocarbons are represented by saturated aliphatic homologs with an odd number of carbon atoms, the main ones being nonadecane (8.10–22.67%), heneicosane (4.37–10.21%), heptadecane (1.07–2.98%), and triclosan (0.81–5.90%). In contrast, the chemical profile of the hydrosols was performed using phenylethyl alcohol (27.45–69.88%), geraniol (13.72–28.67%), and citronelol+nerol (4.56–17.37%). The results show that the presence of plantations with a genotype different from that of R. damascena implies differences in the quality of rose oils and hydrosols. This determines their properties of use. Full article
(This article belongs to the Special Issue Resource Extraction from Agricultural Products/Waste)
Show Figures

Graphical abstract

12 pages, 583 KiB  
Article
Volatile Profile of Garden Rose (Rosa hybrida) Hydrosol and Evaluation of Its Biological Activity In Vitro
by Biljana Božanić Tanjga, Biljana Lončar, Milica Aćimović, Biljana Kiprovski, Olja Šovljanski, Ana Tomić, Vanja Travičić, Mirjana Cvetković, Vidak Raičević and Tijana Zeremski
Horticulturae 2022, 8(10), 895; https://doi.org/10.3390/horticulturae8100895 - 29 Sep 2022
Cited by 14 | Viewed by 3749
Abstract
Garden rose, Rosa hybrida, is primarily used for decoration and has a wide range of growing area, contrary to R. damascena that has a limited area of distribution (Turkey and Bulgaria), yet it is extensively used for commercial production of valuable and [...] Read more.
Garden rose, Rosa hybrida, is primarily used for decoration and has a wide range of growing area, contrary to R. damascena that has a limited area of distribution (Turkey and Bulgaria), yet it is extensively used for commercial production of valuable and expensive rose oil. Since the content of essential oil in rose petals is low (0.03–0.04%), its production is quite limited; however, during this process, a significant amount of rose hydrosol is obtained as a secondary product. The aim of this research was to determine the chemical composition of garden rose hydrosols and to evaluate their biological properties. Obtained results show that R. hybrida hydrosol containing phenylethyl alcohol, nerol, linalool, and geraniol may be used as an alternative for R. damascena hydrosol. However, the total phenolic content was quite low (4.96 µg GAE/mL), which is related to a low level of observed antioxidant activity based on different antioxidant activity assays. Furthermore, R. hybrida hydrosol did not exhibit antimicrobial activity against several gram-positive and gram-negative bacteria, as well as yeast and fungi. Anti-inflammatory activity was also low, while no antihyperglycemic activity was detected. With these results in mind, no potential is evident for the therapeutic application of rose hydrosol beyond that found in complimentary medicine such as aromatherapy. Full article
Show Figures

Figure 1

18 pages, 2450 KiB  
Article
Study on Cytotoxic and Genotoxic Potential of Bulgarian Rosa damascena Mill. and Rosa alba L. Hydrosols—In Vivo and In Vitro
by Tsvetelina Gerasimova, Gabriele Jovtchev, Svetla Gateva, Margarita Topashka-Ancheva, Alexander Stankov, Tsveta Angelova, Ana Dobreva and Milka Mileva
Life 2022, 12(9), 1452; https://doi.org/10.3390/life12091452 - 19 Sep 2022
Cited by 10 | Viewed by 3444
Abstract
The Rosa alba L. and Rosa damascena Mill. growing in Bulgaria are known for their extremely fine essential oil and valuable hydrosols. Irrespectively of its wide use in human life, little research exists on the cytotoxic and genotoxic activity of the hydrosols. This [...] Read more.
The Rosa alba L. and Rosa damascena Mill. growing in Bulgaria are known for their extremely fine essential oil and valuable hydrosols. Irrespectively of its wide use in human life, little research exists on the cytotoxic and genotoxic activity of the hydrosols. This set our goal to conduct cytogenetic analyses to study these effects. A complex of classical cytogenetic methods was applied in three types of experimental test systems—higher plant in vivo, ICR mice in vivo, and human lymphocytes in vitro. Mitotic index, PCE/(PCE + NCE) ratio, and nuclear division index were used as endpoints for cytotoxicity and for genotoxicity—induction of chromosome aberrations and micronuclei. Rose hydrosol treatments range in concentrations from 6% to 20%. It was obtained that both hydrosols did not show considerable cytotoxic and genotoxic effects. These effects depend on the type of the tested rose hydrosols, the concentrations applied in the experiments, and the sensitivity and specificity of the test systems used. Human lymphocytes in vitro were the most sensitive to hydrosols, followed by higher plant and animal cells. Chromosomal aberrations and micronucleus assays suggested that R. damascena and R. alba hydrosols at applied concentrations possess low genotoxic risk. Due to the overall low values in terms of cytotoxic and/or genotoxic effects in all test systems, hydrosols are promising for further use in various areas of human life. Full article
(This article belongs to the Special Issue The Role of Renewable Resources for Ecology and Human Health)
Show Figures

Figure 1

14 pages, 1580 KiB  
Article
Effects of Orally Consumed Rosa damascena Mill. Hydrosol on Hematology, Clinical Chemistry, Lens Enzymatic Activity, and Lens Pathology in Streptozotocin-Induced Diabetic Rats
by İlker Demirbolat, Cansu Ekinci, Fadime Nuhoğlu, Murat Kartal, Pelin Yıldız and Melin Özgün Geçer
Molecules 2019, 24(22), 4069; https://doi.org/10.3390/molecules24224069 - 10 Nov 2019
Cited by 20 | Viewed by 4278
Abstract
Diabetes mellitus is a multisystemic metabolic disorder that may affect the eyes, kidneys, vessels, and heart. Chronic hyperglycemia causes non-enzymatic glycation of proteins and elevation of the polyol pathway resulting in oxidative stress that damages organs. The current study aimed to investigate the [...] Read more.
Diabetes mellitus is a multisystemic metabolic disorder that may affect the eyes, kidneys, vessels, and heart. Chronic hyperglycemia causes non-enzymatic glycation of proteins and elevation of the polyol pathway resulting in oxidative stress that damages organs. The current study aimed to investigate the dose-dependent effects of orally consumed Rosa damascena Mill. hydrosol on hematology, clinical biochemistry, lens enzymatic activity, and lens pathology in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced into male Sprague–Dawley rats by intraperitoneal administration of STZ (40 mg/kg body weight). Rose hydrosols containing 1515 mg/L and 500 mg/L total volatiles (expressed as citronellol) were introduced to rats orally for 45 days. Consumption of 1515 mg/L volatile containing rose hydrosol successfully ameliorated hematologic, hepatic, and renal functions. Hydrosols also attenuated hyperglycemia and decreased the advanced glycation end-product formation in a dose-dependent manner. Rose hydrosol components significantly increased the lens enzymatic activities of glutathione peroxidase and decreased the activity of aldose reductase to prevent cataractogenesis. Histopathological examinations of rat lenses also indicated that increasing the dose of rose hydrosol had a protective effect on lenses in diabetic conditions. Additionally, in silico modeling of aldose reductase inhibition with rose hydrosol volatiles was carried out for extrapolating the current study to humans. The present results suggest that rose hydrosol exerts significant protective properties in diabetes mellitus and has no toxic effect on all studied systems in healthy test groups. Full article
(This article belongs to the Special Issue Selected Papers from the Joint Symposia of MESMAP-5 & ISPBS-5)
Show Figures

Graphical abstract

Back to TopTop