Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = root collar excavation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8188 KiB  
Article
Operational and Cost Assessment of Mechanizing Soil Removal Between Peach Trees Planted on Raised Berms
by Coleman Scroggs, Ali Bulent Koc, Guido Schnabel and Michael Vassalos
AgriEngineering 2025, 7(5), 144; https://doi.org/10.3390/agriengineering7050144 - 6 May 2025
Viewed by 594
Abstract
Armillaria root rot (ARR) is a fungal disease caused by Desarmillaria caespitosa and the leading cause of peach tree decline in the Southeastern U.S. It affects the roots and lower stems of trees, leading to the decay of the tree’s root system. Planting [...] Read more.
Armillaria root rot (ARR) is a fungal disease caused by Desarmillaria caespitosa and the leading cause of peach tree decline in the Southeastern U.S. It affects the roots and lower stems of trees, leading to the decay of the tree’s root system. Planting peach trees shallow on berms and excavating soil around the root collar after two years can extend the economic life of infected trees. However, berms pose operational challenges, including elevation changes, soil erosion from water flow, and herbicide and fertilizer runoff, thereby reducing orchard management efficiency. This study aimed to develop a tractor-mounted rotary tillage method to flatten the area between peach trees planted on berms, improving safety and reducing runoff. A custom paddle wheel attachment (20.3 cm height, 30.5 cm length) was retrofitted to an existing mechanical orchard weed management implement equipped with a hydraulic rotary head. A hydraulic flow meter, two pressure transducers, and an RTK-GPS receiver were integrated with a wireless data acquisition system to monitor the paddle wheel rotational speed and tractor ground speed during field trials. The effects of three paddle wheel speeds (132, 177, and 204 RPM) and three tractor ground speeds (1.65, 2.255, and 3.08 km/h) were evaluated in two orchards with Cecil sandy loam soil (bulk density: 1.93 g/cm3; slope: 2–6%). The paddle wheel speed had a greater influence on the torque and power requirements than the tractor ground speed. The combination of a 177 RPM paddle speed and 3 km/h tractor speed resulted in the smoothest soil surface with minimum torque demand, indicating this setting as optimal for flattening berms in similar soil conditions. Future research will include optimizing the paddle wheel structure and equipping the berm leveling machine with tree detection sensors to control the rotary head position. Full article
(This article belongs to the Collection Research Progress of Agricultural Machinery Testing)
Show Figures

Figure 1

15 pages, 3459 KiB  
Article
Analysis of Crown and Root Orientation of Quercus suber in Relation to the Irrigation System Using a Magnetic Digitizer
by Kristýna Šleglová, Constança Camilo-Alves, Ana Poeiras, João Ribeiro, Nuno de Almeida Ribeiro and Peter Surový
Agronomy 2025, 15(2), 373; https://doi.org/10.3390/agronomy15020373 - 30 Jan 2025
Viewed by 822
Abstract
This study investigates the effect of the spatial distribution of soil water and nutrients on cork oak (Quercus suber) architecture. Fertirrigation is being tested in cork oak plantations to accelerate tree growth up to the production stage. To assess the impact [...] Read more.
This study investigates the effect of the spatial distribution of soil water and nutrients on cork oak (Quercus suber) architecture. Fertirrigation is being tested in cork oak plantations to accelerate tree growth up to the production stage. To assess the impact of wet bulb location on tree development, six trees (three subjected to subsurface drip irrigation and three controls) were fully excavated at a sandy soil site, along with a seventh tree subjected to surface drip irrigation at a sandy loam soil site. The aerial parts of the trees were digitized using a Polhemus Fastrak magnetic digitizer and segmented into orders starting from the main trunk. Roots with diameters greater than 0.5 cm were digitized during excavation and segmented by size and order from the root collar. For each segment, length, orientation, and spatial location were calculated. General linear models were then applied to compare total root length across orientation and quadrant classes. Crown architecture was influenced by factors such as light competition. Irrigation treatments did not significantly affect root architecture when wet bulb formation was constrained. However, tree no. 7 had 50% of its total root length located within the wet bulb quadrant. These findings suggest that differences in soil type and irrigation method influence wet bulb formation, potentially reducing the impact of fertirrigation on root architecture. Strategies to minimize tree dependence on wet bulb zones are crucial for enabling future irrigation suppression. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

13 pages, 5735 KiB  
Article
Study of Root Transparency in Different Postmortem Intervals Using Scanning Electron Microscopy
by Elodie Marchand, Benoit Bertrand, Valéry Hedouin, Xavier Demondion and Anne Becart
Diagnostics 2023, 13(17), 2808; https://doi.org/10.3390/diagnostics13172808 - 30 Aug 2023
Cited by 3 | Viewed by 1586
Abstract
In the fields of forensics, the identification of human remains is a recurrent problem. The estimated age at death is one of the copious criteria to be evaluated. In adult teeth, the height of the root dentin transparency is used to estimate age. [...] Read more.
In the fields of forensics, the identification of human remains is a recurrent problem. The estimated age at death is one of the copious criteria to be evaluated. In adult teeth, the height of the root dentin transparency is used to estimate age. However, in archaeological material, this phenomenon appears inconstant. The aim of this work was to observe the structural modifications of the sclerotic dentin in the teeth for different postmortem intervals. The study included two parts (retrospective and prospective study) with 21 human monoradicular teeth, from bodies donated to medical science with postmortem intervals (PMIs) of 0, 1, 2 and 5 years and archeological excavation. After inclusion based on resin, section and polishing, the samples were analyzed with a scanning electron microscope (SEM) JSM-7800F®, and the procedure was completed via a semiquantitative analysis of calcium and phosphorus using EDX microanalysis. The analysis showed the existence of tubular and chemical modifications of sclerotic dentin at different PMIs. Our SEM study allowed us to observe a difference in tubule aspects linked to an increased PMI: the loss of peritubular collar and the lumen obstruction of tubules with a hyperdense material. Microanalysis highlighted variations in phosphocalcic ratios among the different groups, especially in the pulp area and the canine. Our hypotheses that explain these differences are based on the postmortem modifications of the crystals of the mineral phase of sclerotic dentin under the influence of chemical and/or bacterial action. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

15 pages, 4301 KiB  
Article
Root Characteristics and Water Erosion-Reducing Ability of Alpine Silver Grass and Yushan Cane for Alpine Grassland Soil Conservation
by Jung-Tai Lee, Shun-Ming Tsai, Yu-Jie Wu, Yu-Syuan Lin, Ming-Yang Chu and Ming-Jen Lee
Sustainability 2021, 13(14), 7633; https://doi.org/10.3390/su13147633 - 8 Jul 2021
Cited by 10 | Viewed by 2747
Abstract
In Taiwan, intensive forest fires frequently cause serious forest degradation, soil erosion and impacts on alpine vegetation. Post-fire succession often induces the substitution of forest by alpine grassland. Alpine silver grass (Miscanthus transmorrisonensis Hay.) and Yushan cane (Yushania niitakayamensis (Hay.) Keng [...] Read more.
In Taiwan, intensive forest fires frequently cause serious forest degradation, soil erosion and impacts on alpine vegetation. Post-fire succession often induces the substitution of forest by alpine grassland. Alpine silver grass (Miscanthus transmorrisonensis Hay.) and Yushan cane (Yushania niitakayamensis (Hay.) Keng f.) are two main endemic species emerging on post-fire alpine grassland. These species play a major role in the recovery of alpine vegetation and soil conservation of alpine grassland. However, their root traits, root mechanical properties and water erosion-reducing ability have still not been well studied. In the present study, root characteristics were examined using a complete excavation method. Root mechanical characteristics were estimated by utilizing the uprooting test and root tensile test, and hydraulic flume experiments were performed to investigate the water erosion-reducing ability using 8-month-old plants. The results show that the root architecture system of Alpine silver grass belongs to fibrous root system, while the Yushan cane has sympodial-tufted rhizomes with a fibrous root system. Root characteristics reveal that relative to Alpine silver grass, Yushan cane has remarkably larger root collar diameter, higher root biomass, larger root volume, higher root density, and a higher root tissue density. Furthermore, uprooting resistance of Yushan cane is notably higher than that of Alpine silver grass. However, the root tensile strength of Alpine silver grass is significantly higher than that of Yushan cane. Additionally, hydraulic flume experiments reveal that Yushan cane has significantly lower soil detachment rates than that of Alpine silver grass. Collectively, these findings clearly show that Yushan cane has superior root characteristics and water erosion-reducing ability than Alpine silver grass and is thus more suitable for the conservation of alpine grassland. Full article
Show Figures

Figure 1

17 pages, 3415 KiB  
Article
Root Traits and Biomechanical Properties of Three Tropical Pioneer Tree Species for Forest Restoration in Landslide Areas
by Jung-Tai Lee, Ming-Yang Chu, Yu-Syuan Lin, Kuan-Ning Kung, Wen-Chi Lin and Ming-Jen Lee
Forests 2020, 11(2), 179; https://doi.org/10.3390/f11020179 - 5 Feb 2020
Cited by 36 | Viewed by 4364
Abstract
Frequent earthquakes, monsoon torrential rains and typhoons cause severe landslides and soil erosion in Taiwan. Hibiscus taiwanensis, Macaranga tanarius, and Mallotus paniculatus are major pioneer tree species appearing on landslide-scarred areas. Thus, these species can be used to restore the self-sustaining native vegetation [...] Read more.
Frequent earthquakes, monsoon torrential rains and typhoons cause severe landslides and soil erosion in Taiwan. Hibiscus taiwanensis, Macaranga tanarius, and Mallotus paniculatus are major pioneer tree species appearing on landslide-scarred areas. Thus, these species can be used to restore the self-sustaining native vegetation on forest landslides, to control erosion, and to stabilize slope. However, their growth performance, root traits and biomechanical properties have not been well characterized. In this study, root system and root traits were investigated using the excavation method, and biomechanical tests were performed to determine the uprooting resistance, root tensile strength and Young’s modulus of 1-year-old Hibiscus taiwanensis, Macaranga tanarius, and Mallotus paniculatus seedlings. The results reveal that relative to H. taiwanensis, M. tanarius and M. paniculatus seedlings had significantly larger root collar diameter, longer taproot length, higher root biomass, higher root density, higher root length density, heavier root mass, larger external root surface area, higher root tissue density, larger root volume, longer total root length, and a higher root tip number. Additionally, the height of M. paniculatus seedlings was significantly higher than those of H. taiwanensis and M. tanarius. Furthermore, the uprooting resistance and root tensile strength of M. paniculatus seedlings was significantly higher than those of H. taiwanensis and M. tanarius. Young’s modulus of M. paniculatus and M. tanarius seedlings was also significantly higher than that of H. taiwanensis. These growth characteristics and biomechanical properties demonstrate M. paniculatus and M. tanarius are superior than H. taiwanensis, considering growth performance, root anchorage capability, tensile strength and Young’s modulus. Taken as a whole, the rank order for species selection of these pioneer species for reforestation comes as: M. paniculatus M. tanarius H. taiwanensis. These results, along with knowledge on vegetation dynamics following landslides, allow us to better evaluate the effect of selective removal management of pioneer species on the resilience and sustainability of landslides. Full article
(This article belongs to the Special Issue The Ecology of Fine Roots and Mycorrhizas in Forests)
Show Figures

Figure 1

Back to TopTop