Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = rock mass state of stress and fracturing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 20652 KiB  
Article
Distinct Element Numerical Modelling and In Situ CSIRO HI Cell Data for Rock Slope Stability Assessment
by Vivien De Lucia, Andrea Ermini, Stefano Guido, Daria Marchetti, Domenico Gullì and Riccardo Salvini
Geosciences 2025, 15(4), 155; https://doi.org/10.3390/geosciences15040155 - 18 Apr 2025
Viewed by 936
Abstract
Understanding the in situ stress state and mechanical properties of rock masses is essential for ensuring the stability and safety of quarrying operations. This study aims to estimate the natural stress state of rock using the CSIRO HI (Hollow Inclusion) triaxial overcoring method; [...] Read more.
Understanding the in situ stress state and mechanical properties of rock masses is essential for ensuring the stability and safety of quarrying operations. This study aims to estimate the natural stress state of rock using the CSIRO HI (Hollow Inclusion) triaxial overcoring method; we also conducted numerical modelling by applying the Distinct Element Method (DEM) for stability assessments in quarry environments. The investigation provided comprehensive insights into the geomechanical properties of the rock mass and the stability of quarry fronts. Precise measurements and analyses of in situ stress contributed to a detailed understanding of stress distribution within the rock. Additionally, biaxial compression tests further characterized the mechanical behavior of the rock, which was essential for accurate modelling and simulation. Numerical modelling using DEM facilitated an in-depth stability analysis, allowing evaluation of potential failure mechanisms and proposal of effective mitigation strategies. The 3D numerical model was calibrated using in situ measurements from CSIRO HI data and was employed to simulate future excavations. DEM modelling was particularly crucial because of the fractured nature of the rock mass, which necessitated thorough stability verification in excavation design simulations. This research advances the scientific understanding of stress distribution and mechanical behavior in jointed rock masses, ultimately contributing to the development of safer and more efficient quarrying practices. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

25 pages, 11740 KiB  
Article
Effects of Stress States and Joint Configurations on Dynamic Mechanical Properties of Rock Masses
by Tingting Liu, Zi Wang, Xuyi Wang, Shenghao Yang, Wenxu Huang and Luyang Ding
Materials 2025, 18(8), 1699; https://doi.org/10.3390/ma18081699 - 9 Apr 2025
Viewed by 515
Abstract
In complex geological environments, the discontinuous dynamic response behavior of jointed rock masses under the coupled effects of in situ stress and transient dynamic disturbances significantly exacerbates the risk of surrounding rock instability. This study establishes three-dimensional numerical models of various jointed rocks [...] Read more.
In complex geological environments, the discontinuous dynamic response behavior of jointed rock masses under the coupled effects of in situ stress and transient dynamic disturbances significantly exacerbates the risk of surrounding rock instability. This study establishes three-dimensional numerical models of various jointed rocks under uniaxial–biaxial–triaxial split Hopkinson pressure bar (SHPB) experimental systems through the coupling of the finite difference method (FDM) and discrete element method (DEM). The models adhere to the one-dimensional stress wave propagation assumption and satisfy the dynamic stress equilibrium requirements, demonstrating dynamic mechanical responses consistent with physical experiments. The results reveal that the synergistic–competitive effects between joint configuration and initial pre-compression jointly dominate the dynamic mechanical response of rocks. Multiaxial pre-compression promotes the development of secondary force chain networks, enhances rock impact resistance through multi-path stress transfer mechanisms, significantly improves strain energy storage density during peak stages, and drives failure modes to evolve from macroscopic through-going fractures to localized crushing zones. The spatial heterogeneity of joint configurations induces anisotropic characteristics in principal stress fabric. Single joint systems maintain structural integrity due to restricted weak plane propagation, while cross/parallel joints exhibit geometrically induced synergistic propagation effects, forming differentiated crack propagation paths that intensify frictional and kinetic energy dissipation. Through cross-scale numerical model comparisons, the evolution of force chain fabric, particle displacement distribution, microcrack propagation, and energy dissipation mechanisms were analyzed, unveiling the synergistic regulatory effects of the stress state and joint configuration on the rock dynamic response. This provides a theoretical basis for impact-resistant structure optimization and dynamic instability early warning in deep engineering projects involving jointed surrounding rock. Full article
Show Figures

Figure 1

17 pages, 8952 KiB  
Article
Evolution Mechanisms of Three-Dimensional Fracture Fields in Coal Under Uniaxial Cyclic Loading and Unloading
by Jiankun Xu, Rui Zhou, Danyang Xi, Yichao Lin and Xibin Li
Appl. Sci. 2025, 15(5), 2556; https://doi.org/10.3390/app15052556 - 27 Feb 2025
Cited by 1 | Viewed by 460
Abstract
In deep underground engineering applications, such as coal mining, coal–rock masses are frequently subjected to repeated loading and unloading conditions. Understanding the evolution mechanisms of their internal three-dimensional fracture fields has become a critical scientific challenge. This study utilized X-ray Microscopy (XRM) to [...] Read more.
In deep underground engineering applications, such as coal mining, coal–rock masses are frequently subjected to repeated loading and unloading conditions. Understanding the evolution mechanisms of their internal three-dimensional fracture fields has become a critical scientific challenge. This study utilized X-ray Microscopy (XRM) to observe changes in internal fractures of coal samples after each loading–unloading cycle, reconstructing the internal fractures and mineral particles. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were employed to analyze the surface morphology and mineral composition of coal sample cross-sections. The experimental results revealed that: (1) With an increasing number of loading–unloading cycles, the samples’ volumes initially decreased and then expanded, with the expansion accompanied by rapid propagation of CT-scale fractures; (2) During the linear elastic phase, micro-fractures developed progressively but remained small, while sustained stress caused these fractures to interconnect, eventually leading to macroscopic failure; (3) Hard mineral particles within the coal samples, such as iron ore, acted as barriers to crack propagation. These findings indicate that the evolution characteristics of the internal fracture fields in coal–rock masses are influenced by stress state, pre-existing fractures, and the distribution of mineral particles. Full article
Show Figures

Figure 1

24 pages, 9061 KiB  
Article
Study on the Mechanical Characteristics and Degradation Response of Unloading Rocks Surrounding Tunnels in Cold Regions
by Xinyu Liu, Xingzhou Chen, Yimeng Wei, Lili Chen and Sheng Gong
Appl. Sci. 2025, 15(3), 1269; https://doi.org/10.3390/app15031269 - 26 Jan 2025
Viewed by 750
Abstract
The excavation of the rock mass at the tunnel entrance in regions characterized by high altitudes and elevated stress levels results in the direct exposure of the surrounding rock to atmospheric conditions. This surrounding rock is subjected to the compounded effects of excavation-induced [...] Read more.
The excavation of the rock mass at the tunnel entrance in regions characterized by high altitudes and elevated stress levels results in the direct exposure of the surrounding rock to atmospheric conditions. This surrounding rock is subjected to the compounded effects of excavation-induced unloading damage and freeze–thaw erosion, which contribute to the degradation of its mechanical properties. Such deterioration has a negative impact on production and construction operations. Following tunnel excavation, the lateral stress exerted by the surrounding rock at the tunnel face is reduced, leading to a predominance of uniaxial compressive stress. As a result, the failure mode and mechanical behavior of the rock exhibit characteristics similar to those observed in uniaxial loading tests conducted in controlled laboratory environments. This study conducts laboratory-based uniaxial loading and unloading tests, as well as freeze–thaw tests, to examine the strength, deformation characteristics, and fracture attributes of unloading sandstone subjected to freeze–thaw erosion. A damage deterioration model for unloading sandstone under uniaxial conditions is developed, and the patterns of damage response are further analyzed through the identification of compaction points and the definition of damage response points. The results indicate that (1) as the degree of freeze–thaw erosion increases, the failure threshold of the sandstone significantly decreases, with the residual rock fragments on the fracture surface transitioning from hard and sharp to soft and sandy; (2) freeze–thaw erosion has a pronounced negative impact on the cohesion of the sandstone, while the reduction in the internal friction angle is relatively moderate; and (3) the strain induced by damage following three, six, and nine freeze–thaw cycles exhibits a gradual decline and appears to reach a state of stabilization when compared to conditions without freeze–thaw exposure. Investigating the mechanical properties and deterioration mechanisms of the rock in this specific context is crucial for establishing a theoretical foundation to assess the stability of the tunnel’s surrounding rock and determine the necessary support measures. Full article
(This article belongs to the Special Issue Recent Research on Tunneling and Underground Engineering)
Show Figures

Figure 1

27 pages, 52260 KiB  
Article
Advances and Future Directions in Monitoring and Predicting Secondary Surface Subsidence in Abandoned Mines
by Ruonan Zhao, Sen Du, Meinan Zheng, Qingbiao Guo, Lei Wang, Teng Wang, Xi Guo and José Fernández
Remote Sens. 2025, 17(3), 379; https://doi.org/10.3390/rs17030379 - 23 Jan 2025
Cited by 2 | Viewed by 1084
Abstract
In recent years, the prolonged exploitation of coal resources has led to the depletion of coal reserves in some mining areas, resulting in the closure of certain mines worldwide. After mine closures, the fractured rock masses in abandoned mine cavities undergo weathering and [...] Read more.
In recent years, the prolonged exploitation of coal resources has led to the depletion of coal reserves in some mining areas, resulting in the closure of certain mines worldwide. After mine closures, the fractured rock masses in abandoned mine cavities undergo weathering and degradation due to factors such as stress and groundwater, leading to reduced strength. This change alters the stress distribution and load-bearing capacity of the fractured rock within the abandoned voids, resulting in secondary or multiple deformations on the surface, which pose significant potential threats to surface infrastructure and public safety. Research into the mechanisms, patterns, and predictive methods of secondary surface subsidence in closed mines is thus of great theoretical and practical significance. Based on a literature review and practical monitoring experience in closed mine sites, this study systematically examines and analyzes the current state of secondary surface subsidence monitoring methods, formation mechanisms, spatiotemporal distribution patterns, and prediction methods in closed mines, as well as existing challenges. Initially, we compare the advantages and limitations of conventional surface deformation monitoring techniques with remote sensing techniques, emphasizing the benefits and issues of using InSAR technology for monitoring surface subsidence in closed mines. Next, by reviewing extensive data, we analyze the formation mechanisms and spatiotemporal evolution of secondary surface subsidence in closed mines. Building on this analysis, we discuss numerical and analytical methods for predicting secondary surface subsidence mechanisms in closed mines, evaluating the strengths and weaknesses of each approach. Predictive models for surface subsidence and uplift phases in the longwall collapse method are presented based on the constitutive relationships of fractured rock masses. Finally, the study highlights that the mechanisms and patterns of surface subsidence in closed mines represent a highly complex physical–mechanical process involving geological mining environments, fractured rock structures, constitutive relations, deformation characteristics, hydro-mechanical interactions, and groundwater dynamics, underscoring the need for further in-depth research. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

13 pages, 3701 KiB  
Article
Experimental Study on the Effects of Dynamic High Water Pressure on the Deformation Characteristics of Limestone
by Dawen Tan, Heng Cheng, Chunyao Hou, Yanan Lei, Chenfang Jiang, Yuntian Zhao and Hongyi Zhang
Appl. Sci. 2025, 15(1), 42; https://doi.org/10.3390/app15010042 - 24 Dec 2024
Viewed by 963
Abstract
Difficulty in clarifying the deformation characteristics of deep rocks under a high water pressure environment is a technical bottleneck restricting the safe operation of large hydropower stations. In order to study the effect of reservoir water level changes on the mechanical behavior of [...] Read more.
Difficulty in clarifying the deformation characteristics of deep rocks under a high water pressure environment is a technical bottleneck restricting the safe operation of large hydropower stations. In order to study the effect of reservoir water level changes on the mechanical behavior of deep limestone, a series of mechanical tests were conducted under different dynamic high water pressure environments using a self-developed hydraulic loading test device. The test results show that the unsaturated limestone always undergoes compressive deformation during the linear increase in external water pressure, and the saturated limestone changes its deformation state from compression to expansion during the linear decrease in external water pressure. The stress–strain curve of limestone shows apparent hysteresis characteristics during the cyclic increase and decrease in external water pressure. Overall, the rock strain rate showed a significant negative correlation with the external water pressure, and the rock deformation modulus showed a certain positive correlation with the external water pressure. During hydraulic loading, saturated rocks had a smaller range of variation in the strain rate and deformation modulus and were more resistant to deformation than unsaturated rocks. Limestone was subjected to both external water pressure and internal pore water pressure in a cyclic cycle, where pore water pressure promotes pore creation and expansion, while external water pressure prevents water from degrading the pore structure. The periodic change of water pressure has a significant influence on rock mechanics and deformation behavior, and the rock mass will undergo elastic deformation, plastic deformation, and even fracture. Further study of this deformation rule can provide a more accurate theoretical basis for the safe operation of water conservancy projects. Full article
Show Figures

Figure 1

21 pages, 18028 KiB  
Article
Mechanical Properties and DEM-Based Simulation of Double-Fractured Sandstone Under Cyclic Loading and Unloading
by Lichen Sun, Peijie Lou, Cheng Pan and Penghui Ji
Sustainability 2024, 16(20), 9000; https://doi.org/10.3390/su16209000 - 17 Oct 2024
Cited by 4 | Viewed by 1270
Abstract
In response to the challenges posed by long-term cyclic loading and unloading in underground rock engineering, this study systematically investigates the macro- and meso-mechanical response mechanisms of fractured rock masses under cyclic loading conditions. We performed graded cyclic loading–unloading tests on parallel double-fractured [...] Read more.
In response to the challenges posed by long-term cyclic loading and unloading in underground rock engineering, this study systematically investigates the macro- and meso-mechanical response mechanisms of fractured rock masses under cyclic loading conditions. We performed graded cyclic loading–unloading tests on parallel double-fractured sandstone samples with varying spatial distribution configurations. These tests were integrated with digital image correlation (DIC) technology, fractal dimension analysis, and discrete element method (DEM) numerical simulations to analyze the mechanical properties, deformation characteristics, crack propagation features, and meso-fracture mechanisms of the fractured rock masses. The findings indicate that the diverse spatial distribution characteristics of the double fractures exert a significant influence on the loading–unloading processes, surface deformation fields, and fracture states of the rock. Cyclic loading leads to an increase in the fractal dimension of the fractured samples, resulting in more intricate and chaotic crack propagation patterns. Furthermore, DEM simulations reveal the impact of fracture spatial configurations on the force chain distribution within the rock bridges. The equivalent stress nephogram effectively represents the stress field distribution. This offers valuable insights for predicting meso-fracture trends in rocks. This paper comprehensively integrates both experimental and numerical simulation methodologies to deliver a thorough analysis of the complex mechanical behavior of fractured rock masses under cyclic loading conditions, with direct relevance to engineering applications such as mine excavation and slope stabilization. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

18 pages, 6910 KiB  
Article
Study on the Influence of Temperature and Water Content on the Static Mechanical Properties of Sandstone
by Xiaojun Zhang, Maolin He, Zhuo Li, Yongsheng Jia and Wenxue Gao
Materials 2024, 17(14), 3399; https://doi.org/10.3390/ma17143399 - 9 Jul 2024
Cited by 1 | Viewed by 918
Abstract
The area of permafrost worldwide accounts for approximately 20% to 25% of land area. In cold-climate regions of China, which are garnering international attention, the study of low-temperature and moisture effects on rock mass mechanical properties is of significant importance. China has a [...] Read more.
The area of permafrost worldwide accounts for approximately 20% to 25% of land area. In cold-climate regions of China, which are garnering international attention, the study of low-temperature and moisture effects on rock mass mechanical properties is of significant importance. China has a wide area of cold regions. This research can provide a foundation for China’s exploration activities in such extreme environments. This paper examines the mechanical behavior of rock specimens subjected to various low temperatures and water contents through uniaxial compression tests. The analysis encompasses failure modes, stress–strain relationships, uniaxial compressive strength (UCS), and elastic modulus (EM) of these specimens. Findings reveal that at lower temperatures, the rock specimens’ fracture patterns transition from compressive shear failure to cleavage failure, reflecting a shift from a plastic–elastic–plastic to a plastic–elastic response. Specifically, saturated rocks exhibit a 40.8% decrease in UCS and an 11.4% reduction in EM compared to their dry counterparts. Additionally, in cold conditions, an increased water content in rocks primarily leads to vertical cracking. Under such conditions, saturated rocks show a 52.3% decline in UCS and a 15.2% reduction in EM, relative to their dry state. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 12757 KiB  
Article
Finite–Discrete Element Method Simulation Study on Development of Water-Conducting Fractures in Fault-Bearing Roof under Repeated Mining of Extra-Thick Coal Seams
by Longquan Mai and Hao Li
Sustainability 2024, 16(12), 5177; https://doi.org/10.3390/su16125177 - 18 Jun 2024
Cited by 3 | Viewed by 1391
Abstract
The formation of water-conducting fractures in overlying strata caused by underground coal mining not only leads to roof water inrush disasters, but also water-conducting fractures penetrate the aquifer, resulting in the occurrence of a mine-water-inrush disaster and the loss of water resources. It [...] Read more.
The formation of water-conducting fractures in overlying strata caused by underground coal mining not only leads to roof water inrush disasters, but also water-conducting fractures penetrate the aquifer, resulting in the occurrence of a mine-water-inrush disaster and the loss of water resources. It destroys the sustainability of surface water and underground aquifers. This phenomenon is particularly significant in extra-thick coal seams and fault-bearing areas. Numerical simulation is an effective method to predict the failure range of mining overburden rock with low cost and high efficiency. The key to its accuracy lies in a reasonable constitutive model and simulation program. In this study, considering that the three parts of penetrating cracks, non-penetrating cracks, and intact rock blocks are often formed after rock failure, the contact state criterion and shear friction relationship of discrete rock blocks and the mixed fracture displacement–damage–load relationship are established, respectively. Combined with the Mohr–Coulomb criterion, the constitutive model of mining rock mass deformation–discrete block motion and interaction is formed. On this basis, according to the engineering geological conditions of Yushupo Coal Mine, a numerical model for the development of water-conducting cracks in the roof with faults under repeated mining of extra-thick coal seams is established. The results show the following: The constitutive relation of the continuous deformation–discrete block interaction of overlying strata and the corresponding finite element–discrete element FDEM numerical program and VUSDFLD multi-coal seam continuous mining subroutine can numerically realize the formation process of faults and water flowing fractures in overlying strata under continuous mining of extra-thick multi-coal seams. The toughness of sand mudstone is low, and the fracture will be further developed under the repeated disturbance of multi-thick coal seam mining. Finally, it is stabilized at 216–226 m, and the ratio of fracture height to mining thickness is 14.1. When the working face advances to the fault, the stress concentration occurs in the fault and its overlying rock, which leads to the local fracture of the roof rock mass and the formation of cracks. The fault group makes this phenomenon more obvious. The results have been preliminarily applied and tested in Ningwu mining area, which provides theoretical support for further development of roof water disaster control under the condition of an extra-thick coal seam and avoids the loss of water resources in surface water and underground aquifers. Full article
Show Figures

Figure 1

20 pages, 11196 KiB  
Article
Study on the Effect of the Undercut Area on the Movement Law of Overburden Rock Layers in the Block Caving Method
by Xiushan Qin, Xiaocong Yang, Zhonghao Liang, Hui Cao and Liu Xu
Appl. Sci. 2024, 14(11), 4704; https://doi.org/10.3390/app14114704 - 30 May 2024
Cited by 2 | Viewed by 1134
Abstract
We chose to study the bottom structure stress evolution law in the process of undercut area advancement via the block caving method, reveal the influence law of the undercut rate on the effect of the ore body caving process, and assess the floor [...] Read more.
We chose to study the bottom structure stress evolution law in the process of undercut area advancement via the block caving method, reveal the influence law of the undercut rate on the effect of the ore body caving process, and assess the floor stress evolution law in the process of the undercut area with a different undercut rate in order to guide the production of a natural disintegration method under horizontal ground stress and also provide some reference value for rock damage assessment. According to the actual engineering and physical parameters of the mine, a numerical simulation model was created by using finite discrete element software GPI-3D-FDEM, and the Neo–Hookean hyperelastic constitutive model was adopted for calculation purposes. The simulation process follows a backward bottoming approach and monitors and analyses the stress state of the substructure after each bottoming step. The indoor physical model is employed to conduct similar two–dimensional simulation experiments on similar materials, investigating the motion laws of overlying rock layers. The research findings indicate that as bottom blasting progresses, a gradual concentration of compressive stress occurs in the foundation structure ahead of the advancing line. If this stress surpasses the rock mass’s shear failure limit, ground pressure failure may ensue. During mineral extraction from the bottom, internal stress within the fractured fault zone significantly diminishes compared to adjacent rock and ore deposits. Full article
Show Figures

Figure 1

18 pages, 13873 KiB  
Article
Study on Shear Failure Process and Zonal Disintegration Mechanism of Roadway under High Ground Stress: A Numerical Simulation via a Strain-Softening Plastic Model and the Discrete Element Method
by Peiju Yang, Shurong Zhang and Changyou Liu
Appl. Sci. 2024, 14(10), 4106; https://doi.org/10.3390/app14104106 - 12 May 2024
Cited by 4 | Viewed by 1412
Abstract
Fracture expansion in rock masses can be observed by monitoring the break of contacts between the bounding particles via the discrete element method. The latter’s realization in this study via the PFC2D program tracked the evolution process of the zonal disintegration in [...] Read more.
Fracture expansion in rock masses can be observed by monitoring the break of contacts between the bounding particles via the discrete element method. The latter’s realization in this study via the PFC2D program tracked the evolution process of the zonal disintegration in an exemplary roadway-surrounding rock affected by mining. Besides, the damage evolution pattern in a high-stress soft rock roadway was simulated by the FLAC2D program using a strain-softening plastic model, revealing the effects of rock mass strength, stress state, and anchor support on the zonal disintegration of the roadway. Numerical simulation results show that in a roadway with high-level stress, the obvious fractures spread from the roadway surface to the depth of the surrounding rock along a series of geometric planes and cut the surrounding rock into rock mass blocks. Under high crustal stress, conjugate shear fractures occur near the roadway surfaces and form a closed-loop fractured zone after intersecting the conjugate fracture faces. The closed fractured zone becomes a free face, from which conjugate shear fractures develop, forming new closed fractured zones in the deep surrounding rock. By repeatedly generating the closed fracture zones, a fracture network appears in the roadway-surrounding rock. The development of zonal disintegration of roadway-surrounding rock mainly depends on the rock mass strength and its stress state. Zonal disintegration only occurs when the crustal stress of the roadway-surrounding rock exceeds its strength. When the horizontal stress is low and the vertical stress exceeds the rock mass strength, zonal disintegration only occurs on two sides of the roadway. When the vertical stress is low and the horizontal stress exceeds the rock’s mass strength, it only appears on the roof and floor. When the values of cohesion, internal friction angle, and tensile strength are reduced in the same proportion, cohesion has the greatest impact on the expansion of the zonal disintegration zone, followed by the internal friction angle, while the tensile strength effect is the least. In anchor-supported roadways undergoing zonal disintegration processes, the intact zone blocks slide relatively along the fracture surface during the process of loosening and deformation of the surrounding rock, making the anchor rods susceptible to tensile, shear, and bending actions. Full article
Show Figures

Figure 1

13 pages, 4236 KiB  
Article
Study on the Synergistic Effect of Primary Support and Surrounding Rock of Large Buried Depth Tunnel in Soft and Fractured Strata
by Tianyi Wang, Haining Liu, Minglei Kang, Benchao Zhao, Jixian Shen, Yingchun Li and Yandong Yang
Appl. Sci. 2024, 14(5), 2028; https://doi.org/10.3390/app14052028 - 29 Feb 2024
Cited by 4 | Viewed by 1035
Abstract
The soft and fractured strata can cause significant deformation of surrounding rock during tunnel excavation. This study analyzes field monitoring test results and compares numerical simulations from the third bid project of the Dali I section construction within the water diversion project in [...] Read more.
The soft and fractured strata can cause significant deformation of surrounding rock during tunnel excavation. This study analyzes field monitoring test results and compares numerical simulations from the third bid project of the Dali I section construction within the water diversion project in central Yunnan to address the issue of significant deformation following tunnel excavation in soft and fractured strata. It proposes an optimized support scheme consisting of a densified steel arch and enhanced initial support strength and stiffness. In addition, the research investigates support effectiveness considering varying support strengths and steel arch ring spacing. The study findings indicated the following: (1) The tunnel traverses soft and fractured strata, causing unevenly distributed vertical convergence deformation around the cavern. The maximum settlement occurs at the crown, showing pronounced nonlinearity. (2) The maximum stress in the steel arch is concentrated at the arch crown, measuring −19.02 MPa. The arch remains compressed, with stress decreasing from the crown to the waist. (3) The axial force in the anchor bolt reduces from the crown to the arch’s waist on both sides. As the depth of the rock mass increases, the axial force in each anchor bolt decreases and the tension state is maintained. The maximum axial force reaches 46.57 kN. (4) The maximum displacement decreases from 4.21 to 0.15 cm after the optimized support structure is implemented, demonstrating the optimization scheme’s effectiveness. Future constructions can refer to this scheme and make necessary adjustments based on various terrain conditions to ensure safety. Full article
Show Figures

Figure 1

20 pages, 5576 KiB  
Article
Research on the Response Mechanism of Coal Rock Mass under Stress and Pressure
by Pengfei Shan, Wei Li, Xingping Lai, Shuai Zhang, Xingzhou Chen and Xiaochen Wu
Materials 2023, 16(8), 3235; https://doi.org/10.3390/ma16083235 - 19 Apr 2023
Cited by 13 | Viewed by 1609
Abstract
In this paper, the strength and deformation failure characteristics of bearing coal rock mass are related to the confining pressure, and the SAS-2000 experimental system is used to carry out uniaxial and 3, 6, and 9 MPa triaxial tests on coal rock to [...] Read more.
In this paper, the strength and deformation failure characteristics of bearing coal rock mass are related to the confining pressure, and the SAS-2000 experimental system is used to carry out uniaxial and 3, 6, and 9 MPa triaxial tests on coal rock to assess the strength and deformation failure characteristics of coal rock under different confining pressure conditions. The results show that the stress–strain curve of coal rock undergoes four evolutionary stages after fracture: compaction, elasticity, plasticity, and rupture. With confining pressure, the peak strength of coal rock increases, and the elastic modulus increases nonlinearly. The coal sample changes more with confining pressure, and the elastic modulus is generally smaller than that of fine sandstone. The stage of evolution under confining pressure constitutes the failure process of coal rock, with the stress of different evolution stages causing various degrees of damage to coal rock. In the initial compaction stage, the unique pore structure of the coal sample makes the confining pressure effect more apparent; the confining pressure makes the bearing capacity of the coal rock plastic stage stronger, the residual strength of the coal sample has a linear relationship with the confining pressure, and the residual strength of the fine sandstone has a nonlinear relationship with the confining pressure. Changing the confining pressure state will cause the two kinds of coal rock samples to change from brittle failure to plastic failure. Different coal rocks under uniaxial compression experience more brittle failure, and the overall degree of crushing is higher. The coal sample in the triaxial state experiences predominantly ductile fracture. The whole is relatively complete after failure as a shear failure occurs. The fine sandstone specimen experiences brittle failure. The degree of failure is low, and the confining pressure’s effect on the coal sample is obvious. Full article
(This article belongs to the Topic Geomechanics for Energy and the Environment)
Show Figures

Figure 1

20 pages, 18302 KiB  
Article
The Transient Unloading Response of a Deep-Buried Single Fracture Tunnel Based on the Particle Flow Method
by Xiqi Liu, Gang Wang, Zhijie Wen, Dongxing Wang, Leibo Song, Manqing Lin and Hao Chen
Sustainability 2023, 15(8), 6840; https://doi.org/10.3390/su15086840 - 18 Apr 2023
Cited by 3 | Viewed by 1473
Abstract
Particle flow numerical simulation was used to reproduce the transient unloading process of a deep-buried single fracture tunnel. The influence of fracture characteristics on the transient unloading effect was analyzed from the aspects of stress state, deformation characteristics, fracture propagation, and energy conversion. [...] Read more.
Particle flow numerical simulation was used to reproduce the transient unloading process of a deep-buried single fracture tunnel. The influence of fracture characteristics on the transient unloading effect was analyzed from the aspects of stress state, deformation characteristics, fracture propagation, and energy conversion. The results shows that the surrounding rock stress field of the deep-buried tunnel is divided into four areas: weak stress area I, strong stress area II, stress adjustment area III, and initial stress area IV. The fracture has an important impact on the stress adjustment process of transient unloading of the deep-buried tunnel, and the stress concentration area will be transferred from the bottom corner of the chamber and the vault to the fracture tip. With the increase in the fracture length, the distance from the stress concentration area at the fracture tip to the free surface gradually increases, and the damage area of the surrounding rock gradually migrates to the deep area of the rock mass. At this time, the release amount of strain energy gradually decreases and tends to be stable, while the dissipation energy shows a near ‘U’ shape change trend of decreasing first and then increasing. Under different fracture angles, the number of mesocracks is significantly different. Among them, the number of mesocracks in the 60° and 30° fractured surrounding rocks is greater followed by the 0° fractured surrounding rock, and the number of mesocracks in the 45° and 90° fractured surrounding rocks is relatively less. In addition, the proportion of compression-shear cracks shows a change trend of increasing first and then decreasing with the increase in the fracture angle, and it reaches the maximum value in the 45° fractured surrounding rock. Full article
(This article belongs to the Special Issue Resource Utilization of Solid Waste in Cement-Based Materials)
Show Figures

Figure 1

13 pages, 7748 KiB  
Article
Shear Damage Simulations of Rock Masses Containing Fissure-Holes Using an Improved SPH Method
by Shuyang Yu, Xuekai Yang, Xuhua Ren, Jixun Zhang, Yuan Gao and Tao Zhang
Materials 2023, 16(7), 2640; https://doi.org/10.3390/ma16072640 - 27 Mar 2023
Cited by 7 | Viewed by 1615
Abstract
Fissures and holes widely exist in rock mechanics engineering, and, at present, their failure mechanisms under complex compress and shear stress states have not been well recognized. In our work, a fracture mark, ξ, is introduced, and the kernel function of the [...] Read more.
Fissures and holes widely exist in rock mechanics engineering, and, at present, their failure mechanisms under complex compress and shear stress states have not been well recognized. In our work, a fracture mark, ξ, is introduced, and the kernel function of the smoothed-particle hydrodynamics (SPH) is then re-written, thus realizing the fracture modelling of the rock media. Then, the numerical models containing the fissures and holes are established, and their progressive failure processes under the compress and shear stress states are simulated, with the results showing that: (1) the improved SPH method can reflect the dynamic crack propagation processes of the rock masses, and the numerical results are in good agreement with the previous experimental results. Meanwhile, the improved SPH method can get rid of the traditional mesh re-division problems, which can be well-applied to rock failure modeling; (2) the hole shapes, fissure angles, fissure lengths, fissure numbers, and confining pressure all have great impacts on the final failure modes and peak strengths of the model; and (3) in practical engineering, the rock masses are in the 3D stress state, therefore, developing a high performance 3D SPH program and applying it to engineering in practice will be of great significance. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop