Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (598)

Search Parameters:
Keywords = road vulnerability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7366 KiB  
Article
A GIS-Based Safe System Approach for Risk Assessment in the Transportation of Dangerous Goods: A Case Study in Italian Regions
by Angela Maria Tomasoni, Abdellatif Soussi, Enrico Zero and Roberto Sacile
Systems 2025, 13(7), 580; https://doi.org/10.3390/systems13070580 - 14 Jul 2025
Viewed by 214
Abstract
The Dangerous Goods Transportation (DGT) presents significant challenges, requiring a strong and systematic risk assessment framework to ensure the safety and efficiency of the supply chain. This study addresses a critical gap by integrating a deterministic and holistic approach to risk assessment and [...] Read more.
The Dangerous Goods Transportation (DGT) presents significant challenges, requiring a strong and systematic risk assessment framework to ensure the safety and efficiency of the supply chain. This study addresses a critical gap by integrating a deterministic and holistic approach to risk assessment and management. Utilizing Geographic Information Systems (GIS), meteorological data, and material-specific information, the research develops a data-driven approach to identify analyze, evaluate, and mitigate risks associated with DGT. The main objectives include monitoring dangerous goods flows to identify critical risk areas, optimizing emergency response using a shared model, and providing targeted training for stakeholders involved in DGT. The study leverages Information and Communication Technologies (ICT) to systematically collect, interpret, and evaluate data, producing detailed risk scenario maps. These maps are instrumental in identifying vulnerable areas, predicting potential accidents, and assessing the effectiveness of risk management strategies. This work introduces an innovative GIS-based risk assessment model that combines static and dynamic data to address various aspects of DGT, including hazard identification, accident prevention, and real-time decision support. The results contribute to enhancing safety protocols and provide actionable insights for policymakers and practitioners aiming to improve the resilience of technological systems for road transport networks handling dangerous goods. Full article
(This article belongs to the Special Issue Application of the Safe System Approach to Transportation)
Show Figures

Figure 1

24 pages, 5886 KiB  
Article
GIS-Driven Multi-Criteria Assessment of Rural Settlement Patterns and Attributes in Rwanda’s Western Highlands (Central Africa)
by Athanase Niyogakiza and Qibo Liu
Sustainability 2025, 17(14), 6406; https://doi.org/10.3390/su17146406 - 13 Jul 2025
Viewed by 292
Abstract
This study investigates rural settlement patterns and land suitability in Rwanda’s Western Highlands, a mountainous region highly vulnerable to geohazards like landslides and flooding. Its primary aim is to inform sustainable, climate-resilient development planning in this fragile landscape. We employed high-resolution satellite imagery, [...] Read more.
This study investigates rural settlement patterns and land suitability in Rwanda’s Western Highlands, a mountainous region highly vulnerable to geohazards like landslides and flooding. Its primary aim is to inform sustainable, climate-resilient development planning in this fragile landscape. We employed high-resolution satellite imagery, a Digital Elevation Model (DEM), and comprehensive geospatial datasets to analyze settlement distribution, using Thiessen polygons for influence zones and Kernel Density Estimation (KDE) for spatial clustering. The Analytic Hierarchy Process (AHP) was integrated with the GeoDetector model to objectively weight criteria and analyze settlement pattern drivers, using population density as a proxy for human pressure. The analysis revealed significant spatial heterogeneity in settlement distribution, with both clustered and dispersed forms exhibiting distinct exposure levels to environmental hazards. Natural factors, particularly slope gradient and proximity to rivers, emerged as dominant determinants. Furthermore, significant synergistic interactions were observed between environmental attributes and infrastructure accessibility (roads and urban centers), collectively shaping settlement resilience. This integrative geospatial approach enhances understanding of complex rural settlement dynamics in ecologically sensitive mountainous regions. The empirically grounded insights offer a robust decision-support framework for climate adaptation and disaster risk reduction, contributing to more resilient rural planning strategies in Rwanda and similar Central African highland regions. Full article
Show Figures

Figure 1

9 pages, 428 KiB  
Proceeding Paper
Sensors and Sensing Methods for Early Detection of Life-Threatening Sudden Illnesses in Motor Vehicles Drivers
by Hristo Radev and Galidiya Petrova
Eng. Proc. 2025, 100(1), 30; https://doi.org/10.3390/engproc2025100030 - 11 Jul 2025
Viewed by 112
Abstract
Due to the increasing number of vehicles and the aging population, the vulnerability to sudden medical emergencies among drivers is a growing problem. Events such as heart attack, stroke, and loss of consciousness can occur without warning and endanger everyone on the road. [...] Read more.
Due to the increasing number of vehicles and the aging population, the vulnerability to sudden medical emergencies among drivers is a growing problem. Events such as heart attack, stroke, and loss of consciousness can occur without warning and endanger everyone on the road. Modern vehicles, equipped with electronic systems, can support real-time driver’s health monitoring through early detection technologies. The existing Driver Monitoring Systems (DMS) in our cars assess behavioral states such as drowsiness and distraction. In the future, DMS will include biometric sensors to monitor vital signs such as heart rate and respiration. By finding predictors of sudden illnesses (SI), such a system will provide valuable time for the driver to react before the strike of a medical event. In this paper, we present our vision for DMS operation with physiological monitoring capabilities. A brief overview of sensor’s types and their locations in the vehicle interior used in the research studies for monitoring the corresponding physiological parameters is presented. A comparative analysis of the advantages and disadvantages of the sensing methods used for physiological monitoring of the driver in real driving scenarios is made. Full article
Show Figures

Figure 1

16 pages, 1645 KiB  
Article
Carbon Pricing Strategies and Policies for a Unified Global Carbon Market
by Mohammad Imran Azizi, Xize Xu, Xuehui Duan, Haotian Qin and Bin Xu
Atmosphere 2025, 16(7), 836; https://doi.org/10.3390/atmos16070836 - 10 Jul 2025
Viewed by 342
Abstract
Driven by the urgent need to mitigate climate change and achieve net-zero emissions, carbon pricing has emerged as a critical policy tool in major economies worldwide. This study compares carbon pricing in the EU, China, Canada, and Singapore, evaluating effectiveness in emission reductions, [...] Read more.
Driven by the urgent need to mitigate climate change and achieve net-zero emissions, carbon pricing has emerged as a critical policy tool in major economies worldwide. This study compares carbon pricing in the EU, China, Canada, and Singapore, evaluating effectiveness in emission reductions, with the EU ranking first with high carbon prices, road market coverage, and strict penalties, based on carbon price per capita. Conversely, Singapore’s position as fourth in carbon price per capita among these four most mature carbon markets, Singapore has a high GDP per capita and lower carbon prices. Canada’s fragmented provincial policies and China’s limited market coverage, despite being the top global emitter. Our analysis reveals three critical success factors: (1) higher carbon prices per capita are essential for carbon reduction, (2) the necessity of penalties on carbon price per capita from EUR 20–EUR 100, and (3) expanded market coverage maximizes impact. To address global disparities, we propose a Uniform Carbon Pricing Mechanism under the Global Carbon Resilience Framework (GCRF), based on carbon price per capita tiered pricing: EUR 100/t (developed), EUR 30–50 (developing), and EUR 5–15 (least-developed countries). This balanced system supports vulnerable regions while cutting emissions, proving that fair carbon pricing is crucial for climate goals and economic stability. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

26 pages, 35238 KiB  
Article
Sediment Connectivity in Human-Impacted vs. Natural Conditions: A Case Study in a Landslide-Affected Catchment
by Mohanad Ellaithy, Davide Notti, Daniele Giordan, Marco Baldo, Jad Ghantous, Vincenzo Di Pietra, Marco Cavalli and Stefano Crema
Geosciences 2025, 15(7), 259; https://doi.org/10.3390/geosciences15070259 - 5 Jul 2025
Viewed by 311
Abstract
This research aims to characterize sediment dynamics in the Rupinaro catchment, a uniquely terraced and human-shaped basin in Italy’s Liguria region, employing geomorphometric methods to unravel sediment connectivity in a landscape vulnerable to shallow landslides. Within a scenario-based approach, we utilized high-resolution LiDAR-derived [...] Read more.
This research aims to characterize sediment dynamics in the Rupinaro catchment, a uniquely terraced and human-shaped basin in Italy’s Liguria region, employing geomorphometric methods to unravel sediment connectivity in a landscape vulnerable to shallow landslides. Within a scenario-based approach, we utilized high-resolution LiDAR-derived digital terrain models (DTMs) to calculate the Connectivity Index, comparing sediment dynamics between the original terraced landscape and a virtual natural scenario. To reconstruct a pristine slope morphology, we applied a topographic roughness-based skeletonization algorithm that simplifies terraces into linear features to simulate natural hillslope conditions and remove anthropogenic structures. The analysis was carried out considering diverse targets (e.g., hydrographic networks, road networks) and the effect of land use. The results reveal significant differences in sediment connectivity between the anthropogenic and natural morphologies, with implications for erosion and landslide susceptibility. The findings reveal that sediment connectivity is moderately higher in the scenario without terraces, indicating that terraces function as effective barriers to sediment transfer. This highlights their potential role in mitigating landslide susceptibility on steep slopes. Additionally, the results show that roads exert a stronger influence on the Connectivity Index, significantly altering flow paths. These modifications appear to contribute to increased landslide susceptibility in adjacent areas, as reflected by the higher observed landslide density within the study region. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

29 pages, 838 KiB  
Article
Blockchain-Based Secure Authentication Protocol for Fog-Enabled IoT Environments
by Taehun Kim, Deokkyu Kwon, Yohan Park and Youngho Park
Mathematics 2025, 13(13), 2142; https://doi.org/10.3390/math13132142 - 30 Jun 2025
Viewed by 226
Abstract
Fog computing technology grants computing and storage resources to nearby IoT devices, enabling a fast response and ensuring data locality. Thus, fog-enabled IoT environments provide real-time and convenient services to users in healthcare, agriculture, and road traffic monitoring. However, messages are exchanged on [...] Read more.
Fog computing technology grants computing and storage resources to nearby IoT devices, enabling a fast response and ensuring data locality. Thus, fog-enabled IoT environments provide real-time and convenient services to users in healthcare, agriculture, and road traffic monitoring. However, messages are exchanged on public channels, which can be targeted to various security attacks. Hence, secure authentication protocols are critical for reliable fog-enabled IoT services. In 2024, Harbi et al. proposed a remote user authentication protocol for fog-enabled IoT environments. They claimed that their protocol can resist various security attacks and ensure session key secrecy. Unfortunately, we have identified several vulnerabilities in their protocol, including to insider, denial of service (DoS), and stolen verifier attacks. We also prove that their protocol does not ensure user untraceability and that it has an authentication problem. To address the security problems of their protocol, we propose a security-enhanced blockchain-based secure authentication protocol for fog-enabled IoT environments. We demonstrate the security robustness of the proposed protocol via informal and formal analyses, including Burrows–Abadi–Needham (BAN) logic, the Real-or-Random (RoR) model, and Automated Verification of Internet Security Protocols and Applications (AVISPA) simulation. Moreover, we compare the proposed protocol with related protocols to demonstrate the excellence of the proposed protocol in terms of efficiency and security. Finally, we conduct simulations using NS-3 to verify its real-world applicability. Full article
(This article belongs to the Special Issue Advances in Mobile Network and Intelligent Communication)
Show Figures

Figure 1

26 pages, 670 KiB  
Review
Examining the Factors Influencing Pedestrian Behaviour and Safety: A Review with a Focus on Culturally and Linguistically Diverse Communities
by Jie Yang, Nirajan Gauli, Nirajan Shiwakoti, Richard Tay, Hepu Deng, Jian Chen, Bharat Nepal and Jimmy Li
Sustainability 2025, 17(13), 6007; https://doi.org/10.3390/su17136007 - 30 Jun 2025
Viewed by 954
Abstract
Pedestrian behaviour and safety are essential components of urban sustainability. They are influenced by a complex interplay between various factors from different perspectives, particularly in culturally and linguistically diverse (CALD) communities. This study presents a comprehensive overview of the factors influencing pedestrian behaviour [...] Read more.
Pedestrian behaviour and safety are essential components of urban sustainability. They are influenced by a complex interplay between various factors from different perspectives, particularly in culturally and linguistically diverse (CALD) communities. This study presents a comprehensive overview of the factors influencing pedestrian behaviour and safety with a focus on CALD communities. By synthesizing the existing literature, the study identifies six key groups of influencing factors: social–psychological, cultural, risk perceptions, environmental, technological distractions, and demographic differences. It discovers that well-designed interventions, such as tailored education campaigns and programs, may effectively influence pedestrian behaviour. These interventions emphasize the importance of targeted messaging to address specific risks (e.g., using mobile phones while crossing the road) and engage vulnerable groups, including children, seniors, and CALD communities. The study reveals that CALD communities face higher risks of pedestrian injuries and fatalities due to language barriers, unfamiliarity with local road rules, and different practices and approaches to road safety due to cultural differences. This study underlines the importance of developing and promoting tailored road safety education programs to address the unique challenges faced by CALD communities to help promote safer pedestrian environments for all. Full article
Show Figures

Figure 1

23 pages, 3706 KiB  
Article
Vegetation Structure and Habitat Characterization: An Ecological Basis for the Conservation of the Korean Endemic Plant, Taihyun’s Abelia (Zabelia tyaihyonii (Nakai) Hisauti & H.Hara, 1951; Caprifoliaceae)
by Byeong-Joo Park, Tae-Im Heo and Kwang-Il Cheon
Forests 2025, 16(7), 1042; https://doi.org/10.3390/f16071042 - 21 Jun 2025
Viewed by 316
Abstract
Endemic plant species, with their restricted distribution, are vulnerable to extinction due to human activities and environmental change. Monitoring their ecological characteristics and habitat relationships is crucial for conservation. This study examined plant communities to prioritize populations for conserving the Korean endemic species, [...] Read more.
Endemic plant species, with their restricted distribution, are vulnerable to extinction due to human activities and environmental change. Monitoring their ecological characteristics and habitat relationships is crucial for conservation. This study examined plant communities to prioritize populations for conserving the Korean endemic species, Taihyun’s abelia (Zabelia tyaihyonii (Nakai) Hisauti & H.Hara), and to identify threats and strategies for its protection. Vegetation surveys were conducted, classifying communities and analyzing species composition differences. Habitat quality and zeta diversity, assessed using the InVEST model, identified three community types: Quercus dentata–Thuja orientalis (Com. 1), Fraxinus rhynchophylla–Buxus koreana (Com. 2), and Quercus dentata–Carex humilis var. nana (Com. 3). Community classification was supported by a multi-response permutation procedure (p < 0.001) and non-metric multidimensional scaling (R2 = 0.643). Species richness and soil calcium influenced species composition, and habitat quality was moderate (0.5562 ± 0.0294). Com. 1 and Com. 3 showed minimal zeta diversity decline, indicating strong habitat connectivity. However, fluctuations at zeta orders 8–12 suggested localized disturbances. Species turnover instability was linked to urbanization and disturbance. This study, using a diverse set of analytical tools, was able to pinpoint key features of habitat quality and composition associated with Z. tyaihyonii and the anthropogenic factors that will lead to its decline. Our work provides a road map for the conservation of other rare and endemic Korean plant species with similar conservation issues. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

40 pages, 3494 KiB  
Article
Risk-Based Optimization of Multimodal Oil Product Operations Through Simulation and Workflow Modeling
by Catalin Popa, Ovidiu Stefanov, Ionela Goia and Dinu Atodiresei
Logistics 2025, 9(3), 79; https://doi.org/10.3390/logistics9030079 - 20 Jun 2025
Viewed by 403
Abstract
Background: The transportation of petroleum products via multimodal logistics systems is a complex process subject to operational inefficiencies and elevated risk exposure. The efficient and resilient transportation of petroleum products increasingly depends on multimodal logistics systems, where operational risks and process inefficiencies [...] Read more.
Background: The transportation of petroleum products via multimodal logistics systems is a complex process subject to operational inefficiencies and elevated risk exposure. The efficient and resilient transportation of petroleum products increasingly depends on multimodal logistics systems, where operational risks and process inefficiencies can significantly impact safety and performance. This study addresses the research question of how an integrated risk-based and workflow-driven approach can enhance the management of oil products logistics in complex port environments. Methods: A dual methodological framework was applied at the Port of Midia, Romania, combining a probabilistic risk assessment model, quantifying incident probability, infrastructure vulnerability, and exposure, with dynamic business process modeling (BPM) using specialized software. The workflow simulation replicated real-world multimodal oil operations across maritime, rail, road, and inland waterway segments. Results: The analysis identified human error, technical malfunctions, and environmental hazards as key risk factors, with an aggregated major incident probability of 2.39%. BPM simulation highlighted critical bottlenecks in customs processing, inland waterway lock transit, and road tanker dispatch. Process optimizations based on simulation insights achieved a 25% reduction in operational delays. Conclusions: Integrating risk assessment with dynamic workflow modeling provides an effective methodology for improving the resilience, efficiency, and regulatory compliance of multimodal oil logistics operations. This approach offers practical guidance for port operators and contributes to advancing risk-informed logistics management in the petroleum supply chain. Full article
Show Figures

Figure 1

29 pages, 14871 KiB  
Article
Landslide Risk Assessment as a Reference for Disaster Prevention and Mitigation: A Case Study of the Renhe District, Panzhihua City, China
by Yimeng Zhou, Lei Xue, Hao Ding, Haoyu Wang, Kun Huang, Longfei Li and Zhuan Li
Remote Sens. 2025, 17(13), 2120; https://doi.org/10.3390/rs17132120 - 20 Jun 2025
Viewed by 447
Abstract
In this study, landslide risk assessment was conducted in the Renhe District, Panzhihua City, China. Firstly, based on 190 landslide points and 10 influencing factors, the landslide hazard was assessed using three models: random forest (RF), eXtreme Gradient Boosting (XGBoost), and Tabular Prior-data [...] Read more.
In this study, landslide risk assessment was conducted in the Renhe District, Panzhihua City, China. Firstly, based on 190 landslide points and 10 influencing factors, the landslide hazard was assessed using three models: random forest (RF), eXtreme Gradient Boosting (XGBoost), and Tabular Prior-data Fitted Network (TabPFN). The results indicate that the RF and XGBoost models exhibit comparable performance, both demonstrating strong generalization and accuracy, with the RF model achieving superior generalization, as evidenced by an area-under-the-curve (AUC) value of 0.9471. While the AUC value of TabPFN is 0.9243, indicating higher accuracy, it also poses a risk of overfitting and is therefore more suitable for applications involving small sample sizes and the need for rapid responses. The vulnerability assessment utilized the Analytic Hierarchy Process (AHP) to determine the weights of four disaster-bearing bodies, with sensitivity analysis revealing that road type was the most sensitive vulnerability factor. Finally, the landslide risk-assessment map of the Renhe District was produced by integrating the landslide hazard assessment map with the vulnerability assessment map. The findings indicate that the high-risk zones comprised 2.08% of the research region, which includes three principal train stations and necessitates enhanced protective measures. The medium-risk zones comprise 34.23% of the total area and are scattered throughout the region. It is important to enhance local capabilities for landslide monitoring and early warning systems. Relevant conclusions can provide a significant reference for landslide disaster prevention and mitigation work in the Renhe District and help ensure the safe operation of public transport infrastructure, such as railway stations and airports in the district. Full article
(This article belongs to the Section Earth Observation for Emergency Management)
Show Figures

Figure 1

37 pages, 7361 KiB  
Review
Evolution and Knowledge Structure of Wearable Technologies for Vulnerable Road User Safety: A CiteSpace-Based Bibliometric Analysis (2000–2025)
by Gang Ren, Zhihuang Huang, Tianyang Huang, Gang Wang and Jee Hang Lee
Appl. Sci. 2025, 15(12), 6945; https://doi.org/10.3390/app15126945 - 19 Jun 2025
Viewed by 415
Abstract
This study presents a systematic bibliometric review of wearable technologies aimed at vulnerable road user (VRU) safety, covering publications from 2000 to 2025. Guided by PRISMA procedures and a PICo-based search strategy, 58 records were extracted and analyzed in CiteSpace, yielding visualizations of [...] Read more.
This study presents a systematic bibliometric review of wearable technologies aimed at vulnerable road user (VRU) safety, covering publications from 2000 to 2025. Guided by PRISMA procedures and a PICo-based search strategy, 58 records were extracted and analyzed in CiteSpace, yielding visualizations of collaboration networks, publication trajectories, and intellectual structures. The results indicate a clear evolution from single-purpose, stand-alone devices to integrated ecosystem solutions that address the needs of diverse VRU groups. Six dominant knowledge clusters emerged—street-crossing assistance, obstacle avoidance, human–computer interaction, cyclist safety, blind navigation, and smart glasses. Comparative analysis across pedestrians, cyclists and motorcyclists, and persons with disabilities shows three parallel transitions: single- to multisensory interfaces, reactive to predictive systems, and isolated devices to V2X-enabled ecosystems. Contemporary research emphasizes context-adaptive interfaces, seamless V2X integration, and user-centered design, and future work should focus on lightweight communication protocols, adaptive sensory algorithms, and personalized safety profiles. The review provides a consolidated knowledge map to inform researchers, practitioners, and policy-makers striving for inclusive and proactive road safety solutions. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

32 pages, 5267 KiB  
Article
Shifting Landscapes, Escalating Risks: How Land Use Conversion Shapes Long-Term Road Crash Outcomes in Melbourne
by Ali Soltani, Mohsen RoohaniQadikolaei and Amir Sobhani
Future Transp. 2025, 5(2), 75; https://doi.org/10.3390/futuretransp5020075 - 17 Jun 2025
Viewed by 1532
Abstract
Road crashes impose significant societal costs, and while links between static land use and safety are established, the long-term impacts of dynamic land use conversions remain under-explored. This study addresses this gap by investigating and quantifying how specific land use transitions over a [...] Read more.
Road crashes impose significant societal costs, and while links between static land use and safety are established, the long-term impacts of dynamic land use conversions remain under-explored. This study addresses this gap by investigating and quantifying how specific land use transitions over a decade influence subsequent road crash frequency in Metropolitan Melbourne. Our objective was to understand which conversion pathways pose the greatest risks or offer safety benefits, informing urban planning and policy. Utilizing extensive observational data covering numerous land use conversions, we employed Negative Binomial models (selected as the best fit over Poisson and quasi-Poisson alternatives) to analyze the association between various transition types and crash occurrences in surrounding areas. The analysis revealed distinct and statistically significant safety outcomes. Major findings indicate that transitions introducing intensified activity and vulnerable road users, such as converting agricultural land or parks to educational facilities (e.g., Agri → Edu, coefficient ≈ +0.10; Park → Edu, ≈+0.12), or intensifying land use in previously less active zones (e.g., Park → Com, ≈+0.07; Trans → Park, ≈+0.10), significantly elevate long-term crash risk, particularly when infrastructure is inadequate. Conversely, conversions creating low-traffic, nature-focused environments (e.g., Water → Park, ≈–0.16) or channeling activity onto well-suited infrastructure (e.g., Trans → Com, ≈–0.12) demonstrated substantial reductions in crash frequency. The critical role of context-specific infrastructure adaptation, highlighted by increased risks in some park conversions (e.g., Com → Park, ≈+0.06), emerged as a key mediator of safety outcomes. These findings underscore the necessity of integrating dynamic, long-term road safety considerations into land use planning, mandating appropriate infrastructure redesign during conversions, and prioritizing interventions for identified high-risk transition scenarios to foster safer and more sustainable urban development. Full article
Show Figures

Figure 1

13 pages, 1476 KiB  
Article
Development of a Fire Risk Assessment Program for Submerged Tunnels
by Suk-Min Kong, Hyo-Gyu Kim, Ho-Hyeong Lee and Seong-Won Lee
Appl. Sci. 2025, 15(12), 6798; https://doi.org/10.3390/app15126798 - 17 Jun 2025
Viewed by 303
Abstract
Submerged tunnels are an innovative infrastructure solution for connecting roads and railways, especially in areas where conventional bridge or overland tunnel construction is limited by deep waterways, narrow straits, or dense urban development. In such regions, submerged tunnels offer an efficient and less [...] Read more.
Submerged tunnels are an innovative infrastructure solution for connecting roads and railways, especially in areas where conventional bridge or overland tunnel construction is limited by deep waterways, narrow straits, or dense urban development. In such regions, submerged tunnels offer an efficient and less intrusive alternative that overcomes geographical constraints. However, unlike conventional ground-level or subsea tunnels, submerged tunnels have unique structural and environmental characteristics, which necessitate the development of a dedicated evaluation system for responding to fire and other disasters. In this study, a quantitative fire risk assessment program (SFT_QRA) was developed by reflecting the specific characteristics of submerged tunnels. The program was applied to both road and railway tunnels to obtain evaluation results. First, to more realistically reflect the fire risk within submerged tunnels, the latest statistical data were used to update fire occurrence probabilities and the proportion of vulnerable users. In addition, the optimal smoke control mode for structural stop zones in ultra-long tunnels was analyzed to derive strategies for establishing a safe evacuation environment. Second, an Excel VBA-based assessment program was developed to improve user convenience and was structured to enable fire analysis and evacuation simulations. Third, in order to verify the accuracy and reliability of the developed program, a comparative analysis was conducted against commercial quantitative risk assessment programs. As a result, the total risk error rate was 0.4% for road tunnels and within 5.0% for railway tunnels, showing similar levels of results. This study advances quantitative risk assessment methods by incorporating the unique features of submerged tunnels and implementing them in a validated program. Through this approach, it presents a practical solution that can contribute to the advancement of tunnel fire safety technologies and the overall enhancement of tunnel safety. Full article
Show Figures

Figure 1

19 pages, 624 KiB  
Review
Digital Transformation in Water Utilities: Status, Challenges, and Prospects
by Neil S. Grigg
Smart Cities 2025, 8(3), 99; https://doi.org/10.3390/smartcities8030099 - 15 Jun 2025
Viewed by 916
Abstract
While digital transformation in e-commerce receives the most publicity, applications in energy and water utilities have been ongoing for decades. Using a methodology based on a systematic review, the paper offers a model of how it occurs in water utilities, reviews experiences from [...] Read more.
While digital transformation in e-commerce receives the most publicity, applications in energy and water utilities have been ongoing for decades. Using a methodology based on a systematic review, the paper offers a model of how it occurs in water utilities, reviews experiences from the field, and derives lessons learned to create a road map for future research and implementation. Innovation in water utilities occurs more in the field than through organized research, and utilities share their experiences globally through networks such as water associations, focus groups, and media outlets. Their digital transformation journeys are evident in business practices, operations, and asset management, including methods like decision support systems, SCADA systems, digital twins, and process optimization. Meanwhile, they operate traditional regulated services while being challenged by issues like aging infrastructure and workforce capacity. They operate complex and expensive distribution systems that require grafting of new controls onto older systems with vulnerable components. Digital transformation in utilities is driven by return on investment and regulatory and workforce constraints and leads to cautious adoption of innovative methods unless required by external pressures. Utility adoption occurs gradually as digital tools help utilities to leverage system data for maintenance management, system renewal, and water loss control. Digital twins offer the advantages of enterprise data, decision support, and simulation models and can support distribution system optimization by integrating advanced metering infrastructure devices and water loss control through more granular pressure control. Models to anticipate water main breaks can also be included. With such advances, concerns about cyber security will grow. The lessons learned from the review indicate that research and development for new digital tools will continue, but utility adoption will continue to evolve slowly, even as many utilities globally are too stressed with difficult issues to adopt them. Rather than rely on government and academics for research support, utilities will need help from their support community of regulators, consultants, vendors, and all researchers to navigate the pathways that lie ahead. Full article
Show Figures

Figure 1

24 pages, 3885 KiB  
Article
Spatiotemporal Analysis of Available Freshwater Resources in Watersheds Across Northern New Jersey
by Toritseju Oyen and Duke Ophori
Hydrology 2025, 12(6), 149; https://doi.org/10.3390/hydrology12060149 - 12 Jun 2025
Viewed by 1084
Abstract
Groundwater is a critical freshwater resource, yet its quality is increasingly threatened by anthropogenic activities, particularly in urbanized regions. This study employs geospatial analysis to evaluate the spatiotemporal variability of groundwater quality across 11 Watershed Management Areas (WMAs) in northern New Jersey, from [...] Read more.
Groundwater is a critical freshwater resource, yet its quality is increasingly threatened by anthropogenic activities, particularly in urbanized regions. This study employs geospatial analysis to evaluate the spatiotemporal variability of groundwater quality across 11 Watershed Management Areas (WMAs) in northern New Jersey, from 1999 to 2016. Using specific conductance (SC) as a proxy for salinity, we applied Ordinary Kriging interpolation to estimate SC values in unmonitored locations, leveraging data from 295 shallow wells within the New Jersey Ambient Groundwater Quality Monitoring Network. The results reveal significant spatial heterogeneity in groundwater quality, strongly associated with land use and road density. The Northeast water region, characterized by high urbanization and extensive road networks, exhibited the poorest water quality, with salinity levels exceeding the 750 μS/cm threshold for freshwater in WMAs such as Lower Passaic (WMA-4) and Hackensack (WMA-5). In contrast, the Northwest region, dominated by agricultural and undeveloped land, maintained better water quality. Temporal analysis showed a worrying decline in freshwater coverage, from 80% in 1999–2004 to 74% in 2014–2016, with deicing salts and aging sewer infrastructure identified as major contamination sources. The study highlights the efficacy of Kriging and GIS tools in mapping groundwater quality trends and highlights the urgent need for targeted water management strategies in vulnerable regions. These findings provide policymakers and stakeholders with actionable insights to mitigate groundwater degradation and ensure long-term freshwater sustainability in northern New Jersey. Full article
Show Figures

Figure 1

Back to TopTop