Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = rigid emergent vegetation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 18247 KiB  
Article
Experimental Assessment of the Turbulent Flow Field Due to Emergent Vegetation at a Sharply Curved Open Channel
by Hamidreza Raeisifar, Ali Rahm Rahimpour, Hossein Afzalimehr, Oral Yagci and Manousos Valyrakis
Water 2025, 17(2), 205; https://doi.org/10.3390/w17020205 - 14 Jan 2025
Cited by 2 | Viewed by 874
Abstract
Emergent vegetation in river corridors influences both the flow structure and subsequent fluvial processes. This investigation aimed to analyze the impact of the bending and vegetation components in a sharply curved open channel on the flow field. Experiments were undertaken in a meandering [...] Read more.
Emergent vegetation in river corridors influences both the flow structure and subsequent fluvial processes. This investigation aimed to analyze the impact of the bending and vegetation components in a sharply curved open channel on the flow field. Experiments were undertaken in a meandering flume (0.9 m wide, wavelength of 3.2 m, and a sinuosity of 1.05) with a 90-degree bend at the end of it, with and without vegetation, to achieve this goal. The individual vegetation elements arranged across the 90-degree bend of the flow channel were physically modelled using rigid plastic stems (of 5 mm and 10 mm diameters). Analysis of the findings from the flow velocimetry, taken at five cross-sections oriented at angles of 0°, 30°, 45°, 60°, and 90°, along the 90-degree bend indicates that as the plant density increases, the effect of centrifugal force from the channel’s bend on the cross-sectional flow patterns decreases. At the same time, the restricting influence of vegetation on lateral momentum transfer becomes more pronounced. Specifically, for increasing vegetation density: (a) higher transverse and vertical velocities are observed (increased by 4.35% and 9.68% for 5 mm and 10 mm reed vegetation, respectively, compared to the non-vegetated case); (b) greater turbulence intensity is seen in the transverse flow direction, along with increased turbulent kinetic energy (TKE); and (c) reduced near-bed Reynolds stresses are found. The average transverse flow velocity for the non-vegetated case is 18.19% of the longitudinal flow velocity and the average vertical velocity for the non-vegetated case and 5 mm and 10 mm reed vegetation is 3.24%, 3.6%, and 5.44% of the longitudinal flow velocity, respectively. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research (2nd Edition))
Show Figures

Figure 1

15 pages, 2158 KiB  
Review
Flow Structures in Open Channels with Emergent Rigid Vegetation: A Review
by Dian Li, Zhenyang Peng, Guoqiang Liu and Chenyu Wei
Water 2023, 15(23), 4121; https://doi.org/10.3390/w15234121 - 28 Nov 2023
Cited by 3 | Viewed by 2961
Abstract
On the edges of rivers where the flow velocity is low, aquatic plants flourish, with emergent rigid herbs being the most common. Since the flow structures of vegetated flow are strongly influenced by vegetation distribution patterns, homogeneous and heterogeneous canopies are defined based [...] Read more.
On the edges of rivers where the flow velocity is low, aquatic plants flourish, with emergent rigid herbs being the most common. Since the flow structures of vegetated flow are strongly influenced by vegetation distribution patterns, homogeneous and heterogeneous canopies are defined based on the characteristics of vegetation distribution. A review summarizing recent advances in flow structures under the influence of different types of canopy arrangements, including ribbon-like homogeneous canopies, ribbon-like heterogeneous canopies, and patched heterogeneous canopies, is needed. Their flow development process, shear layer properties, coherent structure features, and momentum exchange characteristics are summarized, and a future research agenda for an in-depth understanding of the interactions between vegetation and flow is also highlighted. Full article
Show Figures

Figure 1

21 pages, 8653 KiB  
Article
Effect of Rigid Vegetation Arrangement on the Mixed Layer of Curved Channel Flow
by Tianwei Huang, Mengxing He, Kan Hong, Yingtien Lin and Pengcheng Jiao
J. Mar. Sci. Eng. 2023, 11(1), 213; https://doi.org/10.3390/jmse11010213 - 13 Jan 2023
Cited by 7 | Viewed by 2070
Abstract
Curved channels and aquatic vegetation are commonly present in the riverine environment. In this study, the effects of vegetation density and distribution on the hydrodynamic characteristics of a mixed layer developed over a 180-degree curved channel were investigated through flume experiments. Wooden sticks [...] Read more.
Curved channels and aquatic vegetation are commonly present in the riverine environment. In this study, the effects of vegetation density and distribution on the hydrodynamic characteristics of a mixed layer developed over a 180-degree curved channel were investigated through flume experiments. Wooden sticks were used to simulate rigid vegetation distributed along the half side of the channel, and a 200 Hz acoustic Doppler velocimeter (ADV) was employed to measure the three-dimensional instantaneous velocity at five selected cross sections along the curved channel. Experimental results show that the vegetation covering the half of the channel significantly affects the hydrodynamic structure of the curved channel flow, and the unequal vegetation resistance induces the K-H instability at the vegetation and non-vegetation interface, resulting in a standard hyperbolic tangent function of streamwise velocity distribution along the lateral direction. The influence of curve position on turbulence kinetic energy is far greater than that of vegetation density and vegetation distribution. The peak value of turbulent kinetic energy is comprehensively affected by vegetation density and distribution, and the peak position of turbulent kinetic energy at the interface is changed by different vegetation distribution. The combined effect of the curve and the partly covered vegetation increases the mixing between the water bodies, enhancing turbulent kinetic energy, and vegetation along the concave bank plays a more significant role. For turbulent bursting, the inward and outward interactions are mainly bursting events in the vegetation area, while ejections and sweeps are dominant in the non-vegetation area. However, the critical vegetation condition to initiate large-scale coherent structure (LSS) in the mixed layer and the influence of flexible vegetation need to be further studied in the future. Full article
(This article belongs to the Special Issue Fluid/Structure Interactions II)
Show Figures

Figure 1

20 pages, 14001 KiB  
Article
Numerical Investigation of Hydrodynamics in a U-Shaped Open Channel Confluence Flow with Partially Emergent Rigid Vegetation
by Zhengrui Shi and Sheng Jin
Water 2022, 14(24), 4027; https://doi.org/10.3390/w14244027 - 9 Dec 2022
Cited by 3 | Viewed by 2515
Abstract
The effects of partially emergent rigid vegetation on the hydrodynamics of a curved open-channel confluence flow were simulated using OpenFOAM. The numerical model using the Volume of Fluid method and the RNG k-ε turbulence model in the Reynolds-averaged Navier–Stokes equations was first validated [...] Read more.
The effects of partially emergent rigid vegetation on the hydrodynamics of a curved open-channel confluence flow were simulated using OpenFOAM. The numerical model using the Volume of Fluid method and the RNG k-ε turbulence model in the Reynolds-averaged Navier–Stokes equations was first validated by existing experimental data with good agreement. Then the characteristics of hydrodynamics were analyzed in aspects of separation zone, water level, streamwise velocities, secondary flows, bed shear stress and flow resistance. Some main conclusions can be drawn from the results. Compared to the non-vegetated cases, the separation zones in vegetated cases are smaller in both length and width. With higher vegetation Solid Volume Fraction (SVF), the separation zone is divided into two parts, a smaller one right after the confluence point and a larger one on the second half of the curved reach after the confluence. The main circulation cell shrinks and the circulation near the concave bank moves towards the channel midline. The differences in velocities and bed shear stress between the convex and concave banks become larger with a higher SVF. Under the same SVF, a larger vegetation density has more disturbance on the tributary than a larger stem diameter. Full article
(This article belongs to the Special Issue Fluvial Hydraulics in the Presence of Vegetation in Channels)
Show Figures

Figure 1

8 pages, 1575 KiB  
Proceeding Paper
Simulation of M2 Profiles in a Channel with Rigid Emergent Vegetation
by Antonino D’Ippolito and Francesco Calomino
Environ. Sci. Proc. 2022, 21(1), 73; https://doi.org/10.3390/environsciproc2022021073 - 3 Nov 2022
Viewed by 943
Abstract
The paper presents the results relying on 12 experimental M2 water profiles observed in a flume with emergent stems in a square arrangement. The authors used a recently proposed approach to determine the drag coefficients in the flow direction. Since these showed a [...] Read more.
The paper presents the results relying on 12 experimental M2 water profiles observed in a flume with emergent stems in a square arrangement. The authors used a recently proposed approach to determine the drag coefficients in the flow direction. Since these showed a behavior difficult to interpret, the authors first computed for each profile the best value of the Manning coefficient for the profile simulation and then the drag coefficients. With the help of a classical dimensional analysis, a regression equation was found to predict the drag coefficients, and these were used to simulate the observed profiles with good results. Full article
Show Figures

Figure 1

23 pages, 66283 KiB  
Article
Assessing Riverbed Surface Destabilization Risk Downstream Isolated Vegetation Elements
by Yi Xu, Manousos Valyrakis, Gordon Gilja, Panagiotis Michalis, Oral Yagci and Łukasz Przyborowski
Water 2022, 14(18), 2880; https://doi.org/10.3390/w14182880 - 15 Sep 2022
Cited by 7 | Viewed by 2454
Abstract
A few decades ago, river erosion protective approaches were widely implemented, such as straightening the river course, enhancing riverbed/bank stability with layers of concrete or riprap, and increasing channel conveyance capacity (i.e., overwidening). However, recent research has established that such practices can be [...] Read more.
A few decades ago, river erosion protective approaches were widely implemented, such as straightening the river course, enhancing riverbed/bank stability with layers of concrete or riprap, and increasing channel conveyance capacity (i.e., overwidening). However, recent research has established that such practices can be tremendously costly and adversely affect the rivers’ ecological health. To alleviate these effects, green river restoration has emerged as a sustainable and environmentally friendly approach that can reduce the negative impact of the riverbed and bank destabilization and flooding. One of the typical green restoration measures, especially for instream habitat improvement, is the establishment of instream vegetation, which leads to a more diversified flow regime, increasing habitat availability and serving as refugia for aquatic species. Within the perspective presented above, flow–vegetation interaction problems for several decades received significant attention. In these studies, rigid rods have commonly been used to simulate these vegetative roughness elements without directly assessing the riverbed destabilization potential. Here, an experimental study is carried out to investigate the effect of different instream vegetation porosity on the near-bed flow hydrodynamics and riverbed destabilization potential for a range of simulated vegetation species. Specifically, the flow field downstream, four distinct simulated vegetation elements is recorded using an acoustic Doppler velocimetry (ADV), assuming about the same solid volume fraction for the different vegetation elements. In addition, bed destabilization potential is assessed by recording with optical means (a He-Ne laser with a camera system) the entrainment rate of a 15 mm particle resting on the uniform bed surface and the number of impulses above a critical value. Results revealed that the number of impulses above a critical value at the normalized distance equal to two is a good indicator for cylinder and five for other vegetation to assess the riverbed destabilization potential. The experimental findings from this study have interesting geomorphological implications regarding the destabilization of the riverbed surface (removal of coarse particles induced by high magnitude turbulent impulses) and the successful establishment of seedlings downstream of instream vegetation. Full article
Show Figures

Figure 1

20 pages, 4701 KiB  
Article
Simulation of Accelerated Subcritical Flow Profiles in an Open Channel with Emergent Rigid Vegetation
by Antonino D’Ippolito, Francesco Calomino, Nadia Penna, Subhasish Dey and Roberto Gaudio
Appl. Sci. 2022, 12(14), 6960; https://doi.org/10.3390/app12146960 - 9 Jul 2022
Cited by 9 | Viewed by 1851
Abstract
Even though both fluid mechanics and numerical studies have considerably progressed in the past decades, experimental knowledge remains an important tool for studying the resistance to flow in fluid media where a complex environment dominates the flow pattern. After a comprehensive review of [...] Read more.
Even though both fluid mechanics and numerical studies have considerably progressed in the past decades, experimental knowledge remains an important tool for studying the resistance to flow in fluid media where a complex environment dominates the flow pattern. After a comprehensive review of the recent literature on the drag coefficient in open channels with emergent rigid vegetation, this paper presents the results related to 29 experimental accelerated subcritical flow profiles (i.e., M2 type) that were observed in flume experiments with emergent stems in a square arrangement at the University of Calabria (Italy). First of all, we used some of the literature formulas for the drag coefficient, concluding that they were unsatisfactory, probably because of their derivation for uniform or quasi-uniform flow conditions. Then, we tested a recently proposed approach, but when we plotted the drag coefficient versus the stem Reynolds number, the calculated drag coefficients showed an inconclusive behavior to interpret. Thus, we proposed a new approach that considers the calibration of the Manning coefficient for the simulation of the free surface profile, and then the evaluation of the drag coefficients based on the fundamental fluid mechanics equations. With the help of classical dimensional analysis, a regression equation was found to estimate the drag coefficients by means of non-dimensional parameters, which include vegetation density, stem Reynolds number and flow Reynolds number computed using the flow depth as characteristic length. This equation was used to simulate all the 26 observed profiles and, also, 4 experimental literature profiles, and the results were good. The regression equation could be used to estimate the drag coefficient for the M2 profiles in channels with squared stem arrangements, within the range of vegetation densities, flow Reynolds numbers and stem Reynolds numbers of the present study. However, in the case of the three profiles observed by the authors for staggered arrangement, the regression equation gives significantly underestimated flow depths. Full article
Show Figures

Figure 1

17 pages, 5848 KiB  
Article
Propagation and Separation of Downslope Gravity Currents over Rigid and Emergent Vegetation Patches in Linearly Stratified Environments
by Ying-Tien Lin, Yi-Qi Ye, Dong-Rui Han and Yu-Jia Chiu
J. Mar. Sci. Eng. 2022, 10(3), 308; https://doi.org/10.3390/jmse10030308 - 22 Feb 2022
Cited by 8 | Viewed by 2434
Abstract
Large eddy simulation (combined with the mixture model) and laboratory experiment were used to investigate the impact of emergent and rigid vegetation on the dynamics of downslope gravity currents in stratified environments. The reliability of the numerical model was assessed with the corresponding [...] Read more.
Large eddy simulation (combined with the mixture model) and laboratory experiment were used to investigate the impact of emergent and rigid vegetation on the dynamics of downslope gravity currents in stratified environments. The reliability of the numerical model was assessed with the corresponding laboratory measurements. The results show that the vegetation cylinders lead to severe lateral non-uniformity of the current front, causing more evident lobe and cleft structures. In stratified environments, the smaller driving force leads to less propagating velocity until the current separates from the slope. The transition point (from acceleration to deceleration phases) of current velocity appears earlier as the vegetation becomes denser. The peak value of the bulk entrainment coefficient Ebuik is inversely proportional to the vegetation density, while the final converged value of Ebuik is proportional to the vegetation density. Vegetation patches make the degree of fluctuation of the instantaneous entrainment coefficient Einst more intense, and even negative values appear locally, indicating that the gravity current is detrained into the ambient fluid. The velocity profiles of gravity current develop multi-peak patterns in stratified environments due to fingering intrusive patterns. Our analysis reveals that as the vegetation density increases, the generated wakes behind vegetation cylinders increase local entrainment and mixing, causing the density of current flow from vegetation to decrease and reach the neutral buoyancy layer of ambient fluids earlier, finally leading to a smaller separation depth. Full article
(This article belongs to the Special Issue Experiments and Numerical Analysis of Flow)
Show Figures

Figure 1

13 pages, 5846 KiB  
Article
Turbulent Flow through Random Vegetation on a Rough Bed
by Francesco Coscarella, Nadia Penna, Aldo Pedro Ferrante, Paola Gualtieri and Roberto Gaudio
Water 2021, 13(18), 2564; https://doi.org/10.3390/w13182564 - 17 Sep 2021
Cited by 15 | Viewed by 3772
Abstract
River vegetation radically modifies the flow field and turbulence characteristics. To analyze the vegetation effects on the flow, most scientific studies are based on laboratory tests or numerical simulations with vegetation stems on smooth beds. Nevertheless, in this manner, the effects of bed [...] Read more.
River vegetation radically modifies the flow field and turbulence characteristics. To analyze the vegetation effects on the flow, most scientific studies are based on laboratory tests or numerical simulations with vegetation stems on smooth beds. Nevertheless, in this manner, the effects of bed sediments are neglected. The aim of this paper is to experimentally investigate the effects of bed sediments in a vegetated channel and, in consideration of that, comparative experiments of velocity measures, performed with an Acoustic Doppler Velocimeter (ADV) profiler, were carried out in a laboratory flume with different uniform bed sediment sizes and the same pattern of randomly arranged emergent rigid vegetation. To better comprehend the time-averaged flow conditions, the time-averaged velocity was explored. Subsequently, the analysis was focused on the energetic characteristics of the flow field with the determination of the Turbulent Kinetic Energy (TKE) and its components, as well as of the energy spectra of the velocity components immediately downstream of a vegetation element. The results show that both the vegetation and bed roughness surface deeply affect the turbulence characteristics. Furthermore, it was revealed that the roughness influence becomes predominant as the grain size becomes larger. Full article
Show Figures

Figure 1

15 pages, 20235 KiB  
Article
Hydraulic Characteristics of Emerged Rigid and Submerged Flexible Vegetations in the Riparian Zone
by Xin Meng, Yubao Zhou, Zhilin Sun, Kaixuan Ding and Lin Chong
Water 2021, 13(8), 1057; https://doi.org/10.3390/w13081057 - 12 Apr 2021
Cited by 5 | Viewed by 2665
Abstract
Flow resistance, velocity distribution, and turbulence intensity are significantly influenced by aquatic vegetations (AV) in riparian zones. Understanding the hydraulics of flow with planted floodplains is of great significance for determining the velocity distribution profile and supporting the fluvial processes management. However, the [...] Read more.
Flow resistance, velocity distribution, and turbulence intensity are significantly influenced by aquatic vegetations (AV) in riparian zones. Understanding the hydraulics of flow with planted floodplains is of great significance for determining the velocity distribution profile and supporting the fluvial processes management. However, the traditional flume experiment method is inefficient. Therefore, the multigroup simultaneous flume test method was carried out to describe the flow patterns affected by emerged rigid (reed and wooden stick) and submerged flexible vegetations (grass and chlorella). The Acoustic Doppler Velocimeter (ADV) was utilized to measure the velocity at one point for different experimental conditions. The results showed that hydraulic features were influenced by different types of vegetation. Furthermore, the relative depth (z/h) was a determining factor of those variations. In addition, the time-averaged velocity distributions of planted floodplains are not logarithmic. Instead, they represented “s-shape” profiles. In detail, for the vegetated floodplains, reed and wood followed an s-shape profile, but for grass and chlorella, they followed reverse s-shape profile. For all cases, turbulence is not isotropic and the change law of turbulence intensity is different in different sections. The flow resistance, turbulence intensities, and Reynold stresses influenced by different types of vegetation were also analyzed. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

27 pages, 2447 KiB  
Review
Flow Resistance in Open Channel Due to Vegetation at Reach Scale: A Review
by Antonino D’Ippolito, Francesco Calomino, Giancarlo Alfonsi and Agostino Lauria
Water 2021, 13(2), 116; https://doi.org/10.3390/w13020116 - 6 Jan 2021
Cited by 69 | Viewed by 8947
Abstract
Vegetation on the banks and flooding areas of watercourses significantly affects energy losses. To take the latter into account, computational models make use of resistance coefficients based on the evaluation of bed and walls roughness besides the resistance to flow offered by vegetation. [...] Read more.
Vegetation on the banks and flooding areas of watercourses significantly affects energy losses. To take the latter into account, computational models make use of resistance coefficients based on the evaluation of bed and walls roughness besides the resistance to flow offered by vegetation. This paper, after summarizing the classical approaches based on descriptions and pictures, considers the recent advancements related to the analytical methods relative both to rigid and flexible vegetation. In particular, emergent rigid vegetation is first analyzed by focusing on the methods for determining the drag coefficient, then submerged rigid vegetation is analyzed, highlighting briefly the principles on which the different models are based and recalling the comparisons made in the literature. Then, the models used in the case of both emergent and submerged rigid vegetation are highlighted. As to flexible vegetation, the paper reminds first the flow conditions that cause the vegetation to lay on the channel bed, and then the classical resistance laws that were developed for the design of irrigation canals. The most recent developments in the case of submerged and emergent flexible vegetation are then presented. Since turbulence studies should be considered as the basis of flow resistance, even though the path toward practical use is still long, the new developments in the field of 3D numerical methods are briefly reviewed, presently used to assess the characteristics of turbulence and the transport of sediments and pollutants. The use of remote sensing to map riparian vegetation and estimating biomechanical parameters is briefly analyzed. Finally, some applications are presented, aimed at highlighting, in real cases, the influence exerted by vegetation on water depth and maintenance interventions. Full article
Show Figures

Figure 1

14 pages, 3899 KiB  
Article
Anisotropy in the Free Stream Region of Turbulent Flows through Emergent Rigid Vegetation on Rough Beds
by Nadia Penna, Francesco Coscarella, Antonino D’Ippolito and Roberto Gaudio
Water 2020, 12(9), 2464; https://doi.org/10.3390/w12092464 - 2 Sep 2020
Cited by 21 | Viewed by 3241
Abstract
Most of the existing works on vegetated flows are based on experimental tests in smooth channel beds with staggered-arranged rigid/flexible vegetation stems. Actually, a riverbed is characterized by other roughness elements, i.e., sediments, which have important implications on the development of the turbulence [...] Read more.
Most of the existing works on vegetated flows are based on experimental tests in smooth channel beds with staggered-arranged rigid/flexible vegetation stems. Actually, a riverbed is characterized by other roughness elements, i.e., sediments, which have important implications on the development of the turbulence structures, especially in the near-bed flow zone. Thus, the aim of this experimental study was to explore for the first time the turbulence anisotropy of flows through emergent rigid vegetation on rough beds, using the so-called anisotropy invariant maps (AIMs). Toward this end, an experimental investigation, based on Acoustic Doppler Velocimeter (ADV) measures, was performed in a laboratory flume and consisted of three runs with different bed sediment size. In order to comprehend the mean flow conditions, the present study firstly analyzed and discussed the time-averaged velocity, the Reynolds shear stresses, the viscous stresses, and the vorticity fields in the free stream region. The analysis of the AIMs showed that the combined effect of vegetation and bed roughness causes the evolution of the turbulence from the quasi-three-dimensional isotropy to axisymmetric anisotropy approaching the bed surface. This confirms that, as the effects of the bed roughness diminish, the turbulence tends to an isotropic state. This behavior is more evident for the run with the lowest bed sediment diameter. Furthermore, it was revealed that also the topographical configuration of the bed surface has a strong impact on the turbulent characteristics of the flow. Full article
(This article belongs to the Special Issue Turbulence and Flow–Sediment Interactions in Open-Channel Flows)
Show Figures

Figure 1

17 pages, 10624 KiB  
Article
Bed Roughness Effects on the Turbulence Characteristics of Flows through Emergent Rigid Vegetation
by Nadia Penna, Francesco Coscarella, Antonino D’Ippolito and Roberto Gaudio
Water 2020, 12(9), 2401; https://doi.org/10.3390/w12092401 - 26 Aug 2020
Cited by 22 | Viewed by 4631
Abstract
During floods, the riparian vegetation in a watercourse significantly changes the velocity distribution and the turbulence structures of the flow. However, a certain influence on them is always exerted by the bed sediments. The aim of the present work is to study the [...] Read more.
During floods, the riparian vegetation in a watercourse significantly changes the velocity distribution and the turbulence structures of the flow. However, a certain influence on them is always exerted by the bed sediments. The aim of the present work is to study the bed roughness effects on the turbulence characteristics in an open-channel flow with rigid and emergent vegetation. Toward this end, an experimental campaign was conducted and consisted of three runs with different bed roughness conditions. The study is based on the analysis of the velocity, Reynolds shear stress, and viscous stress distributions. The results show that, in the region below the free surface region, the flow is strongly influenced by the vegetation. However, moving toward the bed, the flow is affected by a combined effect of vegetation, firstly, and bed roughness, secondly. This flow zone becomes more extended, as the size of the bed sediments increases. The shear stress distributions confirm the distinction between the two flow regions. In fact, the shear stresses are practically negligible in the upper zone of the water depth influenced by vegetation, whereas, owing to the bed roughness, they reach the maximum value near the bed surface. Finally, the analysis of the turbulent kinetic energy (TKE) revealed high values below the crest level and in the near-bed flow zone in the streamwise direction, whereas a strong lateral variation of TKE from the flume centerline to the cylinder occurred in the intermediate region. Full article
(This article belongs to the Special Issue Advances in Environmental Hydraulics)
Show Figures

Figure 1

17 pages, 2182 KiB  
Review
A Review on Hydrodynamics of Free Surface Flows in Emergent Vegetated Channels
by Soumen Maji, Prashanth Reddy Hanmaiahgari, Ram Balachandar, Jaan H. Pu, Ana M. Ricardo and Rui M.L. Ferreira
Water 2020, 12(4), 1218; https://doi.org/10.3390/w12041218 - 24 Apr 2020
Cited by 37 | Viewed by 7279
Abstract
This review paper addresses the structure of the mean flow and key turbulence quantities in free-surface flows with emergent vegetation. Emergent vegetation in open channel flow affects turbulence, flow patterns, flow resistance, sediment transport, and morphological changes. The last 15 years have witnessed [...] Read more.
This review paper addresses the structure of the mean flow and key turbulence quantities in free-surface flows with emergent vegetation. Emergent vegetation in open channel flow affects turbulence, flow patterns, flow resistance, sediment transport, and morphological changes. The last 15 years have witnessed significant advances in field, laboratory, and numerical investigations of turbulent flows within reaches of different types of emergent vegetation, such as rigid stems, flexible stems, with foliage or without foliage, and combinations of these. The influence of stem diameter, volume fraction, frontal area of stems, staggered and non-staggered arrangements of stems, and arrangement of stems in patches on mean flow and turbulence has been quantified in different research contexts using different instrumentation and numerical strategies. In this paper, a summary of key findings on emergent vegetation flows is offered, with particular emphasis on: (1) vertical structure of flow field, (2) velocity distribution, 2nd order moments, and distribution of turbulent kinetic energy (TKE) in horizontal plane, (3) horizontal structures which includes wake and shear flows and, (4) drag effect of emergent vegetation on the flow. It can be concluded that the drag coefficient of an emergent vegetation patch is proportional to the solid volume fraction and average drag of an individual vegetation stem is a linear function of the stem Reynolds number. The distribution of TKE in a horizontal plane demonstrates that the production of TKE is mostly associated with vortex shedding from individual stems. Production and dissipation of TKE are not in equilibrium, resulting in strong fluxes of TKE directed outward the near wake of each stem. In addition to Kelvin–Helmholtz and von Kármán vortices, the ejections and sweeps have profound influence on sediment dynamics in the emergent vegetated flows. Full article
Show Figures

Figure 1

17 pages, 6024 KiB  
Article
Evaluation of Flow Resistance Models Based on Field Experiments in a Partly Vegetated Reclamation Channel
by Giuseppe Francesco Cesare Lama, Alessandro Errico, Simona Francalanci, Luca Solari, Federico Preti and Giovanni Battista Chirico
Geosciences 2020, 10(2), 47; https://doi.org/10.3390/geosciences10020047 - 25 Jan 2020
Cited by 53 | Viewed by 3973
Abstract
This study presents a methodology for improving the efficiency of Baptist and Stone and Shen models in predicting the global water flow resistance of a reclamation channel partly vegetated by rigid and emergent riparian plants. The results of the two resistance models are [...] Read more.
This study presents a methodology for improving the efficiency of Baptist and Stone and Shen models in predicting the global water flow resistance of a reclamation channel partly vegetated by rigid and emergent riparian plants. The results of the two resistance models are compared with the measurements collected during an experimental campaign conducted in a reclamation channel colonized by Common reed (Phragmites australis (Cav.) Trin. ex Steud.). Experimental vegetative Chézy’s flow resistance coefficients have been retrieved from the analysis of instantaneous flow velocity measurements, acquired by means of a downlooking 3-component acoustic Doppler velocimeter (ADV) located at the channel upstream cross section, and by water level measurements obtained through four piezometers distributed along the reclamation channel. The main morphometrical vegetation features (i.e., stem diameters and heights, and bed surface density) have been measured at six cross sections of the vegetated reclamation channel. Following the theoretical assumptions of the divided channel method (DCM), three sub-sections have been delineated in the reference cross section to represent the impact of the partial vegetation cover on the cross sectional variability of the flow field, as observed with the ADV measurements. The global vegetative Chézy’s flow resistance coefficients have been then computed by combining each resistance model with four different composite cross section methods, respectively suggested by Colebatch, Horton, Pavlovskii, and Yen. The comparative analysis between the modeled and the experimental vegetative Chézy’s coefficients has been performed by computing the relative prediction error (εr, expressed in %) under two flow rate regimes. Stone and Shen model combined with the Horton composite cross section method provides vegetative Chézy’s coefficients with the lowest εr. Full article
Show Figures

Figure 1

Back to TopTop