Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,344)

Search Parameters:
Keywords = rich-polyphenols extract

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2948 KB  
Article
Rosa canina Extract Attenuates Muscle Atrophy in L6 Myotubes and Immobilized Mice
by Hyerin Lee, Mi-Bo Kim, Junhui Kang, Jae-Kwan Hwang and Bohkyung Kim
Nutrients 2025, 17(21), 3462; https://doi.org/10.3390/nu17213462 (registering DOI) - 2 Nov 2025
Abstract
Background: Skeletal muscle is essential not only for structural integrity but also metabolic homeostasis. Muscle atrophy, the loss of muscle mass and function, is closely linked to chronic and metabolic disorders and is driven by chronic inflammation, oxidative stress, impaired myogenesis, and [...] Read more.
Background: Skeletal muscle is essential not only for structural integrity but also metabolic homeostasis. Muscle atrophy, the loss of muscle mass and function, is closely linked to chronic and metabolic disorders and is driven by chronic inflammation, oxidative stress, impaired myogenesis, and disrupted protein homeostasis. The present study aimed to evaluate the protective effects and underlying mechanisms of Rosa canina extract (RCE), a polyphenol-rich plant known for its antioxidant and anti-inflammatory properties, in vitro and in vivo models of muscle atrophy. Methods: We investigated the effects of RCE in TNF-α-treated L6 myotubes and a mouse model (eight-week-old male C57BL/6N) of immobilization-induced muscle atrophy. Markers of inflammation, oxidative stress, myogenesis, protein turnover, and anabolic signaling were analyzed via RT-PCR, Western blotting and ELISA. Muscle mass, performance, micro-CT imaging, and histological cross-sectional area were assessed in vivo. Results: RCE suppressed pro-inflammatory cytokines, restored antioxidant enzyme expression, and preserved myogenic markers. It inhibited muscle proteolysis by downregulating the genes involved in protein degradation and promoted protein synthesis by via activation of the PI3K/Akt/mTOR pathway. In mice, RCE mitigated muscle mass loss, preserved fiber cross-sectional area, improved strength and endurance, and restored muscle volume. Conclusions: RCE attenuated muscle atrophy by targeting inflammation, oxidative stress, proteolysis, and impaired anabolism. These findings highlight RCE as a promising natural therapeutic for preserving muscle health and metabolic homeostasis. Full article
Show Figures

Figure 1

17 pages, 1060 KB  
Article
Impact of Purification Methods on the Antioxidant Properties of Tannin-Rich Extracts Obtained from Berry Fruit By-Products
by Agnieszka Hejduk, Michał Sójka and Robert Klewicki
Appl. Sci. 2025, 15(21), 11701; https://doi.org/10.3390/app152111701 (registering DOI) - 1 Nov 2025
Abstract
This study evaluates how different purification methods influence the antioxidant properties of polyphenol-rich berry pomace extracts, taking into account both the source of the pomace and the purification strategy used. The extracts were obtained from raspberry, blackberry, strawberry, and wild strawberry pomaces derived [...] Read more.
This study evaluates how different purification methods influence the antioxidant properties of polyphenol-rich berry pomace extracts, taking into account both the source of the pomace and the purification strategy used. The extracts were obtained from raspberry, blackberry, strawberry, and wild strawberry pomaces derived from the production of unclarified juices and purées. The extracts were analyzed in three states: crude (CEX), purified using Amberlite XAD 1600N adsorbent resin (XAD), and purified via size-exclusion chromatography (SEC) on a gel filtration resin. Ellagitannins, flavanols, and anthocyanins were determined using HPLC-DAD-FD methods. Antioxidant properties were determined based on: total antioxidant compounds, DPPH radical scavenging activity, and Fe3+ ion reduction power. Purification significantly enhanced the concentration of antioxidant compounds, which increased 2-fold with the XAD method and more than 3-fold using SEC. The extracts exhibited strong DPPH radical scavenging activity, ranging from 65% to 90% for raspberry and blackberry extracts and from 34% to 95% for strawberry and wild strawberry extracts, depending on the degree of purification. Similarly, Fe3+-reducing power increased 2- to 6-fold in extracts purified using XAD and SEC compared to crude extracts. Purification via size-exclusion chromatography enabled the separation of tannin-rich and anthocyanin-rich extract fractions. Ellagitannins were the main class of polyphenols contributing to the enhanced antioxidant potential. Anthocyanins contributed significantly to antioxidant activity only in the case of blackberry extracts. Full article
Show Figures

Figure 1

15 pages, 810 KB  
Article
Extraction, Phytochemical Analysis, and Bioactivity Evaluation of Polyphenols from Kunzea ericoides (Kanuka) Plant
by Harmandeep Dhaliwal, Yan Li and Michelle Yoo
Antioxidants 2025, 14(11), 1319; https://doi.org/10.3390/antiox14111319 (registering DOI) - 31 Oct 2025
Abstract
Kunzea ericoides (kanuka), a native plant of New Zealand, has a significant role in traditional medicine due to the presence of essential oils. Apart from these oils, this plant also is a source of many bioactive compounds, majority of which are polyphenols. However, [...] Read more.
Kunzea ericoides (kanuka), a native plant of New Zealand, has a significant role in traditional medicine due to the presence of essential oils. Apart from these oils, this plant also is a source of many bioactive compounds, majority of which are polyphenols. However, there is lack of sufficient data supporting the extraction of polyphenols from kanuka plant leaves and investigating its bioactivity and phytochemical properties. The study aims to extract polyphenols from kanuka plant leaves with a conventional solvent-based method and determine the phytochemical analysis as well as bioactive potential. Extraction was performed with methanol and acetone as solvents. Polyphenolic prolife was analyzed with LC-MS. Bioactive analysis of kanuka leaf extract was carried out to determine total phenolic content and antioxidant activity. We investigated the cytotoxic effect of kanuka leaf extract on two triple-negative breast cancer cells—MDA-MB-231 and BT-549. LC-MS analysis confirmed kanuka leaf extract is a source of many polyphenols, some giving very prominent signals on TIC scan. Ten polyphenolic compounds were confirmed to be present in kanuka leaf extract based on MRM analysis. FRAP-CUPRAC analysis indicated significant antioxidant activity in the kanuka leaf extract. Antiproliferative analysis has confirmed cytotoxicity of the kanuka leaf extract on the triple-negative breast cancer cell lines. This study indicates that Kunzea ericoides leaf extract, rich in polyphenols, shows promising antioxidant and antiproliferative potential, warranting further investigation for therapeutic applications. Full article
15 pages, 462 KB  
Article
Investigating the Nutritional Properties, Chemical Composition (UPLC-HR-MS) and Safety (Ames Test) of Atriplex halimus L. Leaves and Their Potential Health Implications
by Maria Eleonora Foletti, Massimo Tacchini, Gianni Sacchetti, Annalisa Maietti, Mohamed Lamin Abdi Bellau, Marinella De Leo and Alessandra Guerrini
Plants 2025, 14(21), 3350; https://doi.org/10.3390/plants14213350 (registering DOI) - 31 Oct 2025
Abstract
Motivated by the plant’s ethnopharmacological importance and the health conditions of the Sahrawi people, who have been living as refugees for over 50 years, this study comprehensively assessed the nutritional profile, secondary metabolite composition, in vitro bioaccessibility, and toxicological safety of Atriplex halimus [...] Read more.
Motivated by the plant’s ethnopharmacological importance and the health conditions of the Sahrawi people, who have been living as refugees for over 50 years, this study comprehensively assessed the nutritional profile, secondary metabolite composition, in vitro bioaccessibility, and toxicological safety of Atriplex halimus L. leaves. The proximate analysis demonstrated richness in dietary fiber (44.41 ± 0.11 g/100 g) and essential macro/microelements, notably iron (142.0 ± 2.41 mg/100 g). The lipid profile features essential polyunsaturated fatty acids, specifically linoleic and α-linolenic acid, accounting for 40.6 ± 7.0% of total fatty acids. The UPLC-HR--MS characterization of two extracts tentatively identified 13 specialized metabolites, including uncommon flavonoids such as highly glycosylated forms of isorhamnetin and syringetin. Caffeic acid 3-sulfate and caffeic acid 4-sulfate were identified by NMR. Although in vitro antioxidant activity (DPPH/FRAP tests) was minimal, the traditional decoction showed high total polyphenol bioaccessibility (71.52 ± 0.46%) during simulated gastrointestinal digestion following the harmonized static protocol. The Ames test (using Salmonella typhimurium TA98 and TA1535) confirmed toxicological safety, as neither extract induced mutagenic or genotoxic effects. In conclusion, the robust nutritional composition, in vitro proven safety, and high polyphenol bioaccessibility suggest A. halimus leaves as a promising, nutrient-rich functional ingredient. Full article
17 pages, 557 KB  
Article
Sustainable Valorization of Grape Pomace in Sheep Through Systemic Health, Metabolic Safety, Milk and Meat Quality
by Gabriella Guelfi, Piermario Mangili, Francesca Mercati, David Ranucci, Silvia Crotti, Muhammad Tuseef, Gianluca Veneziani, Vicente Francisco Ratto, Camilla Capaccia, Francesco Ciancabilla, Margherita Maranesi and Cecilia Dall’Aglio
Int. J. Mol. Sci. 2025, 26(21), 10578; https://doi.org/10.3390/ijms262110578 - 30 Oct 2025
Viewed by 84
Abstract
Grape pomace (GP), a by-product of winemaking, is rich in polyphenols and fiber, making it a promising and sustainable feed supplement for ruminants. This study evaluated the safety and productive impact of a 5% GP-supplemented diet (GP5) including non-lactating end-cycle (EC) ewes regularly [...] Read more.
Grape pomace (GP), a by-product of winemaking, is rich in polyphenols and fiber, making it a promising and sustainable feed supplement for ruminants. This study evaluated the safety and productive impact of a 5% GP-supplemented diet (GP5) including non-lactating end-cycle (EC) ewes regularly destined for slaughter and human consumption, and lactating (LAC) ewes, over a 30-day period. Control (CTRL) animals received a standard pellet diet with no GP inclusion. Sampling was performed at four time points (T0, T10, T20, and T30), corresponding to days 0, 10, 20, and 30 of the experimental period. The study assessed clinical status, hematology/biochemistry (T0 and T30), milk composition (T0, T10, T20, and T30), meat quality traits and oxidative stability in EC ewes (T30). Since no significant differences were observed in the CTRL animals, the effects were evaluated within the GP5 group by comparing T0 vs. T30. Meat quality was assessed by comparing EC-GP5 to CTRL at T30. The GP extract showed a high total phenolic content (254.02 ± 20.39 mg GAE/g DW). No clinical or hematological alterations were observed, and most values remained within physiological ranges. Biochemical analysis revealed significant increases in albumin, bilirubin, creatinine, and triglycerides (p < 0.05), with significant decreases in plasma urea and glucose (p < 0.05). In LAC-GP5 ewes, milk urea and lactose concentrations decreased (p < 0.05), while pH increased (p < 0.05), with no significant changes in fat or casein content. These findings are consistent with reduced ruminal propionate availability, leading to decreased hepatic gluconeogenesis and lactose synthesis, with secondary effects on nitrogen metabolism and the acid–base profile of milk. In EC-GP5 ewes, meat quality traits were unaffected, and DPPH scavenging activity did not differ from CTRL (p > 0.05). GP5 was metabolically safe, induced adaptive changes in milk composition, and had no negative effects on meat quality, supporting the valorization of grape pomace as a sustainable feed resource. This trial was designed as a metabolic safety assessment, representing a preliminary step toward future mechanistic and molecular investigations. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

19 pages, 2706 KB  
Article
Sustainable Grape Antioxidant Dietary Fiber Preserves Proximal Colonic Homeostasis via Hsp27 and AMPK Signaling
by Paula Ortega-Menéndez, Marina Hernández-Martín, Silvina Rosa Drago, Carlos Guillén, Jara Pérez-Jiménez, Dulcenombre Gómez-Garre, Luis Rivera, Verónica Azcutia and María Elvira López-Oliva
Int. J. Mol. Sci. 2025, 26(21), 10564; https://doi.org/10.3390/ijms262110564 - 30 Oct 2025
Viewed by 214
Abstract
The colonic epithelium renews rapidly and must balance proliferation with apoptosis to preserve barrier integrity. We investigated whether grape antioxidant dietary fiber (GADF), a grape pomace-derived dietary fiber matrix naturally rich in high molecular weight non-extractable polyphenols, modulates barrier integrity, through proliferation/cell cycle [...] Read more.
The colonic epithelium renews rapidly and must balance proliferation with apoptosis to preserve barrier integrity. We investigated whether grape antioxidant dietary fiber (GADF), a grape pomace-derived dietary fiber matrix naturally rich in high molecular weight non-extractable polyphenols, modulates barrier integrity, through proliferation/cell cycle and apoptosis. To gain mechanistic insight, we examined the role of heat-shock proteins (Hsps), and AMP-activated protein kinase (AMPK)–mTOR–lipid-metabolism signaling in healthy proximal colon. Male Wistar rats received either a cellulose-based control diet or an isoenergetic diet where cellulose was replaced with 5% GADF for four weeks. Morphometric analysis, immunohistochemistry, Western blotting, TUNEL, and caspase activity assays quantified cell cycle, apoptotic, Hsps, and metabolic pathways. GADF strengthened the epithelial barrier, increasing goblet cells, occludin, and ZO-1, while reducing crypt depth. Proliferation was suppressed, as indicated by reduced PCNA, cyclins E and D1, and higher p-p53Ser392, p21Cip1/Waf1, and p27Kip1 levels, consistent with G1 arrest. Apoptosis was attenuated, with increased mitochondrial Bcl-2/Bax and Bcl-xL/Bax ratios, lower cytosolic cytochrome c and apoptosis-inducing factor (AIF), and reduced caspase-9 and caspase-3 activities. Hsp27, but not Hsp70, was selectively induced. GADF activated AMPK and p-Raptor, enhanced ACC1 phosphorylation and CPT1, and supported a shift toward fatty acid β-oxidation. Correlation analysis revealed a strong association between Hsp27 and p-p53Ser392, suggesting potential links between barrier proteins and metabolic pathways. In conclusion, GADF preserves barrier integrity and redirects metabolism via AMPK–Hsp27 signaling, thereby promoting colonic homeostasis. These findings highlight grape pomace as a sustainable source of functional ingredients for nutritional strategies to reinforce epithelial defenses and reduce disease risk. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

41 pages, 7702 KB  
Article
Valorization of Olive Leaf Extract via Tailored Liposomal Carriers: Comparative Analysis of Physicochemical Features, Antioxidant Capacity, and Stability
by Jovan Baljak, Dragana Dekanski, Andrea Pirković, Ninoslav Mitić, Aleksandar Rašković, Nebojša Kladar and Aleksandra A. Jovanović
Pharmaceuticals 2025, 18(11), 1639; https://doi.org/10.3390/ph18111639 - 30 Oct 2025
Viewed by 286
Abstract
Background/Objectives: Olive leaf (Olea europaea L.), a by-product of olive oil production, is rich in bioactive phenolics but limited in application due to poor solubility and stability. To improve their bioavailability, this study presents a comparative encapsulation strategy using three phospholipid-based [...] Read more.
Background/Objectives: Olive leaf (Olea europaea L.), a by-product of olive oil production, is rich in bioactive phenolics but limited in application due to poor solubility and stability. To improve their bioavailability, this study presents a comparative encapsulation strategy using three phospholipid-based liposomal systems (AL, PG90, and PH90) loaded with ethanolic olive leaf extract. Methods: Liposomes were characterized by physicochemical parameters, encapsulation efficiency (EE), antioxidant activity, morphology, release kinetics under simulated physiological conditions, and 60-day stability. To the best of our knowledge, this is the first direct comparison of AL, PG90, and PH90 matrices for olive leaf extract encapsulation. Results: HPLC and GC-MS confirmed successful encapsulation, with oleuropein showing the highest EE (up to 76.18%). PH90 favored retention of non-polar triterpenes, while AL and PG90 preferentially encapsulated polar flavonoid glycosides. FT-IR analysis verified extract integration into phospholipid bilayers. Antioxidant activity remained high in all loaded formulations, with negligible activity in empty liposomes. Extract-loaded systems exhibited reduced particle size, higher viscosity, and more negative electrophoretic mobility, enhancing colloidal stability. PG90 liposomes displayed the most stable mobility profile over 60 days. Transmission electron microscopy and nanoparticle tracking analysis revealed formulation-dependent vesicle morphology and concentration profiles. Release studies demonstrated significantly prolonged polyphenol diffusion from PG90 liposomes compared to the free extract. Conclusions: Phospholipid composition critically governs encapsulation selectivity, stability, and release behavior. Tailored liposomal systems offer a promising strategy to enhance the stability and delivery of olive leaf polyphenols, supporting their application in bioactive delivery platforms. Full article
(This article belongs to the Special Issue Sustainable Approaches and Strategies for Bioactive Natural Compounds)
Show Figures

Figure 1

24 pages, 4484 KB  
Article
Optimization of Polyphenol-Rich Extracts from Defatted Avocado Peel and Seed Residues Using Ultrasound-Assisted RSM: Antioxidant Potential and Valorization Prospects
by Argyro Petrantonaki, Vasiliki-Ioanna Theodoropoulou, Martha Mantiniotou, Vassilis Athanasiadis, Eleni Bozinou and Stavros I. Lalas
Antioxidants 2025, 14(11), 1293; https://doi.org/10.3390/antiox14111293 - 28 Oct 2025
Viewed by 385
Abstract
It is well known that a significant amount of processed avocado fruit, specifically peel and seed, is treated as waste. During this study, these by-products were valorized through a two-step approach combining lipid profiling and optimized antioxidant extraction. Initially, oil was extracted and [...] Read more.
It is well known that a significant amount of processed avocado fruit, specifically peel and seed, is treated as waste. During this study, these by-products were valorized through a two-step approach combining lipid profiling and optimized antioxidant extraction. Initially, oil was extracted and analyzed via GC-FID, revealing distinct fatty acid compositions: peel oil was rich in oleic (32.0%), linoleic (21.9%), and α-linolenic acids (9.7%), while seed oil was dominated by oleic (48.0%) and palmitic acids (20.7%), with moderate linoleic content (24.0%). Following defatting, the dried residues were subjected to ultrasound-assisted extraction, which was optimized by response surface methodology (RSM) to maximize the recovery of antioxidant-rich fractions. Peel extracts exhibited the highest total polyphenolic content (105.98 mg GAE/g), FRAP (673.89 μmol AAE/g), and ascorbic acid (17.9 mg/g), while seed extracts showed superior DPPH activity (1071.31 μmol AAE/g). Regression modeling identified optimal conditions for each antioxidant metric, highlighting matrix-specific bioactivity. The combined analysis of lipid and polar fractions underscores the multifunctional potential of avocado residues as sustainable sources of natural antioxidants. These findings support their application in food, cosmetic, and nutraceutical formulations, contributing to circular bioeconomy strategies. Full article
(This article belongs to the Special Issue Bioactive Antioxidants from Agri-Food Wastes)
Show Figures

Graphical abstract

23 pages, 2805 KB  
Article
Microfluidic Design of Ultradeformable Liposomes for Advanced Skin Delivery of Stellaria media Phytocomplex
by Luigi Ciriolo, Nicola d’Avanzo, Antonia Mancuso, Maria Chiara Cristiano, Antonella Barone, Rosario Mare, Anna Maria Tolomeo, Alexandra I. Comaniciu, Georgiana Nitulescu, Octavian Tudorel Olaru, Felisa Cilurzo, Donatella Paolino and Massimo Fresta
Pharmaceutics 2025, 17(11), 1390; https://doi.org/10.3390/pharmaceutics17111390 - 27 Oct 2025
Viewed by 451
Abstract
Background/Objectives: Ultradeformable liposomes represent an established platform for topical delivery of antioxidant compounds, thanks to their structural flexibility and ability to enhance skin permeation, but standardized manufacturing protocols are still lacking. This study presents a microfluidic-based strategy for the scalable production of ultradeformable [...] Read more.
Background/Objectives: Ultradeformable liposomes represent an established platform for topical delivery of antioxidant compounds, thanks to their structural flexibility and ability to enhance skin permeation, but standardized manufacturing protocols are still lacking. This study presents a microfluidic-based strategy for the scalable production of ultradeformable liposomes encapsulating Stellaria media extract, a polyphenol-rich phytocomplex with strong antioxidant activity. Methods: Liposomes were produced with a GMP-like microfluidic platform enabling fine control of formulation parameters and high reproducibility under conditions directly transferable to continuous manufacturing. Process optimization tested different total flow rates. Characterization included particle size and distribution, encapsulation efficiency, colloidal stability and kinetics of release. Permeation was assessed with Franz diffusion cells using human stratum corneum and epidermidis membranes. Results: Optimal conditions were a flow rate ratio of 3:1 and a total flow rate of 7 mL/min, yielding ultradeformable liposomes with a mean size of 89 ± 1 nm, a polydispersity index < 0.25, and high encapsulation efficiency (72%). The resulting formulation showed long-term colloidal stability and controlled release. Diffusion studies demonstrated a 2-fold increase in permeation rate compared to the free extract. Conclusions: These findings highlight the potential of microfluidics as a robust and scalable technology for the industrial production of ultradeformable liposomes designed to enhance the dermal delivery of bioactive phytocomplex for both pharmaceutical and cosmeceutical applications. Full article
Show Figures

Graphical abstract

22 pages, 2558 KB  
Article
Beneficial Effects of Grape Pomace Extract on Hyperglycemia, Dyslipidemia, and Oxidative Stress in Experimental Diabetes Mellitus
by Mariya Sabadashka, Dariya Chala, Grzegorz Chrzanowski, Jan Cichoński and Nataliia Sybirna
Molecules 2025, 30(21), 4183; https://doi.org/10.3390/molecules30214183 - 25 Oct 2025
Viewed by 376
Abstract
Grape pomace, a polyphenol-rich byproduct of wine production, represents a promising source of bioactive compounds for managing diabetes and its complications. This study evaluates the effect of a novel grape pomace extract on carbohydrate and lipid metabolism, and oxidative stress in type 1 [...] Read more.
Grape pomace, a polyphenol-rich byproduct of wine production, represents a promising source of bioactive compounds for managing diabetes and its complications. This study evaluates the effect of a novel grape pomace extract on carbohydrate and lipid metabolism, and oxidative stress in type 1 diabetes mellitus. Diabetes was induced in male Wistar rats by a single intraperitoneal injection of streptozotocin. Starting on day 14 post-induction, rats received oral grape pomace extract at a dose of 45 mg of polyphenols/kg body weight daily for 14 days. On day 28 of the experiment, blood plasma was collected. One-way ANOVA with post hoc testing revealed a hypoglycemic effect of grape pomace extract, as evidenced by reduced fasting blood glucose and improved postprandial glycemic responses. The extract also ameliorated dyslipidemia, lowering total cholesterol and triglycerides while increasing high-density lipoprotein levels and paraoxonase activity in plasma of diabetic rats. Antioxidant defenses were enhanced, as indicated by elevated superoxide dismutase, catalase, and glutathione peroxidase activities, along with reduced protein carbonyls, TBA-reactive products, and lipofuscin in blood plasma following extract administration. These findings demonstrate the metabolic and antioxidant potential of grape pomace polyphenols, although further investigations are needed to elucidate the underlying molecular mechanisms. Full article
(This article belongs to the Special Issue Bioactive Molecules in Foods: From Sources to Functional Applications)
Show Figures

Graphical abstract

34 pages, 10274 KB  
Article
Phyto-Assisted Synthesis and Investigation of Zinc Oxide Nanoparticles for Their Anti-Aging, Sun Protection and Antibacterial Activity
by Harshad S. Kapare, Mayuri Bhosale, Pawan Karwa, Deepak Kulkarni, Ritesh Bhole and Sonali Labhade
Cosmetics 2025, 12(6), 238; https://doi.org/10.3390/cosmetics12060238 - 24 Oct 2025
Viewed by 350
Abstract
Objective: This study aimed to develop eco-friendly zinc oxide nanoparticles (ZnO NPs) using Punica granatum (pomegranate) peel extract and to evaluate their antioxidant, antimicrobial, and photoprotective potential. Method: ZnO NPs were synthesized via a green chemistry route employing polyphenol- and flavonoid-rich peel extract [...] Read more.
Objective: This study aimed to develop eco-friendly zinc oxide nanoparticles (ZnO NPs) using Punica granatum (pomegranate) peel extract and to evaluate their antioxidant, antimicrobial, and photoprotective potential. Method: ZnO NPs were synthesized via a green chemistry route employing polyphenol- and flavonoid-rich peel extract as reducing and stabilizing agents. The nanoparticles were characterized using FTIR, SEM, XRD, DSC, DLS, and UV–Vis spectroscopy. Biological activities were assessed through in vitro assays including antioxidant (DPPH), anti-collagenase, anti-elastase, anti-tyrosinase, antimicrobial activity, and SPF determination. In vivo photoprotective efficacy was further evaluated in UVB-irradiated rat models, with histological analysis to confirm structural skin changes. Results: The optimized ZnO NPs exhibited an average particle size of ~194 nm with a zeta potential of −18.2 mV, indicating good stability. They demonstrated notable antioxidant activity (DPPH IC50 = 52.91 µg/mL), substantial tyrosinase inhibition (72% at 200 µg/mL), and antibacterial activity with inhibition zones up to 19 mm against S. aureus and 17 mm against E. coli. The nanoparticles also showed excellent UV absorption, with an SPF value of 29.8, exceeding the FDA threshold for effective sun protection. In vivo, topical application of ZnO NPs in UVB-exposed rats led to a 69% reduction in epidermal thickness and preservation of collagen fibers compared with UV controls. Conclusions: These findings confirm that P. granatum peel extract–mediated ZnO NPs possess significant antioxidant, antimicrobial, and photoprotective activities. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

37 pages, 3832 KB  
Article
Ergosterol-Enriched Liposomes with Post-Processing Modifications for Serpylli Herba Polyphenol Delivery: Physicochemical, Stability and Antioxidant Assessment
by Aleksandra A. Jovanović, Predrag Petrović, Andrea Pirković, Ninoslav Mitić, Francesca Giampieri, Maurizio Battino and Dragana Dekanski
Pharmaceutics 2025, 17(11), 1362; https://doi.org/10.3390/pharmaceutics17111362 - 22 Oct 2025
Viewed by 289
Abstract
Background/Objectives: In the present study, ergosterol, a novel natural and animal-free alternative sterol, was investigated, and its effects on liposomal properties were assessed. Importantly, ergosterol’s fungal origin offers a sustainable substitute for cholesterol, aligning with current trends in natural and vegan-friendly formulations. Methods: [...] Read more.
Background/Objectives: In the present study, ergosterol, a novel natural and animal-free alternative sterol, was investigated, and its effects on liposomal properties were assessed. Importantly, ergosterol’s fungal origin offers a sustainable substitute for cholesterol, aligning with current trends in natural and vegan-friendly formulations. Methods: This study explored the effect of ergosterol content (10 mol% vs. 20 mol%) on the encapsulation efficiency (EE), physical properties, morphology, antioxidant activity, lipid peroxidation, and storage stability of Serpylli herba extract-loaded liposomes. Results: Liposomes with 20 mol% ergosterol exhibited significantly higher EE (~81.0%) than those with 10 mol% (~75.6%), along with improved resistance to UV- and freeze-drying-induced reduction in EE. Extract loading resulted in a reduced particle size, indicating favorable bilayer interactions, whereas lyophilization increased size and polydispersity, reflecting structural destabilization. However, 20 mol% ergosterol improved vesicle uniformity and surface charge stability, suggesting enhanced bilayer rigidity. Zeta potential and mobility trends supported improved colloidal stability in ergosterol-enriched systems under all tested conditions. Over 28 days at 4 °C, non-treated extract-loaded liposomes with a higher ergosterol content demonstrated enhanced vesicle integrity. During storage, UV-treated and lyophilized liposomes with 20 mol% ergosterol maintained more consistent size and charge profiles, indicating better membrane reorganization and stability. Nanoparticle tracking analysis demonstrated that ergosterol content modulates vesicle concentration in a dose-dependent manner, highlighting the role of membrane composition in liposome formation and potential dose uniformity. Transmission electron microscopy analysis of extract-loaded liposomes demonstrated well-defined vesicles with intact structural features. A study in a Franz diffusion cell revealed that ergosterol-enriched liposomes significantly delayed polyphenol release compared to free extract, confirming their potential for controlled delivery. Antioxidant activity was preserved in all liposomal systems, with higher ergosterol content supporting improved ABTS radical scavenging potential after stress treatments. FRAP assay results remained stable across formulations, with no major differences between sterol levels. TBARS analysis demonstrated that Serpylli herba extract significantly reduced UV-induced lipid peroxidation in ergosterol-enriched liposomes, underscoring its protective antioxidant role. Conclusions: Higher ergosterol content enhanced liposomal performance in terms of encapsulation, structural resilience, and antioxidant retention, particularly under UV and lyophilization stress. Ergosterol-containing liposomes exhibited improved stability, favorable particle size distribution, and high encapsulation efficiency, while maintaining the antioxidant functionality of the incorporated Serpylli herba polyphenol-rich extract. These findings highlight the potential of ergosterol-based liposomes as robust carriers for bioactive compounds in pharmaceutical and nutraceutical applications that align with current trends in green and vegan-friendly formulations. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

14 pages, 1585 KB  
Article
Antioxidant-Rich Clitoria ternatea Flower Extract Promotes Proliferation and Migration of Human Corneal Epithelial Cells
by Karthini Devi Rajan, Nahdia Afiifah Abdul Jalil, Taty Anna Kamarudin and Fairus Ahmad
Plants 2025, 14(20), 3216; https://doi.org/10.3390/plants14203216 - 20 Oct 2025
Viewed by 352
Abstract
A corneal abrasion results from the disruption or loss of cells in the corneal epithelium. If inadequately treated, it can compromise visual clarity. The wound healing process of a corneal abrasion involves epithelial migration, proliferation and adhesion. Clitoria ternatea flower extract (CTE) is [...] Read more.
A corneal abrasion results from the disruption or loss of cells in the corneal epithelium. If inadequately treated, it can compromise visual clarity. The wound healing process of a corneal abrasion involves epithelial migration, proliferation and adhesion. Clitoria ternatea flower extract (CTE) is rich in flavonoids, anthocyanins and other bioactive compounds. It has antioxidant, anti-inflammatory and wound-healing properties. This study explores the potential of CTE to be used as a natural supplement to improve corneal wound healing. Phytochemical profiling via LC–MS identified a total of 51 distinct bioactive constituents. The anthocyanin content, quantified in terms of cyanidin-3-glucoside equivalent, was quantified at 33.06 mg per gram of extract. The extract exhibited 33.8% DPPH radical scavenging activity and a total polyphenol content equivalent to 24.14 mg/g gallic acid. Human telomerase-immortalized corneal epithelial (hTCEpi) cells maintained in keratinocyte basal medium were utilized to determine cytotoxicity and wound-healing effects. The optimal extract concentration of 0.08 mg/mL, quantified via MTT assay, resulting in enhanced cell viability. Scratch assays demonstrated a higher percentage of wound closure in the CTE-treated group at 6 and 12 h relative to the untreated group, with statistical significance (p < 0.05). The gene expressions of CK3 and Cx43, quantified via qRT-PCR, showed no significant differences between groups. However, within the CTE-treated group, CK3 expression increased at 12 h relative to 0 h and 6 h, and Cx43 expression rose significantly at 12 h compared with 0 h (p < 0.05). Immunofluorescence confirmed positive protein expression of both markers. These findings suggest that CTE possesses potent antioxidant properties and promotes corneal epithelial wound healing through upregulation of CK3 and Cx43 in vitro. Full article
(This article belongs to the Special Issue Phytochemistry and Pharmacological Properties of Medicinal Plants)
Show Figures

Figure 1

16 pages, 976 KB  
Article
Immunomodulatory Effect of Raspberry (Rubus idaeus L.) Fruit Extracts on Activated Macrophages and Dysfunctional Vascular Endothelial Cells
by Katarzyna Kowalska, Radosław Dembczyński and Anna Olejnik
Nutrients 2025, 17(20), 3257; https://doi.org/10.3390/nu17203257 - 16 Oct 2025
Viewed by 396
Abstract
Background: Growing evidence highlights the beneficial effects of flavonoids, including anthocyanins, as key components in reducing cardiovascular risk, and emphasizes that incorporating anthocyanin-rich fruits into the daily diet significantly impacts public health. Methods: The effect of bioactive polyphenols from raspberry fruit (RBF) on [...] Read more.
Background: Growing evidence highlights the beneficial effects of flavonoids, including anthocyanins, as key components in reducing cardiovascular risk, and emphasizes that incorporating anthocyanin-rich fruits into the daily diet significantly impacts public health. Methods: The effect of bioactive polyphenols from raspberry fruit (RBF) on molecular pathways in inflammation was studied in activated RAW 264.7 macrophages and their protective potential against endothelial dysfunction was analyzed using TNF-α-induced human umbilical vein endothelial cells (HUVECs). Results: The results have shown that RBF extract, along with its anthocyanin and polyphenol fractions, has a significant anti-inflammatory effect in macrophage cell culture by inhibiting the LPS-induced expression of pro-inflammatory genes, including IL-6, IL-1β, TNF-α, and NF-κB. Moreover, RBF and both fractions have demonstrated a protective effect on endothelial function by decreasing the expression of several inflammation-related genes and adhesion molecules, such as IL-6, IL-1β, VCAM-1, ICAM-1, and SELE, in TNF-α-induced HUVECs. Conclusions: The consumption of RBF and/or polyphenol-rich extracts may help prevent the onset of early atherosclerosis. This is attributed to their ability to improve inflammation status and enhance vascular endothelial function. Given the strong anti-inflammatory properties of RBF, incorporating them into a daily diet could significantly reduce the risk of non-communicable diseases related to inflammation. Full article
Show Figures

Figure 1

18 pages, 1775 KB  
Article
The Effect of Acid Catalysis on Hydroxycinnamate Recovery from Corn Stover Using Hydrothermal and Organosolv Treatments
by Anna Fantidou, Antony Sarris, Ioanna Tsaousi, Maria Tsela, Theodoros Chatzimitakos and Dimitris P. Makris
Environments 2025, 12(10), 379; https://doi.org/10.3390/environments12100379 - 15 Oct 2025
Viewed by 324
Abstract
Corn stover (CS) is a highly abundant type of agricultural biowaste, largely composed of lignocellulosic material. CS may be a particularly rich pool of hydroxycinnamates, represented primarily by p-coumaric acid and ferulic acid; yet, these compounds are bound onto the lignocellulosic matrix, [...] Read more.
Corn stover (CS) is a highly abundant type of agricultural biowaste, largely composed of lignocellulosic material. CS may be a particularly rich pool of hydroxycinnamates, represented primarily by p-coumaric acid and ferulic acid; yet, these compounds are bound onto the lignocellulosic matrix, and their release requires an appropriate acid and/or alkaline catalysis. This being the case, this study herein aimed to develop an effective process to boost hydroxycinnamate recovery by employing acid-catalyzed hydrothermal and organosolv treatments. To this end, oxalic acid was tested as a benign, natural acid catalyst, along with the well-examined sulfuric acid. A kinetic assay showed that both the acid catalyst and the use of an organic solvent (ethanol) may greatly impact the rate and level of polyphenol recovery. Under optimized conditions, determined by implementing response surface methodology, it was demonstrated that the organosolv treatment was far more effective than the hydrothermal one, with regard to total polyphenol recovery, while the oxalic acid catalysis was equally efficient as the sulfuric acid one. This treatment afforded 17.8 ± 2.3 mg gallic acid equivalents per g of dry CS mass. However, a thorough insight into the polyphenolic composition of the extracts produced revealed that hydrothermal treatment may enable, apart from p-coumaric and ferulic acid release, the formation of a compound tentatively identified as an ester of p-coumaric acid with a pentose. Furthermore, it was shown that sulfuric acid-catalyzed organosolv treatment provided almost 25 and 34% higher yields for p-coumaric and ferulic acid, respectively, but it strongly inhibited p-coumaric acid-pentose ester formation. These compositional differences appeared to impact the antioxidant activity of the corresponding extracts. It was concluded that the oxalic acid-catalyzed ethanol organosolv treatment of CS may have important potential in a biorefinery context, but improvements are required to further enhance treatment performance. This would lead to replacing corrosive catalysts, such as sulfuric acid, with benign ones, thereby establishing a fully sustainable process for the recovery of bioactive phytochemicals. Full article
(This article belongs to the Special Issue Thermochemical Treatments of Biomass, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop