Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (178)

Search Parameters:
Keywords = restoration design phase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2284 KiB  
Article
Rhizobacteria’s Effects on the Growth and Competitiveness of Solidago canadensis Under Nutrient Limitation
by Zhi-Yun Huang, Ying Li, Hu-Anhe Xiong, Misbah Naz, Meng-Ting Yan, Rui-Ke Zhang, Jun-Zhen Liu, Xi-Tong Ren, Guang-Qian Ren, Zhi-Cong Dai and Dao-Lin Du
Agriculture 2025, 15(15), 1646; https://doi.org/10.3390/agriculture15151646 - 30 Jul 2025
Viewed by 169
Abstract
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere [...] Read more.
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere of the invasive weed Solidago canadensis. We assessed their nitrogen utilization capacity and indoleacetic acid (IAA) production capabilities to evaluate their ecological functions. Our three-stage experimental design encompassed strain promotion, nutrient stress, and competition phases. Bacillus sp. ScRB44 demonstrated robust IAA production and significantly improved the nitrogen utilization efficiency, significantly enhancing S. canadensis growth, especially under nutrient-poor conditions, and promoting a shift in biomass allocation toward the roots, thereby conferring a competitive advantage over native species. Conversely, Pseudomonas sp. ScRB22 exhibited limited functional activity and a negligible impact on plant performance. These findings underscore that the ecological impact of rhizosphere bacteria on invasive weeds is closely linked to their specific growth-promoting functions. By enhancing stress adaptation and optimizing resource allocation, certain microorganisms may facilitate the establishment of invasive weeds in adverse environments. This study highlights the significance of microbial functional traits in invasion ecology and suggests novel approaches for microbiome-based invasive weed management, with potential applications in agricultural soil health improvement and ecological restoration. Full article
(This article belongs to the Topic Microbe-Induced Abiotic Stress Alleviation in Plants)
Show Figures

Figure 1

17 pages, 1111 KiB  
Article
Evaluation of the Influence of Intervention Tools Used in Nutrition Education Programs: A Mixed Approach
by Luca Muzzioli, Costanza Gimbo, Maria Pintavalle, Silvia Migliaccio and Lorenzo M. Donini
Nutrients 2025, 17(15), 2460; https://doi.org/10.3390/nu17152460 - 28 Jul 2025
Viewed by 203
Abstract
Background: In a global panorama marked by a progressive rise in obesity, metabolic syndrome, and chronic non-communicable disease prevalence, nutrition education (NE) might play a pivotal role in restoring adoption and strengthening adherence to dietary patterns that protect human health. Therefore, the [...] Read more.
Background: In a global panorama marked by a progressive rise in obesity, metabolic syndrome, and chronic non-communicable disease prevalence, nutrition education (NE) might play a pivotal role in restoring adoption and strengthening adherence to dietary patterns that protect human health. Therefore, the primary purpose of this work is to review the existing scientific literature studying NE programs aimed at schoolchildren in the decade 2014–2024 and evaluate the effectiveness of intervention tools. Methods: During the first phase of this research, a qualitative analysis was conducted to track similarity in intervention tools and strategies used in nutrition education programs. In the second phase, a quantitative analysis was carried out, extracting common parameters among studies and assessing their potential influence in improving adherence to the Mediterranean diet (MD). Results: A high degree of heterogeneity was observed in educational program designs and intervention tools, which were usually not properly described and justified. All studies that measured adherence to the MD registered an improvement after the intervention, in some cases even higher than 10%. However, this study found no relationship between common parameters (i.e., number of formal tools, number of non-formal tools, lesson duration, and program length) used in NE and the improvement in students’ adherence to MD. Conclusions: This research has contributed to outlining a general framework of NE and to promoting a systematic approach in this research field. Full article
(This article belongs to the Special Issue Nutrition 3.0: Between Tradition and Innovation)
Show Figures

Figure 1

20 pages, 3716 KiB  
Article
Modeling and Validation of a Spring-Coupled Two-Pendulum System Under Large Free Nonlinear Oscillations
by Borislav Ganev, Marin B. Marinov, Ivan Kralov and Anastas Ivanov
Machines 2025, 13(8), 660; https://doi.org/10.3390/machines13080660 - 28 Jul 2025
Viewed by 228
Abstract
Studying nonlinear oscillations in mechanical systems is fundamental to understanding complex dynamic behavior in engineering applications. While classical analytical methods remain valuable for systems with limited complexity, they become increasingly inadequate when nonlinearities are strong and geometrically induced, as in the case of [...] Read more.
Studying nonlinear oscillations in mechanical systems is fundamental to understanding complex dynamic behavior in engineering applications. While classical analytical methods remain valuable for systems with limited complexity, they become increasingly inadequate when nonlinearities are strong and geometrically induced, as in the case of large-amplitude oscillations. This paper presents a combined numerical and experimental investigation of a mechanical system composed of two coupled pendulums, exhibiting significant nonlinear behavior due to elastic deformation throughout their motion. A mathematical model of the system was developed using the MatLab/Simulink ver.6.1 environment, considering gravitational, inertial, and nonlinear elastic restoring forces. One of the major challenges in accurately modeling such systems is accurately representing damping, particularly in the absence of dedicated dampers. In this work, damping coefficients were experimentally identified through decrement measurements and incorporated into the simulation model to improve predictive accuracy. The simulation outputs, including angular displacements, velocities, accelerations, and phase trajectories over time, were validated against experimental results obtained via high-precision inertial sensors. The comparison shows a strong correlation between numerical and experimental data, with minimal relative errors in amplitude and frequency. This research represents the first stage of a broader study aimed at analyzing forced and parametrically excited oscillations. Beyond validating the model, the study contributes to the design of a robust experimental framework suitable for further exploration of nonlinear dynamics. The findings have practical implications for the development and control of mechanical systems subject to dynamic loads, with potential applications in automation, vibration analysis, and system diagnostics. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

29 pages, 8280 KiB  
Article
Constructing an Ecological Spatial Network Optimization Framework from the Pattern–Process–Function Perspective: A Case Study in Wuhan
by An Tong, Yan Zhou, Tao Chen and Zihan Qu
Remote Sens. 2025, 17(15), 2548; https://doi.org/10.3390/rs17152548 - 22 Jul 2025
Viewed by 410
Abstract
Under the continuous disturbance of ecosystems driven by urbanization, landscape fragmentation and the disruption of ecological processes and functions are key challenges in optimizing ecological networks (EN). This study aims to examine the spatiotemporal evolution of topological patterns, ecological processes, and ecosystem services [...] Read more.
Under the continuous disturbance of ecosystems driven by urbanization, landscape fragmentation and the disruption of ecological processes and functions are key challenges in optimizing ecological networks (EN). This study aims to examine the spatiotemporal evolution of topological patterns, ecological processes, and ecosystem services (ES) in Wuhan from the “pattern–process–function” perspective. To overcome the lag in research concerning the coupling of ecological processes, functions, and spatial patterns, we explore the long-term dynamic evolution of ecosystem structure, process, and function by integrating multi-source data, including remote sensing, enabling comprehensive spatiotemporal analysis from 2000 to 2020. Addressing limitations in current EN optimization approaches, we integrate morphological spatial pattern analysis (MSPA), use circuit theory to identify EN components, and conduct spatial optimization accurately. We further assess the effectiveness of two scenario types: “pattern–function” and “pattern–process”. The results reveal a distinct “increase-then-decrease” trend in EN structural attributes: from 2000 to 2020, source areas declined from 39 (900 km2) to 37 (725 km2), while corridor numbers fluctuated before stabilizing at 89. Ecological processes and functions exhibited phased fluctuations. Among water-related indicators, water conservation (as a core function), and modified normalized difference water index (MNDWI, as a key process) predominantly drive positive correlations under the “pattern–function” and “pattern–process” scenarios, respectively. The “pattern–function” scenario strengthens core area connectivity (24% and 4% slower degradation under targeted/random attacks, respectively), enhancing resistance to general disturbances, whereas the “pattern–process” scenario increases redundancy in edge transition zones (21% slower degradation under targeted attacks), improving resilience to targeted disruptions. This complementary design results in a gradient EN structure characterized by core stability and peripheral resilience. This study pioneers an EN optimization framework that systematically integrates identification, assessment, optimization, and validation into a closed-loop workflow. Notably, it establishes a quantifiable, multi-objective decision basis for EN optimization, offering transferable guidance for green infrastructure planning and ecological restoration from a pattern–process–function perspective. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Landscape Ecology)
Show Figures

Figure 1

21 pages, 1808 KiB  
Article
The Effect of Semiorganic Iodine-Containing Compounds on the Antibiotic Susceptibility of Pathogenic Microorganisms
by Sabina T. Kenesheva, Seitzhan Turganbay, Ardak B. Jumagaziyeva, Gaukhar Askhatkyzy, Dana A. Askarova, Amir A. Azembayev, Alexandr I. Ilin, Oleg N. Reva and Tatyana A. Karpenyuk
Biomedicines 2025, 13(8), 1790; https://doi.org/10.3390/biomedicines13081790 - 22 Jul 2025
Viewed by 321
Abstract
Objectives: The global rise in multidrug resistance underscores the urgent need for the development of novel and effective antimicrobial agents. Semi-organic iodine-containing complexes, owing to their unique properties, low likelihood of resistance development, and stability under various conditions, represent a promising avenue for [...] Read more.
Objectives: The global rise in multidrug resistance underscores the urgent need for the development of novel and effective antimicrobial agents. Semi-organic iodine-containing complexes, owing to their unique properties, low likelihood of resistance development, and stability under various conditions, represent a promising avenue for the design of new therapeutic strategies. This study describes the synthesis of semi-organic iodine-containing complexes and the in vitro evaluation of their impact on antibiotic susceptibility modulation in the multidrug-resistant pathogenic microorganisms S. aureus and E. coli. Methods: The physicochemical properties of the semiorganic compounds were characterized using UV-Vis spectroscopy, potentiometric, and titrimetric methods. Evaluation of antimicrobial activity was obtained according to CLSI protocols. The impact of semiorganic compounds on the in vitro susceptibility of MDR strains was evaluated by the disk diffusion method. Results: This study evaluated the effects of iodine-containing complexes KC-270 and KC-271 on the antibiotic susceptibility of Staphylococcus aureus BAA-39 and Escherichia coli BAA-196. The most pronounced effect was observed with KC-270 applied during the lag phase, which enhanced the activity of several antibiotics and, in some cases, restored susceptibility. KC-271 exhibited a weaker and more limited impact. The findings suggest that KC-270 has potential as a modulator of antibiotic susceptibility, particularly when administered at early stages of bacterial growth. Conclusions: The results support the ability of amino acid-based iodine coordination compounds to influence the antibiotic susceptibility of pathogenic bacteria, highlighting their potential as adjuvant agents to improve the effectiveness of current antimicrobial therapies. However, although changes in susceptibility were detected, neither compound fully eliminated resistance in the multidrug-resistant strains, indicating the necessity for further research into their mechanisms of action and possible synergistic interactions with antibiotics. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

13 pages, 8971 KiB  
Case Report
The Role of Digital Workflow in Creating a New, Esthetic and Functional Smile in a Periodontally Compromised Patient: A Case Report
by Carlotta Cacciò, Marco Tallarico, Aurea Immacolata Lumbau, Francesco Mattia Ceruso and Milena Pisano
Reports 2025, 8(3), 105; https://doi.org/10.3390/reports8030105 - 8 Jul 2025
Viewed by 416
Abstract
Background and Clinical Significance: Prosthetic rehabilitation in the aesthetic zone of periodontally compromised patients presents a complex clinical challenge, requiring a careful coordination of aesthetic, functional, and biological demands. This case highlights the benefits of digital dentistry, interdisciplinary collaboration, and regular maintenance in [...] Read more.
Background and Clinical Significance: Prosthetic rehabilitation in the aesthetic zone of periodontally compromised patients presents a complex clinical challenge, requiring a careful coordination of aesthetic, functional, and biological demands. This case highlights the benefits of digital dentistry, interdisciplinary collaboration, and regular maintenance in achieving long-term success in complex rehabilitations of periodontally compromised patients. Case Presentation: This case report describes the digital minimally invasive rehabilitation of a 39-year-old male patient with Stage III periodontitis, occlusal discrepancies, tooth mobility, and an interincisal diastema. A fully digital workflow—including intraoral scanning, aesthetic previewing, and mandibular motion analysis—was employed to guide diagnosis, treatment planning, and prosthetic execution. Conservative tooth preparations using a biologically oriented approach (BOPT) were combined with customised provisional restorations to support soft tissue conditioning and functional control throughout the provisional phases. Mandibular motion tracking facilitated the design of a personalised anterior guidance to improve occlusion and correct the deep bite. The interincisal diastema was initially maintained then closed during the advanced phase of treatment based on aesthetic simulations and patient preference. One unplanned endodontic treatment was required during the provisional phase, but no other complications occurred. Conclusions: At the four-year follow-up, the patient demonstrated stable periodontal and occlusal conditions, improved clinical indices, and high satisfaction with the aesthetic outcome. Full article
(This article belongs to the Section Dentistry/Oral Medicine)
Show Figures

Figure 1

17 pages, 671 KiB  
Review
Riverscape Nature-Based Solutions and River Restoration: Common Points and Differences
by Costanza Carbonari and Luca Solari
Sustainability 2025, 17(13), 6108; https://doi.org/10.3390/su17136108 - 3 Jul 2025
Viewed by 360
Abstract
River restoration and nature-based solutions pertaining to the riverscape are measures frequently confused, but indeed they are not identical; they present both differences and common points, and only in some cases and following precise criteria, interventions can be considered both restoration and Nature-based [...] Read more.
River restoration and nature-based solutions pertaining to the riverscape are measures frequently confused, but indeed they are not identical; they present both differences and common points, and only in some cases and following precise criteria, interventions can be considered both restoration and Nature-based Solution (NbS) projects. In other words, there is an intersection between the two concepts, both in a theoretical framework and in practical applications. The understanding of their distinctions and common points is important because it affects the objectives and implementation of measures, complying with a wide spectrum of relative importance of ecological goals and ecosystem services delivery, different critical issues for effective implementation, and different spatial scales. We provide a theoretical analysis of some simple criteria to identify interventions as riverscape NbS, river restoration measures, or both. We illustrate these ideas by means of three case studies of projects carried out in different European riverine environments: the real-world cases exemplify, respectively, pure river restoration projects, mere riverscape NbS, and finally, interventions representing both NbS and ecosystem restoration. These examples allow us to clearly show measures with a small number of goals, even a single one, and, on the other hand, multipurpose measures. We also illustrate the prioritization of objectives and their implications in planning and design, implementation phases, and stakeholders’ involvement. Particular attention is devoted to effective monitoring and assessment, considering that the quantitative evaluation of measures’ impacts is a difficult and resource-demanding task. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

20 pages, 2149 KiB  
Article
Accelerating Facial Image Super-Resolution via Sparse Momentum and Encoder State Reuse
by Kerang Cao, Na Bao, Shuai Zheng, Ye Liu and Xing Wang
Electronics 2025, 14(13), 2616; https://doi.org/10.3390/electronics14132616 - 28 Jun 2025
Viewed by 412
Abstract
Single image super-resolution (SISR) aims to reconstruct high-quality images from low-resolution inputs, a persistent challenge in computer vision with critical applications in medical imaging, satellite imagery, and video enhancement. Traditional diffusion model-based (DM-based) methods, while effective in restoring fine details, suffer from computational [...] Read more.
Single image super-resolution (SISR) aims to reconstruct high-quality images from low-resolution inputs, a persistent challenge in computer vision with critical applications in medical imaging, satellite imagery, and video enhancement. Traditional diffusion model-based (DM-based) methods, while effective in restoring fine details, suffer from computational inefficiency due to their iterative denoising process. To address this, we introduce the Sparse Momentum-based Faster Diffusion Model (SMFDM), designed for rapid and high-fidelity super-resolution. SMFDM integrates a novel encoder state reuse mechanism that selectively omits non-critical time steps during the denoising phase, significantly reducing computational redundancy. Additionally, the model employs a sparse momentum mechanism, enabling robust representation capabilities while utilizing only a fraction of the original model weights. Experiments demonstrate that SMFDM achieves an impressive 71.04% acceleration in the diffusion process, requiring only 15% of the original weights, while maintaining high-quality outputs with effective preservation of image details and textures. Our work highlights the potential of combining sparse learning and efficient sampling strategies to enhance the practical applicability of diffusion models for super-resolution tasks. Full article
Show Figures

Figure 1

18 pages, 3798 KiB  
Article
Assessment of the Diagnostic Accuracy of Artificial Intelligence Software in Identifying Common Periodontal and Restorative Dental Conditions (Marginal Bone Loss, Periapical Lesion, Crown, Restoration, Dental Caries) in Intraoral Periapical Radiographs
by Wael I. Ibraheem, Saurabh Jain, Mohammed Naji Ayoub, Mohammed Ahmed Namazi, Amjad Ismail Alfaqih, Aparna Aggarwal, Abdullah A. Meshni, Ammar Almarghlani and Abdulkareem Abdullah Alhumaidan
Diagnostics 2025, 15(11), 1432; https://doi.org/10.3390/diagnostics15111432 - 4 Jun 2025
Viewed by 1259
Abstract
Objectives: The purpose of the study is to evaluate the diagnostic accuracy of artificial intelligence (AI) software in detecting a common set of periodontal and restorative conditions, including marginal bone loss, dental caries, periapical lesions, calculus, endodontic treatment, crowns, restorations, and open crown [...] Read more.
Objectives: The purpose of the study is to evaluate the diagnostic accuracy of artificial intelligence (AI) software in detecting a common set of periodontal and restorative conditions, including marginal bone loss, dental caries, periapical lesions, calculus, endodontic treatment, crowns, restorations, and open crown margins, using intraoral periapical radiographs. Additionally, the study will assess how this AI software influences the diagnostic accuracy of dentists with varying levels of experience in identifying these conditions. Methods: A total of three hundred digital IOPARs representing 1030 teeth were selected based on predetermined selection criteria. The parameters assessed included (a) calculus, (b) periapical radiolucency, (c) caries, (d) marginal bone loss, (e) type of restorative (filling) material, (f) type of crown retainer material, and (g) detection of open crown margins. Two oral radiologists performed the initial diagnosis of the selected radiographs and independently labeled all the predefined parameters for the provided IOPARs under standardized conditions. This data served as reference data. A pre-trained AI-based computer-aided detection (“CADe”) software (Second Opinion®, version 1.1) was used for the detection of the predefined features. The reports generated by the AI software were compared with the reference data to evaluate the diagnostic accuracy of the AI software. In the second phase of the study, thirty dental interns and thirty dental specialists were randomly selected. Each participant was randomly assigned five IOPARs and was asked to detect and diagnose the predefined conditions. Subsequently, all the participants were requested to reassess the IOPARs, this time with the assistance of the AI software. All the data was recorded using a self-designed Performa. Results: The sensitivity of the AI software in detecting caries, periapical lesions, crowns, open crown margins, restoration, endodontic treatment, calculus, and marginal bone loss was 91.0%, 86.6%, 97.1%, 82.6%, 89.3%, 93.4%, 80.2%, and 91.1%, respectively. The specificity of the AI software in detected caries, periapical lesions, crowns, open crown margins, restoration, endodontic treatment, calculus, and marginal bone loss was 87%, 98.3%, 99.6%, 91.9%, 96.4%, 99.3%, 97.8%, and 93.1%, respectively. The differences between the AI software and radiologist diagnoses of caries, periapical lesions, crowns, open crown margins, restoration, endodontic treatment, calculus, and marginal bone loss were statistically significant (all p values < 0.0001). The results showed that the diagnostic accuracy of operators (interns and specialists) with AI software revealed higher accuracy, sensitivity, and specificity in detecting caries, PA lesions, restoration, endodontic treatment, calculus, and marginal bone loss compared to that without using AI software. There were variations in the improvements in the diagnostic accuracy of interns and dental specialists. Conclusions: Within the limitations of the study, it can be concluded that the tested AI software has high accuracy in detecting the tested dental conditions in IOPARs. The use of AI software enhanced the diagnostic capabilities of dental operators. The present study used AI software to detect a clinically useful set of periodontal and restorative conditions, which can help dental operators in fast and accurate diagnosis and provide high-quality treatment to their patients. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

27 pages, 3774 KiB  
Article
Testing a Digital Sustainable Regenerative Teaching Framework in an Architectural Undergraduate Design Studio
by Emanuele Naboni, Simona Azzali and Massimo Imparato
Sustainability 2025, 17(11), 5004; https://doi.org/10.3390/su17115004 - 29 May 2025
Viewed by 786
Abstract
We are confronted with an urgent imperative to transition from merely minimizing harm to developing sustainable, regenerative, and net-positive solutions that systematically restore ecosystems, achieve decarbonization, and enhance health outcomes. This study presents a phased Digital Sustainable Regenerative Design Studio framework, which was [...] Read more.
We are confronted with an urgent imperative to transition from merely minimizing harm to developing sustainable, regenerative, and net-positive solutions that systematically restore ecosystems, achieve decarbonization, and enhance health outcomes. This study presents a phased Digital Sustainable Regenerative Design Studio framework, which was implemented in a third-year architecture studio at the Canadian University of Dubai. This methodology incorporates bespoke environmental simulation tools alongside quantitative metrics for climate adaptation, biodiversity, carbon sequestration, and health outcomes to inform creative design solutions. The students devised interventions across 20 urban plots in Dubai. A comprehensive analysis, encompassing real-time engagement with computational tools, reflective journals, feedback sessions, project analysis, and surveys, was conducted to assess the framework’s effectiveness in enhancing students’ comprehension of regenerative design and to examine their responses to complex, interdisciplinary challenges. Key findings reveal improved student performance in applying regenerative design principles and the formulation of strategies for climate-adaptive urbanism. The results suggest that this educational framework has the potential to influence and enhance pedagogical approaches, fostering architects committed to advancing sustainable, regenerative, and climate-adaptive urbanism. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

17 pages, 5570 KiB  
Article
Analysis and Design of Class-D Outphasing Power Amplifier with Non-Isolating Balun Combiner
by Jiyun Bae, Munsu Jeong, Sangjin Yoo, Ilku Nam and Ockgoo Lee
Electronics 2025, 14(11), 2196; https://doi.org/10.3390/electronics14112196 - 28 May 2025
Viewed by 358
Abstract
This paper presents a class-D outphasing power amplifier (PA) that incorporates a non-isolating balun combiner employing a 180° phase shift. Both isolating and non-isolating outphasing combiners are analyzed for signal restoration and combining efficiency. The proposed non-isolating balun combiner employing the 180° phase [...] Read more.
This paper presents a class-D outphasing power amplifier (PA) that incorporates a non-isolating balun combiner employing a 180° phase shift. Both isolating and non-isolating outphasing combiners are analyzed for signal restoration and combining efficiency. The proposed non-isolating balun combiner employing the 180° phase shift was experimentally evaluated and compared with a commercial isolating Wilkinson combiner. When two constant-envelope signals derived from a 10 MHz long-term evolution (LTE) signal are applied to the inputs of the outphasing combiners, both combiners demonstrate successful signal reconstruction. The measured adjacent channel leakage ratios (ACLRs) are −47 dBc for the Wilkinson combiner and −46 dBc for the proposed balun combiner. At 6 dB power back-off (PBO), the proposed balun combiner achieves a combining efficiency of 85.1%, representing an improvement of nearly 60% over the Wilkinson combiner. With a center frequency of 650 MHz, targeting 5G FR1 applications, a class-D outphasing PA was designed in a 28 nm CMOS process using the measured S-parameter data from both outphasing combiners. Simulation results show that the class-D outphasing PA incorporating the proposed balun combiner achieves a peak drain efficiency (DE) of 82.9% with an output power of 17.7 dBm. At 6 dB PBO, the DE reaches 61%, which is approximately 37% higher than that of the outphasing PA using the Wilkinson combiner. Moreover, the designed outphasing PA supports broadband operation over the 360–860 MHz range. Full article
Show Figures

Figure 1

18 pages, 930 KiB  
Review
Ketamine in Status Epilepticus: How Soon Is Now?
by Giuseppe Magro
Neurol. Int. 2025, 17(6), 83; https://doi.org/10.3390/neurolint17060083 - 28 May 2025
Viewed by 1451
Abstract
Status epilepticus (SE) is a neurological emergency. Current evidence dictates a step-by-step approach with a first line of therapy consisting of benzodiazepines (BDZs). In many situations, the currently approved approach does not terminate a BDZ-resistant SE. This happens in Stage 1 Plus, a [...] Read more.
Status epilepticus (SE) is a neurological emergency. Current evidence dictates a step-by-step approach with a first line of therapy consisting of benzodiazepines (BDZs). In many situations, the currently approved approach does not terminate a BDZ-resistant SE. This happens in Stage 1 Plus, a framework designed by the author to recognize cases of probable benzodiazepine-resistant status epilepticus even before treatment initiation. These cases include Prolonged SE (SE lasting > 10 min), the absence of prominent motor phenomena, and acute etiology (primary central nervous system etiologies most of all). BDZ-refractory SE cases (Stage 1 Plus) might require a different approach, one targeting the unresponsive GABA signaling state mediated by NMDA/AMPA receptors, such as combined polytherapy with Ketamine from the start. These considerations stem from the receptor trafficking hypotheses: in prolonged seizure activity and primary central nervous system etiologies, GABA receptors get internalized and move away from synapses, and therefore, SE becomes resistant to BDZ. A rational polytherapy that might restore the unresponsiveness to BDZ in SE should include NMDA antagonists, such as Ketamine. Ketamine has proven effective in many experimental models of status epilepticus, and much evidence is gathering supporting its use in humans, especially in refractory and super-refractory SE. We lack studies evaluating combined polytherapy in SE, especially in the early phases. The author suggests here that Ketamine should be used along with first-line BDZ in the early SE stage falling in the category of Stage 1 Plus and as a first-line anesthetic infusion drug in refractory SE, especially in cases progressing from Stage 1 Plus, eventually adding continuous midazolam/propofol infusion in later phases. This systematic review’s objective is to summarize the presently available evidence of the early use of combined polytherapy that includes Ketamine, along with the currently available evidence of Ketamine use in early, established, and refractory SE. Nine studies were included. Boluses of Ketamine and Midazolam are effective in pediatric convulsive Stage 1 Plus SE. The results show that earlier Ketamine administration (especially within 12 h of SE onset) was significantly associated with improved seizure control, with a more favorable safety profile than Midazolam in refractory SE. Notably, a dosage of less than 0.9 mg/kg/h proves ineffective in terminating SE. Ketamine has the advantage of preventing intubation, possibly shortening the length of stay in the intensive care unit. Full article
Show Figures

Graphical abstract

17 pages, 11666 KiB  
Article
Research on the Effectiveness of Temperature Control with MPCM Grouting for Cracks in the Earthen Ruins of Gaochang Ancient City
by Jiahua Zou, Xiaofei Mao and Dongbo Li
Heritage 2025, 8(6), 184; https://doi.org/10.3390/heritage8060184 - 23 May 2025
Viewed by 412
Abstract
Facing the challenges of temperature gradient-induced soil cracking and delamination in earthen ruins like Gaochang Ancient City, this study develops a novel phase change microcapsule (MPCM) grouting material designed for dual functionality: structural reinforcement and thermal regulation. We systematically evaluated its performance in [...] Read more.
Facing the challenges of temperature gradient-induced soil cracking and delamination in earthen ruins like Gaochang Ancient City, this study develops a novel phase change microcapsule (MPCM) grouting material designed for dual functionality: structural reinforcement and thermal regulation. We systematically evaluated its performance in both aspects. Experimental results demonstrated excellent thermal cycling stability. For instance, the maximum mass loss was only 0.65% after 200 cycles, indicating its reliability for long-term service. Evaluation showed that the material effectively provides structural strength compatible with the original soil. With 15% MPCM content, the compressive strength reached 1.39 MPa. Simultaneously, it effectively mitigates temperature fluctuations, significantly regulating temperature gradients. The MPCM-15 sample, for example, reduced the heating rate by 9.7 °C/h and peak temperature by 6.0 °C compared to the control group. Field application further validated its effectiveness in both restoring structural integrity by filling cracks and significantly reducing temperature gradient effects within the site. This dual-function MPCM grouting offers a promising new technical approach for the sustainable preservation of earthen cultural heritage. Full article
Show Figures

Figure 1

16 pages, 3751 KiB  
Article
Improved Face Image Super-Resolution Model Based on Generative Adversarial Network
by Qingyu Liu, Yeguo Sun, Lei Chen and Lei Liu
J. Imaging 2025, 11(5), 163; https://doi.org/10.3390/jimaging11050163 - 19 May 2025
Viewed by 783
Abstract
Image super-resolution (SR) models based on the generative adversarial network (GAN) face challenges such as unnatural facial detail restoration and local blurring. This paper proposes an improved GAN-based model to address these issues. First, a Multi-scale Hybrid Attention Residual Block (MHARB) is designed, [...] Read more.
Image super-resolution (SR) models based on the generative adversarial network (GAN) face challenges such as unnatural facial detail restoration and local blurring. This paper proposes an improved GAN-based model to address these issues. First, a Multi-scale Hybrid Attention Residual Block (MHARB) is designed, which dynamically enhances feature representation in critical face regions through dual-branch convolution and channel-spatial attention. Second, an Edge-guided Enhancement Block (EEB) is introduced, generating adaptive detail residuals by combining edge masks and channel attention to accurately recover high-frequency textures. Furthermore, a multi-scale discriminator with a weighted sub-discriminator loss is developed to balance global structural and local detail generation quality. Additionally, a phase-wise training strategy with dynamic adjustment of learning rate (Lr) and loss function weights is implemented to improve the realism of super-resolved face images. Experiments on the CelebA-HQ dataset demonstrate that the proposed model achieves a PSNR of 23.35 dB, a SSIM of 0.7424, and a LPIPS of 24.86, outperforming classical models and delivering superior visual quality in high-frequency regions. Notably, this model also surpasses the SwinIR model (PSNR: 23.28 dB → 23.35 dB, SSIM: 0.7340 → 0.7424, and LPIPS: 30.48 → 24.86), validating the effectiveness of the improved model and the training strategy in preserving facial details. Full article
(This article belongs to the Section AI in Imaging)
Show Figures

Figure 1

13 pages, 6191 KiB  
Article
Investigating the Material Composition and Degradation of Wall Paintings at Müstair Monastery Using a Mobile Multi-Spectroscopic System
by Xueshi Bai, Patrick Cassitti, Aude Brebant, Didier Brissaud, Duixiong Sun, Yaopeng Yin and Vincent Detalle
Photonics 2025, 12(5), 489; https://doi.org/10.3390/photonics12050489 - 15 May 2025
Viewed by 359
Abstract
The conservation of cultural heritage requires advanced analytical tools to assess historic materials. In the context of the IPERION-CH project, a mobile multi-spectroscopic characterisation system for the analysis of cultural heritage materials, designated SYSPECTRAL, has been developed. This system integrates Laser-Induced Breakdown Spectroscopy [...] Read more.
The conservation of cultural heritage requires advanced analytical tools to assess historic materials. In the context of the IPERION-CH project, a mobile multi-spectroscopic characterisation system for the analysis of cultural heritage materials, designated SYSPECTRAL, has been developed. This system integrates Laser-Induced Breakdown Spectroscopy (LIBS), Laser-Induced Fluorescence, Raman spectroscopy, and reflectance spectroscopy. The first application of SYSPECTRAL in a real-world setting was carried out at Müstair Monastery (UNESCO World Heritage Site since 1983) for wall paintings. In this study, stratigraphic analysis using LIBS revealed lead- and iron-based pigments in black and red hues, suggesting pigment degradation and restoration interventions. The presence of titanium in white hues indicated possible retouching. Furthermore, the presence of Egyptian blue in blue hues was identified through a combination of elemental and reflectance spectral analysis, underscoring the potential of SYSPECTRAL for heritage conservation. This approach offers comprehensive material characterization with minimal impact, a finding that is of particular significance in the context of heritage conservation. The subsequent phase of research will extend the application of SYSPECTRAL to a wider range of heritage sites, with the objective of enhancing the spectral databases and refining the analytical techniques for the purpose of improving cultural heritage conservation. Full article
Show Figures

Figure 1

Back to TopTop