Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = resin-rubber blends

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5409 KiB  
Article
Sustainable Rubber Solutions: A Study on Bio-Based Oil and Resin Blends
by Frances van Elburg, Fabian Grunert, Claudia Aurisicchio, Micol di Consiglio, Auke Talma, Pilar Bernal-Ortega and Anke Blume
Polymers 2025, 17(15), 2111; https://doi.org/10.3390/polym17152111 - 31 Jul 2025
Viewed by 309
Abstract
One of the most important challenges the tire industry faces is becoming carbon-neutral and using 100% sustainable materials by 2050. Utilizing materials from renewable sources and recycled substances is a key aspect of achieving this goal. Petroleum-based oils, such as Treated Distillate Aromatic [...] Read more.
One of the most important challenges the tire industry faces is becoming carbon-neutral and using 100% sustainable materials by 2050. Utilizing materials from renewable sources and recycled substances is a key aspect of achieving this goal. Petroleum-based oils, such as Treated Distillate Aromatic Extract (TDAE), are frequently used in rubber compounds, and a promising strategy to enhance sustainability is to use bio-based plasticizer alternatives. However, research has shown that the replacement of TDAE oil with bio-based oils or resins can significantly alter the glass transition temperature (Tg) of the final compound, influencing the tire properties. In this study, the theory was proposed that using a plasticizer blend, comprising oil and resin, in a rubber compound would result in similar Tg values as the reference compound containing TDAE. To test this, the cycloaliphatic di-ester oil Hexamoll DINCH, which can be made out of bio-based feedstock by the BioMass Balance approach, was selected and blended with the cycloaliphatic hydrocarbon resin Escorez 5300. Various oil-to-resin ratios were investigated, and a linear increase in the Tg of the vulcanizate was obtained when increasing the resin content and decreasing the oil content. Additionally, a 50/50 blend, consisting of 18.75 phr Hexamoll DINCH and 18.75 phr Escorez 5300, resulted in the same Tg of −19 °C as a compound containing 37.5 phr TDAE. Furthermore, this blend resulted in similar curing characteristics and cured Payne effect as the reference with TDAE. Moreover, a similar rolling resistance indicator (tan δ at 60 °C = 0.115), a slight deterioration in wear resistance (ARI = 83%), but an improvement in the stress–strain behavior (M300 = 9.18 ± 0.20 MPa and Ts = 16.3 ± 0.6 MPa) and wet grip indicator (tan δ at 0 °C = 0.427) were observed. The results in this work show the potential of finding a balance between optimal performance and sustainability by using plasticizer blends. Full article
(This article belongs to the Special Issue Exploration and Innovation in Sustainable Rubber Performance)
Show Figures

Figure 1

14 pages, 4450 KiB  
Article
Performance Evaluation of Waterborne Epoxy Resin-Reinforced SBS, Waterborne Acrylate or SBR Emulsion for Road
by Hao Fu and Chaohui Wang
Coatings 2025, 15(7), 787; https://doi.org/10.3390/coatings15070787 - 3 Jul 2025
Viewed by 331
Abstract
To obtain waterborne polymer-modified emulsified asphalt materials with better comprehensive performance, waterborne polymer modifiers including waterborne epoxy resin (WER)-reinforced styrene–butadiene–styrene block copolymer (SBS), waterborne acrylate (WA) or styrene butadiene rubber (SBR) emulsion were prepared. The mechanical strength, toughness, adhesion and impact resistance of [...] Read more.
To obtain waterborne polymer-modified emulsified asphalt materials with better comprehensive performance, waterborne polymer modifiers including waterborne epoxy resin (WER)-reinforced styrene–butadiene–styrene block copolymer (SBS), waterborne acrylate (WA) or styrene butadiene rubber (SBR) emulsion were prepared. The mechanical strength, toughness, adhesion and impact resistance of these waterborne polymers were evaluated. Furthermore, the correlation between the performance indicators of the waterborne polymers was analyzed. Based on Fourier transform infrared (FTIR) spectroscopy and thermogravimetric (TG) analysis, the mechanism of WER-modified SBS and WA was characterized. The results show that adding 10%–15% WER can significantly improve the mechanical properties of the waterborne polymer. The performances of modified SBS and WA are better than that of modified SBR. When the content of WER is 10%, the tensile strength, elongation at break and pull-off strength of WER-modified SBS and WA are 4.80–6.38 MPa, 476.3%–579.6% and 1.62–1.70 MPa, respectively. The mechanical strength and breaking energy of the waterborne polymers show a significant linear correlation with their application properties such as adhesion, bonding and impact resistance. FTIR and TG analyses indicate that WER-modified SBS or WA prepared via emulsion blending undergo primarily physical modifications, enhancing thermal stability while promoting crosslinking and curing. Full article
(This article belongs to the Special Issue Green Asphalt Materials—Surface Engineering and Applications)
Show Figures

Figure 1

15 pages, 4976 KiB  
Article
Thermal Insulation Based on NBR-Elastomerized Phenolic Resin Reinforced with Carbon Fibers: Mechanical and Ablation Properties
by Jelena Gržetić, Saša Brzić, Slavko Mijatov, Saša Živković, Veselin Živanović, Jela Galović and Tihomir Kovačević
Materials 2025, 18(10), 2250; https://doi.org/10.3390/ma18102250 - 13 May 2025
Viewed by 479
Abstract
In this paper, thermal and mechanical properties of ablative thermal protective material (TPM) as inhibitors for a free-standing propellant grain based on phenolic resin (PR) and acrylonitrile butadiene rubber (NBR) were investigated. NBR elastomerized PR composite, reinforced with chopped carbon fibers (CFs) (PR/NBR/CF), [...] Read more.
In this paper, thermal and mechanical properties of ablative thermal protective material (TPM) as inhibitors for a free-standing propellant grain based on phenolic resin (PR) and acrylonitrile butadiene rubber (NBR) were investigated. NBR elastomerized PR composite, reinforced with chopped carbon fibers (CFs) (PR/NBR/CF), was prepared by homogenization of 90 parts by weight (PBW) PR in 100 PBW NBR (28 wt.% of acrylonitrile content). PR/NBR/CF composite was blended in two-roller open and closed mixers and in a twin-screw extruder. Carbon black, aluminum(III)-oxide, and fumed silica were added as promoters of thermal and mechanical properties of PR/NBR/CF. The structural analysis was studied using Fourier transform infrared spectroscopy (FT-IR). Thermal properties of the prepared PR/NBR/CF composite inhibitor were studied by ablation and firing tests, while a morphological analysis of the char layer formed after the ablation test was conducted via scanning electron microscopy (SEM). A low erosion rate of 2.00 × 10−4 m·s−1 and high tensile strength and elongation at break of 6.7 MPa and 419.92%, respectively, indicate that the developed materials can be applied as a thermal insulation/inhibitor of free-standing rocket propellant grains. Bond strength between PR/NBR/CF composite and aluminized composite rocket propellant (ACRP), determined via a standard peel test, showed higher adhesion forces between the PR/NBR/CF composite and the ACRP compared to the cohesion between the ACRP molecular chains. Full article
Show Figures

Figure 1

24 pages, 8896 KiB  
Article
Morphological and Spectroscopic Characterization of Multifunctional Self-Healing Systems
by Liberata Guadagno, Elisa Calabrese, Raffaele Longo, Francesca Aliberti, Luigi Vertuccio, Michelina Catauro and Marialuigia Raimondo
Polymers 2025, 17(10), 1294; https://doi.org/10.3390/polym17101294 - 8 May 2025
Viewed by 584
Abstract
Multifunctional self-healing supramolecular structural toughened resins, formulated to counteract the insulating properties of epoxy polymers and integrating auto-repair mechanisms, are morphologically and spectroscopically characterized using Tunneling Atomic Force Microscopy (TUNA) and Fourier transform infrared spectroscopy (FT-IR), respectively. Specifically, the multifunctional resin comprises self-healing [...] Read more.
Multifunctional self-healing supramolecular structural toughened resins, formulated to counteract the insulating properties of epoxy polymers and integrating auto-repair mechanisms, are morphologically and spectroscopically characterized using Tunneling Atomic Force Microscopy (TUNA) and Fourier transform infrared spectroscopy (FT-IR), respectively. Specifically, the multifunctional resin comprises self-healing molecular fillers and electrically conductive carbon nanotubes (CNTs) embedded in the matrix. The selected self-healing molecules can form non-covalent bonds with the hydroxyl (OH) and carbonyl (C=O) groups of the toughened epoxy matrix through their H-bonding donor and acceptor sites. An FT-IR analysis has been conducted to evaluate the interactions that the barbiturate acid derivatives, serving as self-healing fillers, can form with the constituent parts of the toughened epoxy blend. Tunneling Atomic Force Microscopy (TUNA) highlights the morphological characteristics of CNTs, their dispersion within the polymeric matrix, and their affinity for the globular rubber domains. The TUNA technique maps the samples’ electrical conductivity at micro- and nanoscale spatial domains. Detecting electrical currents reveals supramolecular networks, determined by hydrogen bonds, within the samples, showcasing the morphological features of the sample containing an embedded conductive nanofiller in the hosting matrix. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 3262 KiB  
Article
Connecting Dynamics and Thermodynamics in Polymer–Resin Cured Systems
by Luis A. Miccio, Clemens Sill, Carsten Wehlack and Gustavo A. Schwartz
Polymers 2024, 16(24), 3508; https://doi.org/10.3390/polym16243508 - 17 Dec 2024
Cited by 1 | Viewed by 833
Abstract
This work connects the calorimetric responses of different rubber–resin blends with varying resin contents with their alpha relaxation dynamics. We used differential scanning calorimetry and broadband dielectric spectroscopy to characterize the calorimetric and dielectric responses of styrene–butadiene, polybutadiene, and polyisoprene with different resin [...] Read more.
This work connects the calorimetric responses of different rubber–resin blends with varying resin contents with their alpha relaxation dynamics. We used differential scanning calorimetry and broadband dielectric spectroscopy to characterize the calorimetric and dielectric responses of styrene–butadiene, polybutadiene, and polyisoprene with different resin contents. To model the results, we used the Gordon–Taylor equation combined with an extension of the Adam–Gibbs approach. Thus, we propose a simple and effective model that allows us to estimate the blend dynamics from the temperature dependence of the relaxation times of the pure components and the calorimetric measurement of the glass transition temperature of only one blend composition. By estimating an effective interaction parameter from calorimetry, we achieved accurate alpha relaxation dynamics predictions for different resin concentrations. Our highly predictive approach provides a realistic description of the expected dynamics. This study offers valuable insights into the dynamic properties of polymer compounds, paving the way for the fast and effective development of advanced and more sustainable materials. Full article
(This article belongs to the Special Issue Elastomers Science and Technology)
Show Figures

Figure 1

18 pages, 3087 KiB  
Article
Development and Evaluation of Vegetable Resin Bio-Binders as Technological Alternatives to Bitumen
by Manuel De Rose, Rosolino Vaiana, Cesare Oliviero Rossi and Paolino Caputo
Sustainability 2024, 16(6), 2437; https://doi.org/10.3390/su16062437 - 15 Mar 2024
Cited by 10 | Viewed by 2478
Abstract
Recently, the feasibility of using bio-materials to reduce or completely replace the use of bitumen in asphalt mixture has gained increasing attention. Amongst others, an interesting solution is represented by the use of wood co-products with mineral or vegetable oils. This research focuses [...] Read more.
Recently, the feasibility of using bio-materials to reduce or completely replace the use of bitumen in asphalt mixture has gained increasing attention. Amongst others, an interesting solution is represented by the use of wood co-products with mineral or vegetable oils. This research focuses on the development of bio-binders using vegetable resin (VR) in unmodified form and waste olive oil (WOO) as the main components; in order to optimize the rheological properties of the blends, crumb rubber from end-of-life tyres (CR), Styrene-Butadiene-Styrene (SBS) and polyethylene waxes (PEW) are used as additives. In particular, this investigation focuses on studying different oil/rosin ratios and polymer contents to provide a clear framework on this bio-binder solution; conventional bituminous binders are taken as a reference. The alternative binders are characterized in terms of conventional properties such as penetration depth and softening point, as well as rheological response. Finally, two of the bio-binders studied are selected with the aim of assessing the mechanical properties of the resulting sustainable asphalt mixture using the Marshall Stability test and the Indirect Tensile Strength test, comparing the results with the threshold values set by an Italian road agency. Thus, this research represents a preliminary analysis of the potential application of bio-binder mixtures within the specification limits imposed by road agencies. Although this research represents a first attempt, the results are promising and prove to be worthy of further investigations. Full article
Show Figures

Figure 1

15 pages, 4810 KiB  
Article
Preparation and Performance of Resin-Gel–Rubber Expandable Lost Circulation Material Blend
by Jinzhi Zhu, Erbiao Lou, Shaojun Zhang, Haiying Lu and Ziwu Wang
Gels 2023, 9(11), 862; https://doi.org/10.3390/gels9110862 - 30 Oct 2023
Cited by 4 | Viewed by 1875
Abstract
Aiming at the complex strata, lost circulation often occurs. and lost circulation control becomes a difficult issue. A drilling fluid loss accident delays the drilling progress and even causes major economic losses. If we take a self-made sodium polyacrylate grafting and modify a [...] Read more.
Aiming at the complex strata, lost circulation often occurs. and lost circulation control becomes a difficult issue. A drilling fluid loss accident delays the drilling progress and even causes major economic losses. If we take a self-made sodium polyacrylate grafting and modify a starch water absorbent resin, using an amphiphilic compatibilizer as raw material through mechanical blending and chemical compatibilization, we can synthesize a resin–rubber blend swelling lost circulation material. This material presents a good resistance to anti-high-temperature performance, but the quality declines while the temperature is higher than 363 °C, and with the increasing temperature, the water-swelling expansion ratio becomes higher. The range of the water-swelling expansion ratio is 8 to 25 times and the water swelling rate becomes larger along with the reduced diameter of the lost circulation materials and decreases with the increasing salinity. The resin-rubber blend swelling lost circulation material after water swelling has excellent toughness and high elastic deformation capacity, thus, forming a 7 Mpa to 2 mm fracture via expansion, extrusion, deformation, and filling, which presents a good performance for fracture plugging and realizes the purpose of lost circulation control. Full article
(This article belongs to the Special Issue Gels for Oil Drilling and Enhanced Recovery (2nd Edition))
Show Figures

Figure 1

17 pages, 4435 KiB  
Article
Study on Adhesion Performance and Aging Strength Degradation Mechanism of SBS Modified Asphalt with Different Anti-Aging Additive
by Chuanyi Zhuang, Hao Guo, Fengxiang Li, Yan Hao, Kun Chen, Gen Li and Yali Ye
Materials 2023, 16(13), 4881; https://doi.org/10.3390/ma16134881 - 7 Jul 2023
Cited by 6 | Viewed by 1930
Abstract
After aging, the adhesiveness of asphalt deteriorates, leading to a reduction in the durability of asphalt mixtures and affecting the service life of asphalt pavements. To enhance the anti-aging performance of asphalt, this study employed the method of melt blending to prepare three [...] Read more.
After aging, the adhesiveness of asphalt deteriorates, leading to a reduction in the durability of asphalt mixtures and affecting the service life of asphalt pavements. To enhance the anti-aging performance of asphalt, this study employed the method of melt blending to prepare three types of modified asphalt: graphene/SBS modified asphalt (G/SBSMA), crumb rubber/SBS modified asphalt (CR/SBSMA), and petroleum resin/SBS modified asphalt (PR/SBSMA). Different dosages of the three types of modified asphalt were tested for changes in conventional performance indicators. The optimal dosages of graphene, crumb rubber, and C9 petroleum resin were determined to be 2%, 15%, and 5%, respectively. Based on the theory of surface free energy, the effects of anti-aging agents on the microscopic properties of SBS modified asphalt before and after aging were analyzed using the three-liquid method. The mechanisms of strength attenuation at the asphalt–aggregate interface under water exposure and aging were revealed. The results showed that with the increase of aging gradient, the asphalt-aggregate biphasic system became more active. The cohesive energy and peel energy of SBS modified asphalt increased continuously, while the adhesive energy decreased continuously, leading to a decrease in the energy ratio parameter. Resin-based anti-aging agents exhibited the most significant improvement in asphalt adhesion performance, while graphene demonstrated a more stable enhancement in asphalt’s water stability during the aging stage. Full article
Show Figures

Figure 1

12 pages, 3420 KiB  
Article
Intelligent Eucommia ulmoides Rubber/Ionomer Blends with Thermally Activated Shape Memory and Self-Healing Properties
by Qi Wang, Yutao Li, Jianbin Xiao and Lin Xia
Polymers 2023, 15(5), 1182; https://doi.org/10.3390/polym15051182 - 26 Feb 2023
Cited by 8 | Viewed by 2131
Abstract
Intelligent Eucommia ulmoides rubber (EUR) and ionomer Surlyn resin (SR) blends were prepared and studied in this manuscript. This is the first paper to combine EUR with SR to prepare blends with both the shape memory effect and self-healing capability. The mechanical, curing, [...] Read more.
Intelligent Eucommia ulmoides rubber (EUR) and ionomer Surlyn resin (SR) blends were prepared and studied in this manuscript. This is the first paper to combine EUR with SR to prepare blends with both the shape memory effect and self-healing capability. The mechanical, curing, thermal, shape memory and self-healing properties were studied by a universal testing machine, differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA), respectively. Experimental results showed that the increase in ionomer content not only improved mechanical and shape memory properties but also endowed the compounds with excellent self-healing ability under the appropriate environmental conditions. Notably, the self-healing efficiency of the composites reached 87.41%, which is much higher than the efficiency of other covalent cross-linking composites. Therefore, these novel shape memory and self-healing blends can expand the use of natural Eucommia ulmoides rubber, such as in special medical devices, sensors and actuators. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Graphical abstract

15 pages, 4810 KiB  
Article
Miscibility and Optimization of the Liquid Rubber Content in the Resins of Light-Cured Dental Composites
by Krzysztof Pałka and Monika Sowa
Materials 2023, 16(1), 87; https://doi.org/10.3390/ma16010087 - 22 Dec 2022
Viewed by 1765
Abstract
Fracture toughness is one of the main factors influencing the durability of light-cured composites used for dental restorations and fillings. One of the methods of increasing the fracture toughness is the modification of the matrix with liquid acrylonitrile-free liquid rubber. This study aimed [...] Read more.
Fracture toughness is one of the main factors influencing the durability of light-cured composites used for dental restorations and fillings. One of the methods of increasing the fracture toughness is the modification of the matrix with liquid acrylonitrile-free liquid rubber. This study aimed to assess the miscibility of acrylonitrile-free liquid rubber with a blend of resins and their stability over time, and to determine the optimal amount of liquid rubber (LR) in the blend due to mechanical properties. Two blends of dimethacrylate resins were used: resin “F” composed of BisGMA (60 wt.%), TEGDMA (20 wt.%), BisEMA (10 wt.%) and UDMA (10 wt.%), and “C” resin containing BisGMA (40 wt.%), TEGDMA (40 wt.%), BisEMA (10 wt.%) and UDMA (10 wt.%). The modifier Hypro® 2000X168LC VTB liquid rubber was used in at 1%, 2%, 3%, 4%, 5%, 10%, 15% and 20% by weight in the resin blend. The miscibility was assessed by microscopy. The fracture toughness, flexural strength and Young’s modulus were determined in the bending test. The results showed that the solubility of the liquid rubber depends on the ratio of BisGMA/TEGDMA in the resins. In resins with 40 wt.% TEGDMA, the LR solubility was as high as 5%, while resins with 20 wt.% TEGDMA, the liquid rubber did not dissolve. The LR-resin mixtures showed good time stability, and no changes in the size or morphology of the rubber domains were found after 24 h of mixing. The maximum fracture toughness (2.46 MPa m1/2) was obtained for 5 wt.% LR in resin F and for 15 wt.% LR in resin C (2.53 MPa m1/2). The modification with liquid rubber resulted in an exponential reduction in both flexural strength and Young’s modulus. The analysis of the results of the mechanical tests allowed us to determine the optimal amount of LR for both resins. For resin F it was 5.4 wt.%, and for resin C it was 8.3 wt.%. It can be stated that the optimal amount of liquid rubber increases with its solubility in the resin. Full article
(This article belongs to the Special Issue Biomaterials and Mechanics in Dentistry)
Show Figures

Figure 1

12 pages, 2220 KiB  
Article
Recycling of Pretreated Polyolefin-Based Ocean-Bound Plastic Waste by Incorporating Clay and Rubber
by Shawn Martey, Keith Hendren, Nicholas Farfaras, Jesse C. Kelly, Matthew Newsome, Izabela Ciesielska-Wrobel, Margaret J. Sobkowicz and Wan-Ting Chen
Recycling 2022, 7(2), 25; https://doi.org/10.3390/recycling7020025 - 14 Apr 2022
Cited by 10 | Viewed by 5485
Abstract
Plastic waste found in oceans has become a major concern because of its impact on marine organisms and human health. There is significant global interest in recycling these materials, but their reclamation, sorting, cleaning, and reprocessing, along with the degradation that occurs in [...] Read more.
Plastic waste found in oceans has become a major concern because of its impact on marine organisms and human health. There is significant global interest in recycling these materials, but their reclamation, sorting, cleaning, and reprocessing, along with the degradation that occurs in the natural environment, all make it difficult to achieve high quality recycled resins from ocean plastic waste. To mitigate these limitations, various additives including clay and rubber were explored. In this study, we compounded different types of ocean-bound (o-HDPE and o-PP) and virgin polymers (v-LDPE and v-PS) with various additives including a functionalized clay, styrene-multi-block-copolymer (SMB), and ethylene-propylene-based rubber (EPR). Physical observation showed that all blends containing PS were brittle due to the weak interfaces between the polyolefin regions and the PS domains within the polymer blend matrix. Blends containing clay showed rough surfaces and brittleness because of the non-uniform distribution of clay particles in the polymer matrix. To evaluate the properties and compatibility of the blends, characterizations using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and small-amplitude oscillatory shear (SAOS) rheology were carried out. The polymer blend (v-LDPE, o-HDPE, o-PP) containing EPR showed improved elasticity. Incorporating additives such as rubber could improve the mechanical properties of polymer blends for recycling purposes. Full article
(This article belongs to the Special Issue Advances in the Recycling and Processing of Plastic Waste)
Show Figures

Figure 1

14 pages, 3673 KiB  
Article
Effect of Organoclay Addition on Rheological, Thermal, and Mechanical Properties of Nitrile Rubber/Phenolic Resin Blend
by Sara Shafiee, Leila Bazli, Mohammad Karrabi, Mir Hamid Reza Ghoreishy and Milad Bazli
Polymers 2022, 14(7), 1463; https://doi.org/10.3390/polym14071463 - 3 Apr 2022
Cited by 3 | Viewed by 2978
Abstract
In this study, the effects of NBR polarity and organoclay addition on the curing, rheological, mechanical, and thermal properties of an NBR/phenolic resin blend were investigated. The samples were prepared using a two-roll mill. The results showed that rheological and tensile properties improved [...] Read more.
In this study, the effects of NBR polarity and organoclay addition on the curing, rheological, mechanical, and thermal properties of an NBR/phenolic resin blend were investigated. The samples were prepared using a two-roll mill. The results showed that rheological and tensile properties improved due to the good distribution of nanoparticles, as well as the good compatibility of nitrile butadiene rubber with phenolic resin. The addition of 1.5 phr of nanoparticles to blends containing 33% and 45% acrylonitrile increased the curing torque difference by approximately 12% and 28%, respectively. In addition, the scorch time and curing time decreased in nanocomposites. Adding nanoparticles also increased the viscosity. The addition of phenolic resins and nanoparticles has a similar trend in modulus changes, and both of these factors increase the stiffness and, consequently, the elastic and viscous modulus of the specimens. Adding 1.5 phr of organoclay increased the tensile strength of the blends by around 8% and 13% in the samples with low and high content of acrylonitrile, respectively. Increasing the temperature of the tensile test led to a reduction in the tensile properties of the samples. Tensile strength, elongation at break, modulus, and hardness of the samples increased with increasing organoclay content. In addition, with increasing nanoparticle concentration, the samples underwent lower deterioration in tensile strength and Young’s modulus at different temperatures compared to the blends. In the samples containing 1.5 phr of organoclay, the thermal decomposition temperatures were enhanced by around 24 and 27 °C for low and high acrylonitrile content. Full article
Show Figures

Figure 1

13 pages, 15776 KiB  
Article
Modified Poly(Lactic Acid) Epoxy Resin Using Chitosan for Reactive Blending with Epoxidized Natural Rubber: Analysis of Annealing Time
by Thidarat Kanthiya, Krittameth Kiattipornpithak, Nanthicha Thajai, Yuthana Phimolsiripol, Pornchai Rachtanapun, Sarinthip Thanakkasaranee, Noppol Leksawasdi, Nuttapol Tanadchangsaeng, Choncharoen Sawangrat, Pitiwat Wattanachai and Kittisak Jantanasakulwong
Polymers 2022, 14(6), 1085; https://doi.org/10.3390/polym14061085 - 8 Mar 2022
Cited by 15 | Viewed by 3756
Abstract
Poly(lactic acid) was melt-blended with epoxy resin without hardener and chitosan (CTS) to prepare modified PLA (PLAEC). Epoxy resin 5% and CTS 1–20% (wt/wt) were incorporated into PLA during melt mixing. PLAEC was melt-blended with an epoxidized natural rubber (ENR) 80/20 wt. The [...] Read more.
Poly(lactic acid) was melt-blended with epoxy resin without hardener and chitosan (CTS) to prepare modified PLA (PLAEC). Epoxy resin 5% and CTS 1–20% (wt/wt) were incorporated into PLA during melt mixing. PLAEC was melt-blended with an epoxidized natural rubber (ENR) 80/20 wt. The PLAEC CTS 1% blended with ENR (PLAEC1/ENR) showed a high tensile strength (30 MPa) and elongation at break (7%). The annealing process at 80 °C for 0–15 min maintained a tensile strength of approximately 30 MPa. SEM images of the PLAE/ENR blend showed phase inversion from co-continuous to ENR particle dispersion in the PLA matrix with the addition of CTS, whereas the annealing time reduced the hole sizes of the extracted ENR phase due to the shrinkage of PLA by crystallization. Thermal properties were observed by DSC and a Vicat softening test. The annealing process increased the crystallinity and Vicat softening temperature of the PLAEC1/ENR blend. Reactions of −COOH/epoxy groups and epoxy/−NH2 groups occurred during PLAE and PLAEC preparation, respectively. FTIR confirmed the reaction between the −NH2 groups of CTS in PLAEC and the epoxy groups of ENR. This reaction increased the mechanical properties, while the annealing process improved the morphology and thermal properties of the blend. Full article
(This article belongs to the Special Issue Smart Polymeric Films and Coatings for Food Packaging Applications)
Show Figures

Figure 1

17 pages, 6240 KiB  
Article
An Investigation on the Thermally Induced Compatibilization of SBR and α-Methylstyrene/Styrene Resin
by Arnaud Wolf, João Paulo Cosas Fernandes, Chuanyu Yan, Reiner Dieden, Laurent Poorters, Marc Weydert and Pierre Verge
Polymers 2021, 13(8), 1267; https://doi.org/10.3390/polym13081267 - 13 Apr 2021
Cited by 7 | Viewed by 3538
Abstract
The miscibility between two polymers such as rubbers and performance resins is crucial to achieve given targeted properties in terms of tire performances. To this aim, α-methylstyrene/styrene resin (poly(αMSt-co-St)) are used to modify the viscoelastic behavior of rubbers and to fulfill [...] Read more.
The miscibility between two polymers such as rubbers and performance resins is crucial to achieve given targeted properties in terms of tire performances. To this aim, α-methylstyrene/styrene resin (poly(αMSt-co-St)) are used to modify the viscoelastic behavior of rubbers and to fulfill the requirements of the final applications. The initial aim of this work was to understand the influence of poly(αMSt-co-St) resins blended at different concentrations in a commercial styrene-butadiene rubber (SBR). Interestingly, while studying the viscoelastic properties of SBR blends with poly(αMSt-co-St), crosslinking of the rubber was observed under conditions where it was not expected to happen. Surprisingly, after the crosslinking reactions, the poly(αMSt-co-St) resin was irreversibly miscible with SBR at concentrations far above its immiscibility threshold. A detailed investigation involving characterization technics including solid state nuclear magnetic resonance led to the conclusion that poly(αMSt-co-St) is depolymerizing under heating and can graft onto the chains of SBR. It results in an irreversible compatibilization mechanism between the rubber and the resin. Full article
(This article belongs to the Special Issue Advanced Rubber Composite)
Show Figures

Figure 1

31 pages, 5578 KiB  
Review
Olive Stones as Filler for Polymer-Based Composites: A Review
by Sara Valvez, Alberto Maceiras, Paulo Santos and Paulo N. B. Reis
Materials 2021, 14(4), 845; https://doi.org/10.3390/ma14040845 - 10 Feb 2021
Cited by 49 | Viewed by 9770
Abstract
Olives’ consumption produces copious agricultural byproducts that have accompanied humanity for millennia, but the increasing worldwide production complicates its management. Most wastes are generated during olive oil production in form of olive stones and other lignocellulosic derivatives. Industrial processes of chemical or physical [...] Read more.
Olives’ consumption produces copious agricultural byproducts that have accompanied humanity for millennia, but the increasing worldwide production complicates its management. Most wastes are generated during olive oil production in form of olive stones and other lignocellulosic derivatives. Industrial processes of chemical or physical nature to recover economically compounds from biomass residues are costly, difficult, and non-environmentally friendly. Cellulose, hemicellulose, and lignin biopolymers are the principal components of olive stones, which present interesting qualities as lignocellulosic fillers in polymeric composites. This review will summarize examples of composites based on thermoplastic polymers, such as polystyrene (PS), polylactide (PLA), polyvinyl chloride (PVC), polypropylene (PP), and polycaprolactone (PCL); thermosetting resins (phenol-formaldehyde, unsaturated polyesters, and epoxy) and acrylonitrile butadiene rubber/devulcanized waste rubber (NBR/DWR) blends focusing on the fabrication procedures, characterization, and possible applications. Finally, thanks to the wide disparity in polymer matrix types, the variability in applications is important, from adsorption to mechanical enhancement, showing the easiness and benefit of olive stone integration in many materials. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

Back to TopTop