Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = residential load transfer device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 8332 KiB  
Article
Energy Management in Residential Microgrid Based on Non-Intrusive Load Monitoring and Internet of Things
by Rawda Ramadan, Qi Huang, Amr S. Zalhaf, Olusola Bamisile, Jian Li, Diaa-Eldin A. Mansour, Xiangning Lin and Doaa M. Yehia
Smart Cities 2024, 7(4), 1907-1935; https://doi.org/10.3390/smartcities7040075 - 23 Jul 2024
Cited by 25 | Viewed by 3908
Abstract
Recently, various strategies for energy management have been proposed to improve energy efficiency in smart grids. One key aspect of this is the use of microgrids. To effectively manage energy in a residential microgrid, advanced computational tools are required to maintain the balance [...] Read more.
Recently, various strategies for energy management have been proposed to improve energy efficiency in smart grids. One key aspect of this is the use of microgrids. To effectively manage energy in a residential microgrid, advanced computational tools are required to maintain the balance between supply and demand. The concept of load disaggregation through non-intrusive load monitoring (NILM) is emerging as a cost-effective solution to optimize energy utilization in these systems without the need for extensive sensor infrastructure. This paper presents an energy management system based on NILM and the Internet of Things (IoT) for a residential microgrid, including a photovoltaic (PV) plant and battery storage device. The goal is to develop an efficient load management system to increase the microgrid’s independence from the traditional electrical grid. The microgrid model is developed in the electromagnetic transient program PSCAD/EMTDC to analyze and optimize energy performance. Load disaggregation is obtained by combining artificial neural networks (ANNs) and particle swarm optimization (PSO) to identify appliances for demand-side management. An ANN is applied in NILM as a load identification task, and PSO is used to optimize the ANN algorithm. This combination enhances the NILM technique’s accuracy, which is verified using the mean absolute error method to assess the difference between the predicted and measured power consumption of appliances. The NILM output is then transferred to consumers through the ThingSpeak IoT platform, enabling them to monitor and control their appliances to save energy and costs. Full article
(This article belongs to the Topic Application of Smart Technologies in Buildings)
Show Figures

Figure 1

23 pages, 3867 KiB  
Article
Enhancing the Energy Efficiency of Buildings by Shading with PV Panels in Semi-Arid Climate Zone
by Aiman Albatayneh, Renad Albadaineh, Adel Juaidi, Ramez Abdallah, Alberto Zabalo and Francisco Manzano-Agugliaro
Sustainability 2022, 14(24), 17040; https://doi.org/10.3390/su142417040 - 19 Dec 2022
Cited by 18 | Viewed by 4384
Abstract
Solar energy is one of the most abundant and available forms of renewable energy. Reliance on the electricity network can be decreased and net-zero energy achieved by mounting photovoltaic power on the tops of houses. Photovoltaic arrays can also change how the roof’s [...] Read more.
Solar energy is one of the most abundant and available forms of renewable energy. Reliance on the electricity network can be decreased and net-zero energy achieved by mounting photovoltaic power on the tops of houses. Photovoltaic arrays can also change how the roof’s surface reacts to its environment. The influence of the structural system of a roof and weather on the energy consumption of a building is important. This research is concerned with focusing on the indirect effect of solar photovoltaic rooftop panels (shading effect) on the roof surface to see whether this effect is worth studying and calculating the total electrical load in the residential sector. Photovoltaic panels were modeled as a shading device, and the Integrated Environmental Solution-Virtual Environment Software was used to anticipate the monthly decline and growth in heating and cooling loads associated with the roof level. The influence of a photovoltaic system on a building’s roof-related energy load was measured concerning low-rise residential buildings in Mafraq city, which belongs to a mild dry-warm temperature zone. The findings indicated that a solar roof structure decreased heat loss by 4.85% in the summer and boosted heat transfer by 5.54% in the winter. The results highlight that renewable energy is very important in our times due to climate change and the increased demand for electricity by the residential sector, which is stimulated to find multiple ways to decrease and adapt to this change, and the aim of this paper helps to encourage to use solar energy by identifying the indirect effect of solar panels on building’s rooftops. This investigation also focuses on the value of offering essential instructions to who is concerned to the utilization of alternative energy to heat and cool structures, also will educate the public on a building’s total energy requirements, which is critical for future green structure design. Full article
(This article belongs to the Special Issue Worldwide Advances in Renewable Energies and Energy Efficiency)
Show Figures

Figure 1

18 pages, 3909 KiB  
Article
Load Transfer Device for Solving a Three-Phase Unbalance Problem Under a Low-Voltage Distribution Network
by Guanghai Bao and Sikai Ke
Energies 2019, 12(15), 2842; https://doi.org/10.3390/en12152842 - 24 Jul 2019
Cited by 37 | Viewed by 5009
Abstract
In the low-voltage (LV) distribution network, a three-phase unbalance problem often exists. It does not only increase line loss but also threaten the safety of the distribution network. Therefore, the author designs a residential load transfer device for a LV distribution network that [...] Read more.
In the low-voltage (LV) distribution network, a three-phase unbalance problem often exists. It does not only increase line loss but also threaten the safety of the distribution network. Therefore, the author designs a residential load transfer device for a LV distribution network that can deal with a three-phase unbalance problem by changing the connecting phase of the load. It consists of three parts: user controller for phase swapping, central controller for signal processing and monitoring platform for strategy calculation. This design was based on message queuing telemetry transport (MQTT) communication protocol, and Long Range and 4th Generation mobile telecommunications (LoRa + 4G) communication mode is used to realize the wireless connection between equipment and monitoring platform, and a control scheme is proposed. The improved multi-population genetic algorithm (IMPGA) with multi-objective is used to find the optimal swapping strategy, which is implemented on the monitoring platform. Then the phase swapping is realized by remote control, and the function of reducing three-phase unbalance is realized. The practical experimental result shows that the method can help to reduce the three-phase unbalance rate by changing the connection phase of the load, and the simulation results verify the effectiveness of the algorithm in the phase-swapping strategy. Full article
(This article belongs to the Special Issue The Digital Revolution in Future Power Distribution and Microgrids)
Show Figures

Graphical abstract

12 pages, 3557 KiB  
Article
DC Grid for Domestic Electrification
by G. Arunkumar, D. Elangovan, P. Sanjeevikumar, Jens Bo Holm Nielsen, Zbigniew Leonowicz and Peter K. Joseph
Energies 2019, 12(11), 2157; https://doi.org/10.3390/en12112157 - 5 Jun 2019
Cited by 24 | Viewed by 3569
Abstract
Various statistics indicate that many of the parts of India, especially rural and island areas have either partial or no access to electricity. The main reason for this scenario is the immense expanse of which the power producing stations and the distribution hubs [...] Read more.
Various statistics indicate that many of the parts of India, especially rural and island areas have either partial or no access to electricity. The main reason for this scenario is the immense expanse of which the power producing stations and the distribution hubs are located from these rural and distant areas. This emphasizes the significance of subsidiarity of power generation by means of renewable energy resources. Although in current energy production scenario electricity supply is principally by AC current, a large variety of the everyday utility devices like cell phone chargers, computers, laptop chargers etc. all work internally with DC power. The count of intermediate energy transfer steps are significantly abridged by providing DC power to mentioned devices. The paper also states other works that prove the increase in overall system efficiency and thereby cost reduction. With an abundance of solar power at disposal and major modification in the area of power electronic conversion devices, this article suggests a DC grid that can be used for a household in a distant or rural area to power the aforementioned, utilizing Solar PV. A system was designed for a household which is not connected to the main grid and was successfully simulated for several loads totaling to 250 W with the help of an isolated flyback converter at the front end and suitable power electronic conversion devices at each load points. Maximum abstraction of operational energy from renewable sources at a residential and commercial level is intended with the suggested direct current systems. Full article
Show Figures

Figure 1

23 pages, 1491 KiB  
Article
Intelligent Resource Allocation in Residential Buildings Using Consumer to Fog to Cloud Based Framework
by Sakeena Javaid, Nadeem Javaid, Tanzila Saba, Zahid Wadud, Amjad Rehman and Abdul Haseeb
Energies 2019, 12(5), 815; https://doi.org/10.3390/en12050815 - 1 Mar 2019
Cited by 23 | Viewed by 4335
Abstract
In this work, a new orchestration of Consumer to Fog to Cloud (C2F2C) based framework is proposed for efficiently managing the resources in residential buildings. C2F2C is a three layered framework consisting of cloud layer, fog layer and consumer layer. Cloud layer deals [...] Read more.
In this work, a new orchestration of Consumer to Fog to Cloud (C2F2C) based framework is proposed for efficiently managing the resources in residential buildings. C2F2C is a three layered framework consisting of cloud layer, fog layer and consumer layer. Cloud layer deals with on-demand delivery of the consumer’s demands. Resource management is intelligently done through the fog layer because it reduces the latency and enhances the reliability of cloud. Consumer layer is based on the residential users and their electricity demands from the six regions of the world. These regions are categorized on the bases of the continents. Two control parameters are considered: clusters of buildings and load requests, whereas four performance parameters are considered: Request Per Hour (RPH), Response Time (RT), Processing Time (PT) and cost in terms of Virtual Machines (VMs), Microgrids (MGs) and data transfer. These parameters are analysed by the round robin algorithm, equally spread current execution algorithm and our proposed algorithm shortest job first. Two scenarios are used in the simulations: resource allocation using MGs and resource allocation using MGs and power storage devices for checking the effectiveness of the proposed work. The simulation results of the proposed technique show that it has outperformed the previous techniques in terms of the above-mentioned parameters. There exists a tradeoff in the PT and RT as compared to cost of VM, MG and data transfer. Full article
(This article belongs to the Special Issue Demand-Response in Smart Buildings)
Show Figures

Figure 1

12 pages, 608 KiB  
Article
Impact of Energy Management of Electric Vehicles on Transient Voltage Stability of Microgrid
by Muhammad Shoaib Khalid, Xiangning Lin, Yixin Zhuo, Ramesh Kumar and Muhammad Kashif Rafique
World Electr. Veh. J. 2015, 7(4), 577-588; https://doi.org/10.3390/wevj7040577 - 28 Dec 2015
Cited by 8 | Viewed by 1926
Abstract
There is cause and effect relationship between increase in load due to increasing penetration of electric vehicles (EV) load that causes unbalanced conditions and affect the power quality such as voltage degradation and even damage the equipment if the system is not properly [...] Read more.
There is cause and effect relationship between increase in load due to increasing penetration of electric vehicles (EV) load that causes unbalanced conditions and affect the power quality such as voltage degradation and even damage the equipment if the system is not properly managed. This paper presents detailed review of energy supply and management in conjunction with load synchronization through EVs for maintaining transient voltage stability by providing reactive power support for the stability of power grid in vehicle-to-grid mode of operations. The energy management system is considered at different levels such as, stand-alone PV, stand-alone wind, stand-alone battery storage, stand-alone EV parking lot, residential feeder and commercial building feeders. First we proposed energy management algorithm, to limit the peak power drawn by EVs from distributed energy resources of microgrid, such that additional electrical resource will be transferred to resource constrained devices. The EVs negotiate based on their demand, priority and available electrical resource such that during higher electricity price the higher priority vehicles still require resource and perform uninterrupted operation. The transfer of electrical resource from one load device to another will help in reducing peak demand and improving the efficiency of the system. Secondly we proposed transient voltage stability margin index (TVSMI) to test the capability of EVs in contributing storage and supply services to the grid. The energy management control simulations are realized in DIgSILENT Power factory. Full article
17 pages, 1507 KiB  
Article
Thermal Performance of Ventilated Double Skin Façades with Venetian Blinds
by Jordi Parra, Alfredo Guardo, Eduard Egusquiza and Pere Alavedra
Energies 2015, 8(6), 4882-4898; https://doi.org/10.3390/en8064882 - 27 May 2015
Cited by 58 | Viewed by 9153
Abstract
Venetian blinds (VB) are shading devices of widespread use in residential and corporate buildings. They can reflect or transmit light into buildings and at the same time allow daylighting and exterior views. They can also efficiently block radiative heat from entering the building, [...] Read more.
Venetian blinds (VB) are shading devices of widespread use in residential and corporate buildings. They can reflect or transmit light into buildings and at the same time allow daylighting and exterior views. They can also efficiently block radiative heat from entering the building, and if combined with a heat dissipation system such as forced ventilation, they can improve the thermal performance of double skin façades (DSF). Computational Fluid Dynamics (CFD) has proven to be a useful tool for modeling flow and heat transfer in DSF, including conduction, convection and radiation heat transfer phenomena. The aim of this work is to evaluate, by means of CFD, the influence of several optical, construction and operation parameters of a DSF (such as optical properties of the materials, geometrical relations of the VB or flow stream conditions) in terms of energy savings, measured as a reduction of the solar load entering the building. Results obtained show that parameters such as the proximity of the VB to the exterior skin of the façade or a differentiated surface treatment for the exterior and interior faces of the VB louvers can notably affect the thermal performance of the DSF and hence the heat gains experienced by the building. Full article
(This article belongs to the Special Issue Energy Conservation in Infrastructures)
Show Figures

Figure 1

Back to TopTop