Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,549)

Search Parameters:
Keywords = renewable energy conversion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 8446 KB  
Article
Triple-Source Reduced-Component-Count Multilevel Inverter Integrated with a Carrier-Less Hybrid Pulse-Width Modulation Strategy for Enhanced Power Conversion Performance
by Radhika Subramanian and Krishnakumar Chittibabu
Symmetry 2025, 17(11), 1937; https://doi.org/10.3390/sym17111937 - 12 Nov 2025
Abstract
A novel reduced-component multilevel inverter (MLI) topology is presented to overcome the limitations of conventional multilevel inverters, such as high switching losses, complex modulation, and excessive semiconductor usage. The proposed triple-source cross-connected configuration minimizes conduction paths and reduces voltage stress across switching devices [...] Read more.
A novel reduced-component multilevel inverter (MLI) topology is presented to overcome the limitations of conventional multilevel inverters, such as high switching losses, complex modulation, and excessive semiconductor usage. The proposed triple-source cross-connected configuration minimizes conduction paths and reduces voltage stress across switching devices to approximately 45% of the total DC-link voltage. A hybrid carrier-less pulse-width modulation (PWM) strategy, derived from the equal-area criterion, was developed to generate switching pulses without the need for carriers or reference signals. Analytical and experimental analyses demonstrated a significant improvement in power quality, achieving a total harmonic distortion (THD) of 4.3%, compared with 8.2% in conventional PWM schemes, while enhancing the conversion efficiency from 91.5% to 95.2%. Simulation and hardware validation in a nine-level prototype confirmed the superior efficiency, low harmonic distortion, and compactness of the proposed inverter, making it well-suited for renewable energy integration, electric vehicles, and medium-power industrial systems. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

15 pages, 10715 KB  
Article
Noise Pollution from Diesel Generator Use During the 2024–2025 Electricity Crisis in Ecuador
by David del Pozo, Bryan Valle, Silvio Aguilar, Natalia Donoso and Ángel Benítez
Environments 2025, 12(11), 435; https://doi.org/10.3390/environments12110435 - 12 Nov 2025
Abstract
Hydropower is the primary source of electricity in several countries in Latin America. Hydropower provides approximately 80% of Ecuador’s electricity; however, it remains highly vulnerable to climate change, resulting in uncertainties in power generation due to altered precipitation patterns, runoff, and systematic failures. [...] Read more.
Hydropower is the primary source of electricity in several countries in Latin America. Hydropower provides approximately 80% of Ecuador’s electricity; however, it remains highly vulnerable to climate change, resulting in uncertainties in power generation due to altered precipitation patterns, runoff, and systematic failures. Consequently, Ecuadorians are becoming increasingly reliant on diesel generators during crises, resulting in public health, safety, and economic impacts, as well as social and political disruptions. This study evaluated noise pollution in the central urban area of the city of Loja for the first time during the 2024–2025 electricity crisis in Ecuador. A Type 1 integrating sound-level meter was used to monitor noise pollution (LAeq, 10min) at 20 locations during periods of generator operation and non-operation. At each location, the number of generators, the density of commercial activities along the streets, as well as traffic and other urban characteristics, were recorded. Results revealed that the presence of generators, street width, and the number of generators significantly increased the LAeq, 10min, often exceeding the limits set by the World Health Organization and Ecuador’s environmental regulations. Frequency spectrum analysis revealed that medium frequencies increased with A-weighting, while low frequencies rose with C-weighting, suggesting potential health risks to the local population. The thematic noise map during generator inactivity showed lower noise levels, averaging around 71.5 dBA. Conversely, when the generators were operational, noise levels exceeded 79.6 dBA, indicating a significant increase in environmental noise exposure associated with their use. This highlights an urgent need to implement and expand renewable energy sources, as existing options like wind power, photovoltaic energy, and biomass are insufficient to meet community demands. Full article
(This article belongs to the Special Issue Interdisciplinary Noise Research)
Show Figures

Figure 1

7 pages, 177 KB  
Editorial
Power Electronics for Energy Transition and Renewable Energy Conversion Processes
by Matias Diaz, Alexander Rojas and José Rodríguez
Processes 2025, 13(11), 3650; https://doi.org/10.3390/pr13113650 (registering DOI) - 11 Nov 2025
Abstract
The global energy transition has become an urgent engineering challenge rather than a distant aspiration [...] Full article
(This article belongs to the Section Sustainable Processes)
30 pages, 3885 KB  
Article
Dynamic Pressure Awareness and Spatiotemporal Collaborative Optimization Scheduling for Microgrids Driven by Flexible Energy Storage
by Hao Liu, Li Di, Yu-Rong Hu, Jian-Wei Ma, Jian Zhao, Xiao-Zhao Wei, Ling Miao and Jing-Yuan Yin
Eng 2025, 6(11), 323; https://doi.org/10.3390/eng6110323 - 11 Nov 2025
Abstract
Under the dual carbon goals, microgrids face significant challenges in managing multi-energy flow coupling and maintaining operational robustness with high renewable energy penetration. This paper proposes a novel dynamic pressure-aware spatiotemporal optimization dispatch strategy. The strategy is centered on intelligent energy storage and [...] Read more.
Under the dual carbon goals, microgrids face significant challenges in managing multi-energy flow coupling and maintaining operational robustness with high renewable energy penetration. This paper proposes a novel dynamic pressure-aware spatiotemporal optimization dispatch strategy. The strategy is centered on intelligent energy storage and enables proactive energy allocation for critical pressure moments. We designed and validated the strategy under an ideal benchmark scenario with perfect foresight of the operational cycle. This approach demonstrates its maximum potential for spatiotemporal coordination. On this basis, we propose a Multi-Objective Self-Adaptive Hybrid Enzyme Optimization (MOSHEO) algorithm. The algorithm introduces segmented perturbation initialization, nonlinear search mechanisms, and multi-source fusion strategies. These enhancements improve the algorithm’s global exploration and convergence performance. Specifically, in the ZDT3 test, the IGD metric improved by 7.7% and the SP metric was optimized by 63.4%, while the best HV value of 0.28037 was achieved in the UF4 test. Comprehensive case studies validate the effectiveness of the proposed approach under this ideal setting. Under normal conditions, the strategy successfully eliminates power and thermal deficits of 1120.00 kW and 124.46 kW, respectively, at 19:00. It achieves this through optimal quota allocation, which involved allocating 468.19 kW of electricity at 13:00 and 65.78 kW of thermal energy at 18:00. Under extreme weather, the strategy effectively converts 95.87 kW of electricity to thermal energy at 18:00. This conversion addresses a 444.46 kW thermal deficit. Furthermore, the implementation reduces microgrid cluster trading imbalances from 1300 kW to zero for electricity and from 400 kW to 176.34 kW for thermal energy, significantly enhancing system economics and multi-energy coordination efficiency. This research provides valuable insights and methodological support for advanced microgrid optimization by establishing a performance benchmark, with future work focusing on integration with forecasting techniques. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

19 pages, 4828 KB  
Review
Toward the Adoption of a Photocatalytic Membrane Electrode Assembly (P-MEA) System for Sustainable Green Hydrogen Production
by Mang Muan Lian, Bo-Sang Kim, Su-Min Lee, Su-Ho Ahn and Jung-Ho Yun
Sustainability 2025, 17(22), 10037; https://doi.org/10.3390/su172210037 - 10 Nov 2025
Viewed by 99
Abstract
Green hydrogen production using membrane electrode assembly (MEA) has attracted significant attention due to its remarkable energy conversion efficiency. To further enhance its sustainability, MEA-based water electrolysis can be integrated with renewable solar energy by adopting a photocatalytic MEA (P-MEA) system, incorporating light-transmitting [...] Read more.
Green hydrogen production using membrane electrode assembly (MEA) has attracted significant attention due to its remarkable energy conversion efficiency. To further enhance its sustainability, MEA-based water electrolysis can be integrated with renewable solar energy by adopting a photocatalytic MEA (P-MEA) system, incorporating light-transmitting windows into MEA stacks, and employing suitable photocatalytic electrode materials. A critical challenge lies in developing cost-effective and high-performance photocatalytic electrode materials by replacing conventional noble material systems with earth-abundant photocatalytic electrode materials. This review discusses recent advances in P-MEA concepts and fabrication strategies for photoelectrodes tailored to MEA operation. Particular emphasis is placed on elucidating the mechanisms of light-induced charge dynamics that govern the P-MEA-based water electrolysis process. Overall, this review highlights the synergistic potential of integrating photocatalysis with MEA-based water electrolysis to advance sustainable green hydrogen production. Full article
Show Figures

Figure 1

17 pages, 3076 KB  
Article
Operational Flexibility Assessment of a Power System Considering Uncertainty of Flexible Resources Supported by Wind Turbines Under Load Shedding Operation
by Guifen Jiang, Jiayin Xu, Yuming Shen, Peiru Feng, Hao Yang, Xu Gui, Yipeng Cao, Mingcheng Chen, Ming Wei and Yinghao Ma
Processes 2025, 13(11), 3635; https://doi.org/10.3390/pr13113635 - 10 Nov 2025
Viewed by 144
Abstract
The high proportion of renewable energy introduces significant operation risks to the system’s flexibility balance due to its volatility and randomness. Traditional regulation methods struggle to meet the urgent demand for flexible resources. Utilizing wind turbines (WTs) under load shedding operation can provide [...] Read more.
The high proportion of renewable energy introduces significant operation risks to the system’s flexibility balance due to its volatility and randomness. Traditional regulation methods struggle to meet the urgent demand for flexible resources. Utilizing wind turbines (WTs) under load shedding operation can provide additional reserve capacity, thereby reducing the risk of insufficient system flexibility. However, since wind speed and turbine output exhibit a cubic relationship, minor fluctuations in wind speed can lead to significant variations in output and reserve capacity. This increases the uncertainty in the supply of flexible resources from WTs, posing challenges to power system flexibility assessment. This paper investigates a method for assessing power system flexibility considering the uncertainty of flexible resources supported by WT under load shedding operation. Firstly, according to the flexibility supply control model of WT under shedding operation, the analytical relationship between output, flexible resources, and wind speed under a specific wind energy conversion coefficient is constructed; secondly, combined with the probabilistic model of wind speed based on the nonparametric kernel density estimation, the wind turbine flexible resource uncertainty model is constructed; thirdly, the Monte Carlo simulation is used to obtain the sampled wind speed data, and the operational flexibility assessment method of the power system considering the flexibility uncertainty of WT under load shedding operation is proposed. Finally, through case studies, the validity of the proposed model and method were verified. The analysis concludes that load shedding operation of WTs can enhance the system’s flexible resources to a certain extent but cannot provide stable bi-directional regulation capabilities. Full article
Show Figures

Figure 1

45 pages, 2852 KB  
Review
The Role of Carbon Capture, Utilization, and Storage (CCUS) Technologies and Artificial Intelligence (AI) in Achieving Net-Zero Carbon Footprint: Advances, Implementation Challenges, and Future Perspectives
by Ife Fortunate Elegbeleye, Olusegun Aanuoluwapo Oguntona and Femi Abiodun Elegbeleye
Technologies 2025, 13(11), 509; https://doi.org/10.3390/technologies13110509 - 8 Nov 2025
Viewed by 495
Abstract
Carbon dioxide (CO2), the primary anthropogenic greenhouse gas, drives significant and potentially irreversible impacts on ecosystems, biodiversity, and human health. Achieving the Paris Agreement target of limiting global warming to well below 2 °C, ideally 1.5 °C, requires rapid and substantial [...] Read more.
Carbon dioxide (CO2), the primary anthropogenic greenhouse gas, drives significant and potentially irreversible impacts on ecosystems, biodiversity, and human health. Achieving the Paris Agreement target of limiting global warming to well below 2 °C, ideally 1.5 °C, requires rapid and substantial global emission reductions. While recent decades have seen advances in clean energy technologies, carbon capture, utilization, and storage (CCUS) remain essential for deep decarbonization. Despite proven technical readiness, large-scale carbon capture and storage (CCS) deployment has lagged initial targets. This review evaluates CCS technologies and their contributions to net-zero objectives, with emphasis on sector-specific applications. We found that, in the iron and steel industry, post-combustion CCS and oxy-combustion demonstrate potential to achieve the highest CO2 capture efficiencies, whereas cement decarbonization is best supported by oxy-fuel combustion, calcium looping, and emerging direct capture methods. For petrochemical and refining operations, oxy-combustion, post-combustion, and chemical looping offer effective process integration and energy efficiency gains. Direct air capture (DAC) stands out for its siting flexibility, low land-use conflict, and ability to remove atmospheric CO2, but it’s hindered by high costs (~$100–1000/t CO2). Conversely, post-combustion capture is more cost-effective (~$47–76/t CO2) and compatible with existing infrastructure. CCUS could deliver ~8% of required emission reductions for net-zero by 2050, equivalent to ~6 Gt CO2 annually. Scaling deployment will require overcoming challenges through material innovations aided by artificial intelligence (AI) and machine learning, improving capture efficiency, integrating CCS with renewable hybrid systems, and establishing strong, coordinated policy frameworks. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

38 pages, 3977 KB  
Review
Biomass for Residential Heating: A Review of Technologies, Applications, and Sustainability Aspects
by Jakub Katerla and Krzysztof Sornek
Energies 2025, 18(22), 5875; https://doi.org/10.3390/en18225875 - 7 Nov 2025
Viewed by 273
Abstract
Biomass has long been a major source of energy for residential heating and, in recent decades, has regained attention as a renewable alternative to fossil fuels. This review explores the current state and prospects of domestic biomass-based heating technologies, including biomass-fired boilers, local [...] Read more.
Biomass has long been a major source of energy for residential heating and, in recent decades, has regained attention as a renewable alternative to fossil fuels. This review explores the current state and prospects of domestic biomass-based heating technologies, including biomass-fired boilers, local space heaters, and hybrid systems that integrate biomass with complementary renewable energy sources to deliver heat, electricity, and cooling. The review was conducted to identify key trends, performance data, and innovations in conversion technologies, fuel types, and efficiency enhancement strategies. The analysis highlights that biomass is increasingly recognized as a viable energy carrier for energy-efficient, passive, and nearly zero-energy buildings, particularly in cold climates where heating demand remains high. The analysis of the available studies shows that modern biomass-fired systems can achieve high energy performance while reducing environmental impact through advanced combustion control, optimized heat recovery, and integration with low-temperature heating networks. Overall, the findings demonstrate that biomass-based technologies, when designed and sourced efficiently and sustainably, can play a significant role in decarbonizing the residential heating sector and advancing nearly zero-energy building concepts. Full article
(This article belongs to the Special Issue Novel and Emerging Energy Systems)
Show Figures

Figure 1

27 pages, 4038 KB  
Article
Low-Carbon Demand Response Strategy for Park-Level Integrated Energy Systems Based on Typical Electricity–Carbon Coupling Scenarios
by Zhe Chen, Yongyong Jia, Jianhua Zhou, Hao Wang, Haixin Wu and Zhixin Fu
Processes 2025, 13(11), 3606; https://doi.org/10.3390/pr13113606 - 7 Nov 2025
Viewed by 185
Abstract
This paper addresses the low-carbon operation of integrated energy systems (PIESs) by proposing a carbon-aware demand response strategy with synergistic participation from consumers and energy storage. Initially, two typical scenarios—“electricity–carbon peak alignment” and “electricity–carbon peak misalignment”—are generated based on uncertainties in renewable generation [...] Read more.
This paper addresses the low-carbon operation of integrated energy systems (PIESs) by proposing a carbon-aware demand response strategy with synergistic participation from consumers and energy storage. Initially, two typical scenarios—“electricity–carbon peak alignment” and “electricity–carbon peak misalignment”—are generated based on uncertainties in renewable generation and load profiles. These scenarios aim to characterise the coupling relationship between electricity and carbon emissions, providing a contextual basis for guiding responsive behaviours of consumers and storage systems. Subsequently, a carbon emission flow model incorporating energy conversion and storage is developed to quantify the carbon emission impacts of both consumers and energy storage units. Furthermore, a carbon-aware demand response strategy is formulated using dynamic carbon signals, coupled with an assessment model for carbon reduction benefits. Experimental validation across both scenarios demonstrates the efficacy of the proposed strategy in promoting low-carbon PIES operation. Compared to traditional electricity demand response, the proposed low-carbon demand response strategy enhances carbon emission reduction by 21.5% under the “electricity–carbon peak alignment” scenario, and this reduction even doubles under the “electricity–carbon peak misalignment” scenario. Additionally, the integration of energy storage for response increases the park’s average carbon reduction by 15%. This demonstrates that the strategy proposed in this paper significantly improves the park’s capability for carbon emission reduction. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 438 KB  
Article
Green Trade, Economic Complexity and Green Indicators: Evidence in Asia Countries with PPML Fixed Effects Model
by Indraswati Tri Abdi Reviane, Abdul Hamid Paddu, Nur Dwiana Sari Saudi, Hefrizal Handra and Aditya Idris
Economies 2025, 13(11), 314; https://doi.org/10.3390/economies13110314 - 4 Nov 2025
Viewed by 453
Abstract
This study investigates the relationship between green trade, economic complexity, and green indicators in Asian countries using a Poisson Pseudo Maximum Likelihood (PPML) fixed effects model. This study uses panel data from 33 countries in the Asia region, focusing on the national level [...] Read more.
This study investigates the relationship between green trade, economic complexity, and green indicators in Asian countries using a Poisson Pseudo Maximum Likelihood (PPML) fixed effects model. This study uses panel data from 33 countries in the Asia region, focusing on the national level of each country from 2010 to 2023. The analysis explores how economic sophistication and environmental indicators influence the capacity of economies to engage in sustainable trade. The findings reveal that economic complexity significantly enhances green trade, underscoring the role of knowledge-intensive production structures in fostering environmentally friendly export performance. Among the green indicators, green economic opportunities demonstrate a positive and significant effect on green trade, which indicates that economies allocating greater financial resources to renewable energy and sustainable infrastructure are better positioned to expand their participation in eco-friendly markets. This signals strong trade readiness and market-driven incentives. Conversely, green innovation shows a negative and significant effect, indicating that innovation is not yet translating into export competitiveness, is still costly, and is in an early phase. Moreover, economic complexity and renewable energy show positive and significant effects, reflecting that higher complexity enables the adoption of green technologies, the embedding of sustainability in value chains, and the export of high-value green products. These results suggest that green economic opportunities and regional dynamics play a complementary role in shaping outcomes, with proximity to innovation hubs amplifying the capacity for sustainable trade. The study contributes to the literature by linking economic complexity with green trade in the Asian context, offering evidence-based recommendations to enhance sustainability-driven growth. Full article
(This article belongs to the Section International, Regional, and Transportation Economics)
Show Figures

Figure 1

24 pages, 6126 KB  
Article
An Integrated Tuned Hydro-PTO Semi-Submersible Platform for Deep-Sea Wind-Wave Cogeneration: Design, Hydrodynamic Analysis
by Guohua Wang, Haolin Yang, Fangyuan Zhou, Yuhang Shen, Zhirui Zhang, Hailong Jiang, Runnan Liu, Jiaxin Liu and Yi Zhang
Energies 2025, 18(21), 5778; https://doi.org/10.3390/en18215778 - 2 Nov 2025
Viewed by 230
Abstract
The ocean offers abundant wind and wave energy resources. This paper proposes an integrated concept that co-locates a semi-submersible floating wind platform with wave energy converters (WECs) to exploit the geographical consistency of these resources. By sharing the platform foundation and power transmission [...] Read more.
The ocean offers abundant wind and wave energy resources. This paper proposes an integrated concept that co-locates a semi-submersible floating wind platform with wave energy converters (WECs) to exploit the geographical consistency of these resources. By sharing the platform foundation and power transmission infrastructure, this integrated system enhances the utilization efficiency of marine space and renewable energy. Inspired by the principles of the Tuned Mass Damper (TMD) and leveraging mature hydraulic technologies from wave energy conversion and offshore drilling heave compensation systems, this study introduces a novel scheme. This scheme integrates a heave plate with a hydraulic Power Take-Off (PTO) system, functionally acting as a wave energy converter, to the floating platform. The primary objective is to mitigate the platform’s motion response while simultaneously generating electricity. The research investigates the motion performance improvement of this integrated platform under South China Sea conditions. The results demonstrate that the proposed WEC–PTO system not only improves the platform’s wave resistance and adaptability to deep-sea environments but also increases the overall efficiency of marine energy equipment deployment. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

61 pages, 15525 KB  
Review
Transesterification/Esterification Reaction Catalysed by Functional Hybrid MOFs for Efficient Biodiesel Production
by Luis P. Amador-Gómez, Delia Hernández-Romero, José M. Rivera-Villanueva, Sharon Rosete-Luna, Carlos A. Cruz-Cruz, Enrique Méndez-Bolaina, Elena de la C. Herrera-Cogco, Rafael Melo-González, Agileo Hernández-Gordillo and Raúl Colorado-Peralta
Reactions 2025, 6(4), 58; https://doi.org/10.3390/reactions6040058 - 1 Nov 2025
Viewed by 382
Abstract
Biodiesel is an alternative, sustainable, renewable, and environmentally friendly energy source, which has generated interest from the scientific community due to its low toxicity, rapid biodegradability, and zero carbon footprint. Biodiesel is a biofuel produced by the transesterification of triglycerides or the esterification [...] Read more.
Biodiesel is an alternative, sustainable, renewable, and environmentally friendly energy source, which has generated interest from the scientific community due to its low toxicity, rapid biodegradability, and zero carbon footprint. Biodiesel is a biofuel produced by the transesterification of triglycerides or the esterification of free fatty acids (FFA). Both reactions require catalysts with numerous active sites (basic, acidic, bifunctional, or enzymatic) for efficient biodiesel production. On the other hand, since the late 1990s, metal–organic frameworks (MOFs) have emerged as a new class of porous materials and have been successfully used in various fields due to their multiple properties. For this reason, MOFs have been used as heterogeneous catalysts or as a platform for designing active sites, thus improving stability and reusability. This literature review presents a comprehensive analysis of using MOFs as heterogeneous catalysts or supports for biodiesel production. The optimal parameters for transesterification/esterification are detailed, such as the alcohol/feedstock molar ratio, catalyst amount, reaction time and temperature, conversion percentage, biodiesel yield, fatty acid and water content, etc. Additionally, novel methodologies such as ultrasound and microwave irradiation for obtaining MOF-based catalysts are described. It is important to note that most studies have shown biodiesel yields >90% and multiple reuse cycles with minimal activity loss. The bibliographic analysis was conducted using the American Chemical Society (ACS) Scifinder® database, the Elsevier B.V. Scopus® database, and the Clarivate Analytics Web of Science® database, under the institutional license of the Universidad Veracruzana. Keywords were searched for each section, generally limiting the document type to “reviews” and “journals,” and the language to English, and published between 2000 and 2025. Full article
Show Figures

Graphical abstract

20 pages, 1332 KB  
Article
Bioenergy Potential of Anaerobic Co-Digestion of Aquaponics Effluent and Cattle Manure
by Alexia de Sousa Gomes, Juliana Lobo Paes, Daiane Cecchin, Regina Menino, Igor Ferreira Oliva, João Paulo Barreto Cunha and Flavia Lucila Tonani
AgriEngineering 2025, 7(11), 363; https://doi.org/10.3390/agriengineering7110363 - 1 Nov 2025
Viewed by 251
Abstract
Mathematical modeling is a key tool for describing and predicting the dynamic behavior of anaerobic digestion. Studies combining the co-digestion of aquaponics effluent (AE) and cattle manure (CM) with kinetic modeling remain scarce, particularly regarding the estimation of the apparent kinetic constant of [...] Read more.
Mathematical modeling is a key tool for describing and predicting the dynamic behavior of anaerobic digestion. Studies combining the co-digestion of aquaponics effluent (AE) and cattle manure (CM) with kinetic modeling remain scarce, particularly regarding the estimation of the apparent kinetic constant of hydrolysis constants and energy conversion indicators. Accordingly, this study aimed to evaluate the bioenergy potential of co-digesting aquaponics effluent (AE) and cattle manure (CM), with an emphasis on kinetic modeling and energy conversion. The experiments were carried out in a bench-scale Indian-type anaerobic biodigester. Different AE, CM, and water (W) (0:1, 1:0, 1:1, 1:3, 3:1 W:CM, and 1:1, 1:3, and 3:1 AE:CM) ratios were tested to identify the most efficient substrate combination for biogas production. The 1:3 AE:CM ratio achieved the best performance, with the Gompertz model providing the best fit for cumulative production and the first-order model accurately estimating k. This ratio yielded the highest cumulative biogas production (72.2 L kg−1 substrate), shorter lag phase, higher production rate, and greater energy conversion efficiency. Comparative analysis revealed that 1:3 AE:CM outperformed both 1:3 A:CM and CM alone, highlighting the positive influence of aquaponics effluent on microbial activity and process stability. These results demonstrate that anaerobic co-digestion of AE and CM, particularly at the 1:3 ratio, is a viable and efficient strategy for renewable energy generation in rural areas, while promoting waste valorization and enhancing environmental and energy sustainability. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Graphical abstract

16 pages, 3690 KB  
Proceeding Paper
Mapping Green Hydrogen Research in North Africa: A Bibliometric Approach for Strategic Foresight
by Hicham Boutracheh, Mouhssine Yassine, Rachid El Ansari and Aniss Moumen
Eng. Proc. 2025, 112(1), 59; https://doi.org/10.3390/engproc2025112059 - 31 Oct 2025
Viewed by 235
Abstract
This bibliometric analysis aims to map the evolution, disciplinary structure, and collaboration dynamics of green hydrogen (GH) research in North Africa from 2019 to 2025. Drawing on a corpus of ~39,000 global publications, indexed in Scopus and analysed through SciVal, we isolate and [...] Read more.
This bibliometric analysis aims to map the evolution, disciplinary structure, and collaboration dynamics of green hydrogen (GH) research in North Africa from 2019 to 2025. Drawing on a corpus of ~39,000 global publications, indexed in Scopus and analysed through SciVal, we isolate and examine the contributions of Egypt, Morocco, Algeria, Tunisia, and Libya. Egypt leads the region with 842 publications and a field-weighted citation impact of 2.42, followed by Morocco (232 Pubs., FWCI 2.30) and Algeria (184 Pubs., FWCI 1.65). Notably, Tunisia exhibits the highest growth factor (41 times since 2019), while Libya remains marginal with only 18 publications in the GH field. The region is well represented in Energy and Environmental fields but is underrepresented in trendy areas such as Materials and Chemical Engineering, highlighting critical gaps in consistency, sophistication, and technical infrastructure. While international collaboration exceeds 69% for most countries, it rarely translates into a high impact compared to the global average. Conversely, the limited industrial collaboration shows the highest citation impact (e.g., Tunisia: 68 citations/publications). A thematic analysis reveals shared strengths in electrolytic hydrogen production and renewable energy integration, with Egypt showing diversification into microalgae and nanocomposites and Morocco excelling in techno-economic assessments and ammonia-based systems. By revealing patterns in research quality, collaboration, and thematic positioning, this study offers evidence-based insights to inform national science strategies, enhance regional cooperation, and position North Africa more strategically in the emerging global green hydrogen economy. Full article
Show Figures

Figure 1

25 pages, 1796 KB  
Review
Emerging Technologies in Pretreatment and Hydrolysis for High-Solid-Loading Bioethanol Production from Lignocellulosic Biomass
by Nida Arshad, Elizabeth Jayex Panakkal, Palani Bharathy Kalivarathan, Atthasit Tawai, Santi Chuetor, Wanwitoo Wanmolee, Suchata Kirdponpattara, Aiya Chantarasiri, Suchitra Rakesh, Athanasia Amanda Septevani, Ponnusami Venkatachalam and Malinee Sriariyanun
Fermentation 2025, 11(11), 613; https://doi.org/10.3390/fermentation11110613 - 28 Oct 2025
Viewed by 1067
Abstract
The global reliance on fossil fuels has caused severe environmental challenges, emphasizing the urgent need for sustainable and renewable energy sources. Bioethanol production from lignocellulosic biomass has emerged as a promising alternative due to its abundance, renewability, and carbon-neutral footprint. However, its economic [...] Read more.
The global reliance on fossil fuels has caused severe environmental challenges, emphasizing the urgent need for sustainable and renewable energy sources. Bioethanol production from lignocellulosic biomass has emerged as a promising alternative due to its abundance, renewability, and carbon-neutral footprint. However, its economic feasibility remains a major obstacle owing to high production costs, particularly those associated with low ethanol titers and the energy-intensive distillation process costs for low titers. High-solid loading processes (≥15% w/w or w/v) have demonstrated potential to overcome these limitations by minimizing water and solvent consumption, enhancing sugar concentrations, increasing ethanol titers, and lowering downstream processing cost. Nevertheless, high-solid loading also introduces operational bottlenecks, such as elevated viscosity, poor mixing, and limited mass and heat transfer, which hinder enzymatic hydrolysis efficiency. This review critically examines emerging pretreatment and enzymatic hydrolysis strategies tailored for high-solid loading conditions. It also explores techniques that improve sugar yields and conversion efficiency while addressing key technical barriers, including enzyme engineering, process integration, and optimization. By evaluating these challenges and potential mitigation strategies, this review provides actionable insights to intensify lignocellulosic ethanol production and advance the development of scalable, cost-effective biorefinery platforms. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass in Biorefinery Processes)
Show Figures

Figure 1

Back to TopTop