Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (116)

Search Parameters:
Keywords = reinforced tissue matrix

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5886 KB  
Article
Design, Characterization, and Enhanced Performance of Electrospun Chitosan-Based Nanocomposites Reinforced with Halloysite Nanotubes and Cerium Oxide Nanoparticles for Wound Healing Applications
by Valentina A. Petrova, Natallia V. Dubashynskaya, Sergei G. Zhuravskii, Daria N. Poshina, Alexey S. Golovkin, Alexander I. Mishanin, Iosif V. Gofman, Elena M. Ivan’kova, Maria Y. Naumenko, Galina Y. Yukina, Elena G. Sukhorukova, Arina D. Filippova, Vladimir K. Ivanov, Alexander V. Yakimansky and Yury A. Skorik
Int. J. Mol. Sci. 2025, 26(21), 10520; https://doi.org/10.3390/ijms262110520 - 29 Oct 2025
Viewed by 124
Abstract
The development of advanced wound dressings that integrate favorable physico-mechanical properties with the ability to support physiological healing processes remains a critical challenge in biomaterials science. An ideal dressing should modulate the wound microenvironment, prevent infection, maintain hydration, and possess adequate strength and [...] Read more.
The development of advanced wound dressings that integrate favorable physico-mechanical properties with the ability to support physiological healing processes remains a critical challenge in biomaterials science. An ideal dressing should modulate the wound microenvironment, prevent infection, maintain hydration, and possess adequate strength and elasticity. This study aimed to fabricate and characterize electrospun chitosan (CS)-based 3D scaffolds dual-reinforced with halloysite nanotubes (HNTs) and cerium oxide nanoparticles (CeONPs) to enhance material properties and biological performance. HNTs were incorporated to improve electrospinnability and provide mechanical reinforcement, while CeONPs were added for their redox-modulating and anti-inflammatory activities. Composite mats were fabricated via non-capillary electrospinning. The individual and synergistic effects of HNTs and CeONPs were systematically evaluated using physico-chemical methods (SEM, EDX, WAXS, TGA, mechanical testing) and biological assays (in vitro cytocompatibility with mesenchymal stem cells, in vivo biocompatibility, and wound healing efficacy in a rat model). Scaffolds containing only HNTs exhibited defect-free nanofibers with an average diameter of 151 nm, whereas the dual-filler (CS-PEO-HNT-CeONP) composites showed less uniform fibers with a rough surface and a larger average diameter of 233 nm. The dual-filler system demonstrated significantly enhanced mechanical properties, with a Young’s modulus nearly double that of pure CS mats (881 MPa vs. 455 MPa), attributed to strong interfacial interactions. In vivo, the CS-PEO-HNT-CeONP scaffolds degraded more slowly, promoted earlier formation of a connective tissue capsule, and elicited a reduced inflammatory response compared to single-filler systems. Although epithelialization was temporarily delayed, the dual-filler composite ultimately facilitated superior tissue regeneration, characterized by a more organized, native-like collagen architecture. The synergistic combination of HNTs and CeONPs within a CS matrix yields a highly promising scaffold for wound management, offering a unique blend of tailored biodegradability, enhanced mechanical strength, and the ability to guide healing towards a regenerative rather than a fibrotic outcome, particularly for burns and traumatic injuries. Full article
(This article belongs to the Special Issue Medical Applications of Polymer Materials)
Show Figures

Figure 1

23 pages, 709 KB  
Article
Analysis of the Phenolic Profile of Chelidonium majus L. and Its Combination with Sericin: Balancing Antimicrobial Activity and Cytocompatibility
by Ana Borges, José Luis Ordóñez-Díaz, Yara Aquino, José Manuel Moreno-Rojas, María Luisa Martín Calvo, Josiana A. Vaz and Ricardo C. Calhelha
Int. J. Mol. Sci. 2025, 26(20), 9911; https://doi.org/10.3390/ijms26209911 - 11 Oct 2025
Viewed by 282
Abstract
The incorporation of bioactive natural compounds into biomedical applications offers a promising route to enhance therapeutic efficacy while supporting sustainability. In this study, we investigated the synergistic potential of Sericin, a silk-derived biopolymer, and Chelidonium majus L. (C. majus), a medicinal [...] Read more.
The incorporation of bioactive natural compounds into biomedical applications offers a promising route to enhance therapeutic efficacy while supporting sustainability. In this study, we investigated the synergistic potential of Sericin, a silk-derived biopolymer, and Chelidonium majus L. (C. majus), a medicinal plant with a diverse phenolic profile, in relation to biological activities relevant for wound care and infection control. A combined experimental strategy was applied, integrating detailed chemical characterization of C. majus extracts with antimicrobial and cytocompatibility assays across different Sericin–plant extract ratios (1:1, 1:2, 2:2, and 2:1). Phytochemical analysis identified and quantified 57 phenolic compounds, including high levels of flavonoids (quercetin, kaempferol, isorhamnetin) and phenolic acids (caffeic and ferulic acid). Salicylic acid (123.6 µg/g), feruloyltyramine (111.8 µg/g), and pinocembrin (98.4 µg/g) were particularly abundant, compounds previously reported to disrupt microbial membranes and impair bacterial viability. These metabolites correlated with the strong antimicrobial activity of C. majus against Gram-positive strains (MIC = 5–10 mg/mL). In combination with Sericin, antimicrobial performance was ratio-dependent, with higher proportions of C. majus (2:1) retaining partial inhibitory effects. Cytocompatibility assays with HFF1 fibroblasts demonstrated low antiproliferative activity across most formulations (GI50 > 400 µg/mL), supporting their potential safety in topical applications. Collectively, the results indicate a concentration-dependent interaction between C. majus phenolics and the Sericin protein matrix, reinforcing their suitability as candidates for natural-based wound healing materials. Importantly, the valorization of Sericin, an underutilized byproduct of the silk industry, together with a widely accessible medicinal plant, underscores the ecological and economic sustainability of this approach. Overall, this work supports the exploration of the development of biomaterials with potential for advancing tissue repair and wound management. Full article
Show Figures

Graphical abstract

13 pages, 250 KB  
Review
Nanocomposite Biomaterials for Tissue-Engineered Hernia Repair: A Review of Recent Advances
by Octavian Andronic, Alexandru Cosmin Palcau, Alexandra Bolocan, Alexandru Dinulescu, Daniel Ion and Dan Nicolae Paduraru
Biomolecules 2025, 15(9), 1348; https://doi.org/10.3390/biom15091348 - 22 Sep 2025
Viewed by 765
Abstract
Hernia repair is among the most frequent procedures in general surgery, traditionally performed with synthetic meshes such as polypropylene. While effective in reducing recurrence, these materials are biologically inert and often trigger chronic inflammation, fibrosis, pain, and impaired abdominal wall function, with a [...] Read more.
Hernia repair is among the most frequent procedures in general surgery, traditionally performed with synthetic meshes such as polypropylene. While effective in reducing recurrence, these materials are biologically inert and often trigger chronic inflammation, fibrosis, pain, and impaired abdominal wall function, with a significant impact on long-term quality of life. A comprehensive literature search was conducted in PubMed, Web of Science, and Scopus databases, and relevant preclinical, clinical, and review articles were synthesized within a narrative review framework. Recent advances in tissue engineering propose a shift from passive reinforcement to regenerative strategies based on biomimetic scaffolds, nanomaterials, and nanocomposites that replicate the extracellular matrix, enhance cell integration, and provide controlled drug delivery. Nanotechnology enables localized release of anti-inflammatory, antimicrobial, and pro-angiogenic agents, while electrospun nanofibers and composite scaffolds improve strength and elasticity. In parallel, 3D printing allows for patient-specific implants with tailored architecture and regenerative potential. Although preclinical studies show encouraging results, clinical translation remains limited by cost, regulatory constraints, and long-term safety uncertainties. Overall, these innovations highlight a transition toward personalized and regenerative hernia repair, aiming to improve durability, function, and patient quality of life. Full article
17 pages, 3324 KB  
Article
Silica Nanoparticle-Reinforced Bioactive Oxidized Alginate/Polyacrylamide–Gelatin Interpenetrating Polymer Network Composite Hydrogels
by Yanan Bu, Jiayi Liu, Jiji Fan, Xiuqiong Chen, Huiqiong Yan and Qiang Lin
Gels 2025, 11(9), 748; https://doi.org/10.3390/gels11090748 - 17 Sep 2025
Cited by 1 | Viewed by 494
Abstract
Alginate hydrogels are promising tissue engineering biomaterials due to their biocompatibility and structural similarity to the extracellular matrix, but their poor mechanical strength, rapid degradation, and lack of bioactivity limit applications. To address this, a novel oxidized alginate/polyacrylamide/silica nanoparticle–gelatin (OA/PAAm/SiO2-GT) composite [...] Read more.
Alginate hydrogels are promising tissue engineering biomaterials due to their biocompatibility and structural similarity to the extracellular matrix, but their poor mechanical strength, rapid degradation, and lack of bioactivity limit applications. To address this, a novel oxidized alginate/polyacrylamide/silica nanoparticle–gelatin (OA/PAAm/SiO2-GT) composite hydrogel was developed using an interpenetrating polymer network (IPN) strategy, reinforced with silica nanoparticles and coated with gelatin. The influence of SiO2 content on the microstructure, mechanical properties, swelling behavior, biodegradability, biomineralization, and cytocompatibility of the composite hydrogel was systematically investigated. Experimental results revealed that SiO2 nanoparticles interacted with the polymer matrix within the composite hydrogel. With increasing content of SiO2, the porosity of the OA/PAAm/SiO2-GT composite hydrogel gradually decreased, while the mechanical properties exhibited a trend of initial enhancement followed by reduction, with maximum compressive strength at a SiO2 content of 1.0% (w/v). Moreover, the incorporation of SiO2 nanoparticles effectively modulated the swelling behavior, biodegradability, and biomineralization capacity of the composite hydrogel under in vitro conditions. Meanwhile, the OA/PAAm/SiO2-GT composite hydrogel supported favorable cell adhesion and proliferation, optimal at a SiO2 content of 0.5% (w/v). Furthermore, with increasing concentration of SiO2 nanoparticles, the intracellular alkaline phosphatase (ALP) activity progressively increased, suggesting a promotive effect of SiO2 nanoparticles on the osteogenic differentiation of MG63 cells. Therefore, the incorporation of SiO2 nanoparticles into the OA/PAAm IPN matrices provides an effective means to tailor its biological properties, rendering it great potential for biomedical applications such as tissue engineering. Full article
Show Figures

Figure 1

13 pages, 2858 KB  
Article
A Single-Nucleus Transcriptomic Atlas of Human Supernumerary Tooth Pulp Reveals Lineage Diversity and Transcriptional Heterogeneity Using PCA-Based Analysis
by Eungyung Lee and In-Ryoung Kim
Appl. Sci. 2025, 15(18), 9900; https://doi.org/10.3390/app15189900 - 10 Sep 2025
Viewed by 446
Abstract
(1) Background: Supernumerary teeth are developmental anomalies, and their pulp tissue may harbor unique cellular and molecular features. However, the biology of this rare tissue remains poorly understood. This study aimed to characterize the cellular diversity and regenerative potential of supernumerary pulp at [...] Read more.
(1) Background: Supernumerary teeth are developmental anomalies, and their pulp tissue may harbor unique cellular and molecular features. However, the biology of this rare tissue remains poorly understood. This study aimed to characterize the cellular diversity and regenerative potential of supernumerary pulp at single-nucleus resolution. (2) Methods: Human supernumerary tooth pulp samples were analyzed using single-nucleus RNA sequencing. Gene expression profiles were processed and reduced to their main patterns of variation using principal component analysis (PCA), supported by clustering, pathway analysis, and lineage-specific scoring. (3) Results: The analysis suggested two dominant biological programs: a vascular–immune/stress axis and an extracellular matrix (ECM)/contractile remodeling axis. Vascular lineages were closely linked to immune and stress responses, while mesenchymal and perivascular populations were enriched in ECM-related pathways. Neural and glial contributions were relatively minor. (4) Conclusions: These findings suggest that supernumerary pulp appears to preserve key regenerative features similar to normal pulp, but with potential reinforcement of vascular–immune coupling and ECM remodeling. This work represents the first single-nucleus transcriptomic reference for supernumerary pulp, offering a foundation for future studies on dental pulp regeneration. Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
Show Figures

Figure 1

10 pages, 230 KB  
Review
Main Findings from Retrospective Studies on the Comorbidity of Asthma and Sinusitis and Their Implications for Clinical Practice
by Nathalia Silveira Finck and Erick Gomes Perez
Sinusitis 2025, 9(2), 17; https://doi.org/10.3390/sinusitis9020017 - 4 Sep 2025
Viewed by 784
Abstract
Asthma and chronic rhinosinusitis (CRS) are prevalent chronic inflammatory conditions of the airways that frequently occur together, contributing to increased disease burden and reduced quality of life. This study aimed to synthesize findings from retrospective research to better understand the clinical and pathophysiological [...] Read more.
Asthma and chronic rhinosinusitis (CRS) are prevalent chronic inflammatory conditions of the airways that frequently occur together, contributing to increased disease burden and reduced quality of life. This study aimed to synthesize findings from retrospective research to better understand the clinical and pathophysiological interrelations between these two conditions. A narrative review was conducted, including studies (2002–2025) assessing prevalence, lung function, biomarkers, quality of life, and treatment outcomes in patients with confirmed asthma and/or CRS. The results revealed a high prevalence of comorbidity, particularly in patients with CRS with nasal polyps (CRSwNP), where asthma co-occurrence exceeds 50% in certain phenotypes. Shared type 2 inflammatory mechanisms, including eosinophilic infiltration, cytokine overexpression (IL-4, IL-5, and IL-13), and tissue remodeling via matrix metalloproteinases, were frequently identified. These findings support the unified airway model and highlight the systemic nature of inflammation in these patients. Biologic therapies demonstrated effectiveness in reducing exacerbations and improving clinical outcomes, especially in patients with more severe phenotypes. The inclusion of dentistry and oral health as components of the systemic inflammatory burden offers an innovative perspective and reinforces the importance of holistic, interdisciplinary care. This study underscores the need for a multidisciplinary, phenotypically guided approach to treatment. Recognizing and systematically addressing this comorbidity can improve disease control and enhance patient quality of life. Full article
30 pages, 6075 KB  
Article
Enhancing Cellular Interactions Through Bioactivation and Local Nanomechanical Reinforcement in Nanodiamond-Loaded 3D-Printed Gellan Gum Scaffolds
by Carmen-Valentina Nicolae, Masoumeh Jahani Kadousaraei, Elena Olăreț, Andrada Serafim, Mehmet Serhat Aydin, Ioana-Teodora Bogdan, Adriana Elena Bratu, Raluca-Elena Ginghină, Alexandra Dobranici, Sorina Dinescu, Kamal Mustafa and Izabela-Cristina Stancu
Materials 2025, 18(17), 4131; https://doi.org/10.3390/ma18174131 - 3 Sep 2025
Viewed by 1023
Abstract
The integration of nanomaterials within hydrogel scaffolds offers significant promise in bone tissue engineering by improving mechanical performance and modulating cellular responses through mechanotransductive and biochemical signaling. Previous studies have demonstrated that nanodiamonds (NDs) incorporated in electrospun microfibrillar meshes enhance cellular adhesion, spreading, [...] Read more.
The integration of nanomaterials within hydrogel scaffolds offers significant promise in bone tissue engineering by improving mechanical performance and modulating cellular responses through mechanotransductive and biochemical signaling. Previous studies have demonstrated that nanodiamonds (NDs) incorporated in electrospun microfibrillar meshes enhance cellular adhesion, spreading, and cytoskeletal organization through localized mechanical reinforcement. However, the effects of ND loading into soft, bioinert three-dimensional hydrogel matrices remain underexplored. Here, we developed nanostructured 3D printing inks composed of gellan gum (GG) supplemented with a low content of ND nanoadditive (0–3% w/v). ND integration improved the shear-thinning properties of the formulation, enabling consistent filament formation and reliable extrusion-based 3D printing. Structural and mechanical assessments confirmed enhanced scaffold morphology, reduced deformation, and improved morphostructural integrity under compression and increased local stiffness at 2% ND loading (GG_ND2%). Biological assessments revealed that increasing ND content enhanced murine preosteoblast viability, proliferation, and attachment, particularly in GG_ND2%. Furthermore, bioactivation of the GG_ND2% formulation with icariin (ICA), a bioflavonoid known for its osteogenic and angiogenic activity, amplified the beneficial cellular responses of MG-63 cells to ND loading, promoting enhanced surface mineralization and improved cell–matrix interactions. Collectively, these findings highlight the potential of ND-reinforced GG scaffolds bioactivated with ICA, integrating structural reinforcement and biological functionalities that may support osteogenic responses. Full article
Show Figures

Graphical abstract

43 pages, 5417 KB  
Review
Integrating Graphene Oxide and Mesenchymal Stem Cells in 3D-Printed Systems for Drug Delivery and Tissue Regeneration
by Igor Soares Gianini Grecca, Vitor Fernando Bordin Miola, Júlia Carolina Ferreira, Thiago Rissato Vinholo, Laira Mireli Dias da Silva, Paulo Gabriel Friedrich Totti, Silvia Helena Soares Gianini, Maricelma da Silva Soares de Souza, Juliana da Silva Soares de Souza, Adriano Cressoni Araújo, Elen Landgraf Guiguer, Caio Sérgio Galina Spilla, Marcelo Dib Bechara, Domingos Donizeti Roque, Eliana de Souza Bastos Mazuqueli Pereira and Karina Torres Pomini
Pharmaceutics 2025, 17(8), 1088; https://doi.org/10.3390/pharmaceutics17081088 - 21 Aug 2025
Viewed by 802
Abstract
Mesenchymal stem cells (MSCs) represent a promising strategy in the field of regenerative medicine due to their multipotent differentiation capacity and immunomodulatory properties. The interaction of these cells with the extracellular matrix (ECM) and biomaterials, notably graphene oxide (GO), has proven decisive in [...] Read more.
Mesenchymal stem cells (MSCs) represent a promising strategy in the field of regenerative medicine due to their multipotent differentiation capacity and immunomodulatory properties. The interaction of these cells with the extracellular matrix (ECM) and biomaterials, notably graphene oxide (GO), has proven decisive in modulating cell behavior, with the potential to optimize tissue regeneration processes. This review was conducted using the MEDLINE, Scopus, and Cochrane databases, covering studies published between 2018 and 2025, from which seven studies met the inclusion criteria, with an emphasis on in vitro and in vivo investigations regarding the association between GO and MSCs. The main findings demonstrate that GO, particularly when conjugated with polymers such as poly(L-lactic acid) (PLLA), enhances cell adhesion, stimulates proliferation, and promotes the osteogenic differentiation of MSCs, in addition to positively modulating intracellular signaling pathways. However, significant gaps remain in understanding the mechanisms and safety of GO’s therapeutic use in association with MSCs. Therefore, this review reinforces the need for further studies to deepen the characterization of the bioactive properties of GO-MSCs, aiming to enable safer and more effective clinical applications. Full article
Show Figures

Graphical abstract

18 pages, 5866 KB  
Article
Enzyme-Triggered Formation of Tensegrity Structures for Mechanospatial Manipulation of Hydrogels
by Juan Wang, Xu Han, Qingtai Li, Meng Qin, Bin Xue, Wenxu Sun, Yi Cao and Wei Sun
Gels 2025, 11(8), 654; https://doi.org/10.3390/gels11080654 - 18 Aug 2025
Viewed by 551
Abstract
Hydrogels with spatially programmable mechanical properties hold great potential for use in biomedical applications. Inspired by the architecture of the cytoskeleton, we present a strategy for constructing tensegrity-structured hydrogels (TS-Gels) through enzyme-triggered crystal growth to enable precise mechanospatial manipulation. Specifically, alkaline phosphatase (ALP) [...] Read more.
Hydrogels with spatially programmable mechanical properties hold great potential for use in biomedical applications. Inspired by the architecture of the cytoskeleton, we present a strategy for constructing tensegrity-structured hydrogels (TS-Gels) through enzyme-triggered crystal growth to enable precise mechanospatial manipulation. Specifically, alkaline phosphatase (ALP) was covalently anchored to a polyacrylamide (PAAm) hydrogel matrix to catalyze the in situ dephosphorylation of phosphotyrosine precursors, leading to the formation of rigid tyrosine crystals. These crystals functioned as compressive sticks, establishing tensegrity structures within the hydrogel network. By tuning the crystallization kinetics, both the structural morphology and mechanical reinforcement could be precisely controlled. The resulting TS-Gels exhibited significantly enhanced local tensile strength and stiffness, allowing for spatial–mechanical patterning via photo-initiated printing, mold-assisted shaping, and laser engraving. Furthermore, the unique mechanospatial tunability of TS-Gels was demonstrated in tribological surface engineering, underscoring their potential for use in tissue engineering and responsive biomaterials. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

16 pages, 10388 KB  
Article
Highly-Oriented Polylactic Acid Fiber Reinforced Polycaprolactone Composite Produced by Infused Fiber Mat Process for 3D Printed Tissue Engineering Technology
by Zhipeng Deng, Chen Rao, Simin Han, Qungui Wei, Yichen Liang, Jialong Liu and Dazhi Jiang
Polymers 2025, 17(15), 2138; https://doi.org/10.3390/polym17152138 - 5 Aug 2025
Viewed by 856
Abstract
Three-dimensional printed polycaprolactone (PCL) tissue engineering scaffolds have drawn increasing interest from the medical industry due to their excellent biocompatibility and biodegradability, yet PCL’s poor mechanical performance has limited their applications. This study introduces a biocompatible and biodegradable polylactic acid (PLA) fiber reinforced [...] Read more.
Three-dimensional printed polycaprolactone (PCL) tissue engineering scaffolds have drawn increasing interest from the medical industry due to their excellent biocompatibility and biodegradability, yet PCL’s poor mechanical performance has limited their applications. This study introduces a biocompatible and biodegradable polylactic acid (PLA) fiber reinforced PCL (PLA/PCL) composite as the filament for 3D printed scaffolds to significantly enhance their mechanical performance: Special-made PLA short fiber mat was infused with PCL matrix and rolled into PLA/PCL filaments through a “Vacuum Assisted Resin Infusion” (VARI) process. The investigation revealed that the PLA fibers are highly oriented along the printing direction when using this filament for 3D printing due to the unique microstructure formed during the VARI process. At the same PLA fiber content, the percentage increase in Young’s modulus of the 3D printed strands using the filaments produced by the VARI process is 127.6% higher than the 3D printed strands using the filaments produced by the conventional melt blending process. The 3D printed tissue engineering scaffolds using the PLA/PCL composite filament with 11 wt% PLA fiber content also achieved an exceptional 84.2% and 143.3% increase in peak load and stiffness compared to the neat PCL counterpart. Full article
Show Figures

Graphical abstract

19 pages, 4297 KB  
Article
Bioactivity of Glass Carbomer Versus Conventional GICs in Sound Enamel and Dentine: A 12-Month SEM-EDS Study
by Dubravka Turjanski, Suzana Jakovljević, Dragutin Lisjak, Petra Bučević Sojčić, Fran Glavina, Kristina Goršeta and Domagoj Glavina
Materials 2025, 18(15), 3580; https://doi.org/10.3390/ma18153580 - 30 Jul 2025
Cited by 1 | Viewed by 648
Abstract
Glass ionomer cements (GICs) are bioactive restorative materials valued for their sustained ion release and remineralisation capacity. However, their long-term interactions with sound enamel and dentine remain underexplored. This 12-month in vitro study aimed to evaluate microstructural and compositional changes in sound dental [...] Read more.
Glass ionomer cements (GICs) are bioactive restorative materials valued for their sustained ion release and remineralisation capacity. However, their long-term interactions with sound enamel and dentine remain underexplored. This 12-month in vitro study aimed to evaluate microstructural and compositional changes in sound dental tissues adjacent to four GICs—Ketac Universal, Fuji IX and Equia Forte Fil (conventional GICs) and the advanced Glass Carbomer (incorporating hydroxyapatite nanoparticles)—using field-emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Glass Carbomer uniquely formed hydroxyapatite nanoparticles and mineralised regions indicative of active biomineralisation—features not observed with conventional GICs. It also demonstrated greater fluoride uptake into dentine and higher silicon incorporation in both enamel and dentine. Conventional GICs exhibited filler particle dissolution and mineral deposition within the matrix over time; among them, Equia Forte released the most fluoride while Fuji IX released the most strontium. Notably, ion uptake was consistently higher in dentine than in enamel for all materials. These findings indicate that Glass Carbomer possesses superior bioactivity and mineralising potential which may contribute to the reinforcement of sound dental tissues and the prevention of demineralisation. However, further in vivo studies are required to confirm these effects under physiological conditions. Full article
(This article belongs to the Special Issue Antibacterial Dental Materials)
Show Figures

Graphical abstract

26 pages, 7157 KB  
Article
Succinimidyl Alginate-Modified Fibrin Hydrogels from Human Plasma for Skin Tissue Engineering
by Ana Matesanz, Raúl Sanz-Horta, Alberto Gallardo, Cristina Quílez, Helmut Reinecke, Pablo Acedo, Diego Velasco, Enrique Martínez-Campos, José Luis Jorcano and Carlos Elvira
Gels 2025, 11(7), 540; https://doi.org/10.3390/gels11070540 - 11 Jul 2025
Viewed by 903
Abstract
Plasma-derived fibrin hydrogels are widely used in tissue engineering because of their excellent biological properties. Specifically, human plasma-derived fibrin hydrogels serve as 3D matrices for autologous skin graft production, skeletal muscle repair, and bone regeneration. Nevertheless, for advanced applications such as in vitro [...] Read more.
Plasma-derived fibrin hydrogels are widely used in tissue engineering because of their excellent biological properties. Specifically, human plasma-derived fibrin hydrogels serve as 3D matrices for autologous skin graft production, skeletal muscle repair, and bone regeneration. Nevertheless, for advanced applications such as in vitro skin equivalents and engineered grafts, the intrinsic limitations of native fibrin hydrogels in terms of long-term mechanical stability and resistance to degradation need to be addressed to enhance the usefulness and application of these hydrogels in tissue engineering. In this study, we chemically modified plasma-derived fibrin by incorporating succinimidyl alginate (SA), a version of alginate chemically modified to introduce reactive succinimidyl groups. These NHS ester groups (N-hydroxysuccinimide esters), attached to the alginate backbone, are highly reactive toward the primary amine groups present in plasma proteins such as fibrinogen. When mixed with plasma, the NHS groups covalently bond to the amine groups in fibrin, forming stable amide linkages that reinforce the fibrin network during hydrogel formation. This chemical modification improved mechanical properties, reduces contraction, and enhanced the stability of the resulting hydrogels. Hydrogels were prepared with a final fibrinogen concentration of 1.2 mg/mL and SA concentrations of 0.5, 1, 2, and 3 mg/mL. The objective was to evaluate whether this modification could create a more stable matrix suitable for supporting skin tissue development. The mechanical and microstructure properties of these new hydrogels were evaluated, as were their biocompatibility and potential to create 3D skin models in vitro. Dermo-epidermal skin cultures with primary human fibroblast and keratinocyte cells on these matrices showed improved dermal stability and better tissue structure, particularly SA concentrations of 0.5 and 1 mg/mL, as confirmed by H&E (Hematoxylin and Eosin) staining and immunostaining assays. Overall, these results suggest that SA-functionalized fibrin hydrogels are promising candidates for creating more stable in vitro skin models and engineered skin grafts, as well as for other types of engineered tissues, potentially. Full article
Show Figures

Figure 1

17 pages, 7402 KB  
Article
Multilayered Tissue Assemblies Through Tuneable Biodegradable Polyhydroxyalkanoate Polymer (Mesh)-Reinforced Organ-Derived Extracellular Matrix Hydrogels
by Vasilena E. Getova, Alex Pascual, Rene Dijkstra, Magdalena Z. Gładysz, Didi Ubels, Malgorzata K. Wlodarczyk-Biegun, Janette K. Burgess, Jeroen Siebring and Martin C. Harmsen
Gels 2025, 11(7), 539; https://doi.org/10.3390/gels11070539 - 11 Jul 2025
Viewed by 1006
Abstract
Multi-layer cell constructs produced in vitro are an innovative treatment option to support the growing demand for therapy in regenerative medicine. Our research introduces a novel construct integrating organ-derived decellularised extracellular matrix (dECM) hydrogels and 3D-printed biodegradable polymer meshes composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) [...] Read more.
Multi-layer cell constructs produced in vitro are an innovative treatment option to support the growing demand for therapy in regenerative medicine. Our research introduces a novel construct integrating organ-derived decellularised extracellular matrix (dECM) hydrogels and 3D-printed biodegradable polymer meshes composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) to support and maintain multiple layers of different cell types. We achieved that by integrating the mechanical stability of PHBV+P34HB, commonly used in the food storage industry, with a dECM hydrogel, which replicates organ stiffness and supports cellular survival and function. The construct was customised by adjusting the fibre arrangement and pore sizes, making it a suitable candidate for a personalised design. We showed that the polymer is degradable after precoating it with PHB depolymerase (PhaZ), with complete degradation achieved in 3–5 days and delayed by adding the hydrogel to 10 days, enabling tuneable degradation for regenerative medicine applications. Finally, as a proof of concept, we composed a three-layered tissue in vitro; each layer represented a different tissue type: epidermal, vascular, and subcutaneous layers. Possible future applications include wound healing and diabetic ulcer paths, personalised drug delivery systems, and personalised tissue implants. Full article
Show Figures

Graphical abstract

16 pages, 31664 KB  
Article
Rheological Behavior of Poly(Styrene-Co-Acrylonitrile)/Carbon Nanotube Sponges for Fiber Electrospinning Applications
by Rubén Caro-Briones, Marco Antonio Pérez-Castillo, Hugo Martínez-Gutiérrez, Emilio Muñoz-Sandoval, Gabriela Martínez-Mejía, Lazaro Ruiz-Virgen and Mónica Corea
Nanomaterials 2025, 15(14), 1060; https://doi.org/10.3390/nano15141060 - 9 Jul 2025
Viewed by 554
Abstract
Polymeric composite solutions (PCSs) reinforced with carbon nanotubes sponges (CNT-sponges) have attracted interest in material science and engineering due to their physicochemical properties. Understanding the influence of CNT-sponges content (0.1 wt.%, 0.3 wt.% and 0.5 wt.%) on rheological behavior of poly(styrene-co-acrylonitrile) P(S:AN) (0:100, [...] Read more.
Polymeric composite solutions (PCSs) reinforced with carbon nanotubes sponges (CNT-sponges) have attracted interest in material science and engineering due to their physicochemical properties. Understanding the influence of CNT-sponges content (0.1 wt.%, 0.3 wt.% and 0.5 wt.%) on rheological behavior of poly(styrene-co-acrylonitrile) P(S:AN) (0:100, 20:80, 40:60 and 50:50, wt.%:wt.%) solutions synthesized by emulsion polymerization can predict the viscoelastic parameters for their possible application in electrospinning processes. The obtained nanofibers can be used as sensors, textiles, purifying agents or artificial muscles and tissues. For this, amplitude and frequency sweeps were performed to measure the viscosity (η), storage (G’) and loss (G”) moduli and loss factor (tan δ). Most PCSs showed a shear thinning behavior over the viscosity range of 0.8 < η/Pa·s < 20. At low CNT-sponges concentration in the polymer matrix, the obtained loss factor indicated a liquid-like behavior, while as CNT-sponges content increases, the solid-like behavior predominated. Then, the polymeric solutions were successfully electrospun; however, some agglomerations were formed in materials containing 0.5 wt.% of CNT-sponges attributed to the interaction forces generated within the structure. Finally, the rheological analysis indicates that the PCS with a low percentage of CNT-sponges are highly suitable to be electrospun. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Fibers and Textiles)
Show Figures

Graphical abstract

26 pages, 3339 KB  
Review
Research Progress and Challenges in 3D Printing of Bioceramics and Bioceramic Matrix Composites
by Xueni Zhao, Jizun Liu and Lingna Li
Biomimetics 2025, 10(7), 428; https://doi.org/10.3390/biomimetics10070428 - 1 Jul 2025
Viewed by 1077
Abstract
Three-dimensional printing techniques can prepare complex bioceramic parts and scaffolds with high precision and accuracy, low cost, and customized geometry, which greatly broadens their application of 3D-printed bioceramics and bioceramic matrix composites in the clinical field. Nevertheless, the inadequate mechanical properties of 3D-printed [...] Read more.
Three-dimensional printing techniques can prepare complex bioceramic parts and scaffolds with high precision and accuracy, low cost, and customized geometry, which greatly broadens their application of 3D-printed bioceramics and bioceramic matrix composites in the clinical field. Nevertheless, the inadequate mechanical properties of 3D-printed bioceramic scaffolds, such as compressive strength, wear resistance, flexural strength, fracture toughness, and other properties, are a bottleneck problem and severely limit their application, which are overcome by introducing reinforcements. Three-dimensional printing techniques and the mechanical property of bioceramics and bioceramic matrix composites with different reinforcements, as well as their potential applications for bone tissue engineering, are discussed. In addition, the biological performance of 3D-printed bioceramics and scaffolds and their applications are presented. To address the challenges of insufficient mechanical strength and mismatched biological performance in bioceramic scaffolds, we summarize current solutions, including the advantages and strengthening effects of fiber, particle, whisker, and ion doping. The effectiveness of these methods is analyzed. Finally, the limitations and challenges in 3D printing of bioceramics and bioceramic matrix composites are discussed to encourage future research in this field. Our work offers a helpful guide to research and medical applications, especially application in the tissue engineering fields of bioceramics and bioceramic matrix composites. Full article
Show Figures

Figure 1

Back to TopTop