Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = refractometric platform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3547 KB  
Article
Differential Refractometric Biosensor for Reliable Human IgG Detection: Proof of Concept
by João P. Mendes, Luís C. C. Coelho, Pedro A. S. Jorge and Carlos M. Pereira
Biosensors 2022, 12(7), 515; https://doi.org/10.3390/bios12070515 - 12 Jul 2022
Cited by 11 | Viewed by 3012
Abstract
A new sensing platform based on long-period fiber gratings (LPFGs) for direct, fast, and selective detection of human immunoglobulin G (IgG; Mw = 150 KDa) was developed and characterized. The transducer’s high selectivity is based on the specific interaction of a molecularly imprinted [...] Read more.
A new sensing platform based on long-period fiber gratings (LPFGs) for direct, fast, and selective detection of human immunoglobulin G (IgG; Mw = 150 KDa) was developed and characterized. The transducer’s high selectivity is based on the specific interaction of a molecularly imprinted polymer (MIPs) design for IgG detection. The sensing scheme is based on differential refractometric measurements, including a correction system based on a non-imprinted polymer (NIP)-coated LPFG, allowing reliable and more sensitive measurements, improving the rejection of false positives in around 30%. The molecular imprinted binding sites were performed on the surface of a LPFG with a sensitivity of about 130 nm/RIU and a FOM of 16 RIU−1. The low-cost and easy to build device was tested in a working range from 1 to 100 nmol/L, revealing a limit of detection (LOD) and a sensitivity of 0.25 nmol/L (0.037 µg/mL) and 0.057 nm.L/nmol, respectively. The sensor also successfully differentiates the target analyte from the other abundant elements that are present in the human blood plasma. Full article
(This article belongs to the Special Issue Lab on Fiber Optrodes: Towards Point of Care Applications)
Show Figures

Figure 1

9 pages, 2564 KB  
Article
Smartphone-Based Refractive Index Optosensing Platform Using a DVD Grating
by Carlos Angulo Barrios
Sensors 2022, 22(3), 903; https://doi.org/10.3390/s22030903 - 25 Jan 2022
Cited by 6 | Viewed by 4363
Abstract
A low-cost, smartphone-based optical diffraction grating refractometer is demonstrated. Its principle of operation is based on the dependence of the diffraction efficiency of a DVD grating on the surrounding refractive index. The studied configuration uses the built-in LED flashlight and camera of a [...] Read more.
A low-cost, smartphone-based optical diffraction grating refractometer is demonstrated. Its principle of operation is based on the dependence of the diffraction efficiency of a DVD grating on the surrounding refractive index. The studied configuration uses the built-in LED flashlight and camera of a smartphone as a light source and a detector, respectively, to image the DVD grating diffraction pattern. No additional optical accessories, such as lenses, fibers, filters, or pinholes, are employed. The refractive index sensor exhibits a linear response in the refractive index range of 1.333–1.358 RIU (refractive index unit), with a sensitivity of 32.4 RIU−1 and a resolution of 2 × 10−3 RIU at the refractive index of water. This performance makes the proposed scheme suitable for affinity-based biosensing and a promising optosensing refractometric platform for point-of-need applications. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2022)
Show Figures

Figure 1

10 pages, 3433 KB  
Article
Refractometric Sensitivity Enhancement of Weakly Tilted Fiber Bragg Grating Integrated with Black Phosphorus
by Zhao Zhang, Kun Liu, Junfeng Jiang, Tianhua Xu, Shuang Wang, Jinying Ma, Pengxiang Chang, Jiahang Zhang and Tiegen Liu
Nanomaterials 2020, 10(7), 1423; https://doi.org/10.3390/nano10071423 - 21 Jul 2020
Cited by 9 | Viewed by 3337
Abstract
The sensitivity enhancement of the weakly tilted fiber Bragg grating (WTFBG) integrated with black phosphorus (BP) was investigated via numerical simulations and experimental demonstrations. BP nanosheets were deposited twice on the cylindrical WTFBG surface using the in situ layer-by-layer (i-LbL) deposition technique. The [...] Read more.
The sensitivity enhancement of the weakly tilted fiber Bragg grating (WTFBG) integrated with black phosphorus (BP) was investigated via numerical simulations and experimental demonstrations. BP nanosheets were deposited twice on the cylindrical WTFBG surface using the in situ layer-by-layer (i-LbL) deposition technique. The resonance intensity of the deepest cladding mode located around 1552 nm of WTFBG had a 9.2 dB decrease after the BP deposition process. This allows for the application of the intensity-modulated refractive index (RI) sensor. The sensing platform was implemented on the use of the BP integrated with WTFBG (BP-WTFBG). The refractometric sensing was achieved with the sensitivity enhancement of the resonance intensity modulation of the deepest cladding mode for the BP-WTFBG. The sensitivities were 137.6 dB/RIU and 75.6 dB/RIU in the RI region of 1.33–1.35 and 1.35–1.38, respectively. This platform shows great potential applications for biochemical sensing because of its highly sensitive RI sensing ability around the biochemical sensing window. Full article
Show Figures

Figure 1

13 pages, 3097 KB  
Article
Gold Nanopost-Shell Arrays Fabricated by Nanoimprint Lithography as a Flexible Plasmonic Sensing Platform
by Cosmin Farcau, Daniel Marconi, Alia Colniță, Ioana Brezeștean and Lucian Barbu-Tudoran
Nanomaterials 2019, 9(11), 1519; https://doi.org/10.3390/nano9111519 - 25 Oct 2019
Cited by 24 | Viewed by 4992
Abstract
Plasmonic noble metal nanostructured films have a huge potential for the development of efficient, tunable, miniaturized optical sensors. Herein, we report on the fabrication and characterization of gold-coated nanopost arrays, their use as refractometric sensors, and their optimization through photonics simulations. Monolithic square [...] Read more.
Plasmonic noble metal nanostructured films have a huge potential for the development of efficient, tunable, miniaturized optical sensors. Herein, we report on the fabrication and characterization of gold-coated nanopost arrays, their use as refractometric sensors, and their optimization through photonics simulations. Monolithic square nanopost arrays having different period and nanopost size are fabricated by nanoimprint lithography on polymer foils, and sputter-coated by gold films. The reflectivity of these gold nanopost-shell arrays present dips in the visible range, which are efficient for refractometric sensing. By finite-difference time-domain (FDTD) simulations we reproduce the experimental spectra, describe the electric fields distribution around the nanopost-shells, and then explain their good sensitivity, around 450 nm/RIU. Furthermore, we determine by simulations the influence of several geometrical parameters, such as array period, nanopost width, gold film thickness, and nanopost side coverage on both reflectivity spectra and sensing capabilities. Fully coated nanoposts provide an extremely deep reflectivity minimum, approaching zero, which makes the relative reflectivity change extremely high, more than two orders of magnitude higher than for partially coated nanoposts. These results contribute to the understanding of the plasmonic properties of metal coated nanopost arrays, and to the development of efficient platforms for sensing and other surface plasmon based applications. Full article
(This article belongs to the Special Issue Nanoscale Optical Sensing)
Show Figures

Graphical abstract

Back to TopTop