Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (252)

Search Parameters:
Keywords = recyclable gel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4225 KiB  
Article
Performance Optimization and Synergistic Mechanism of Ternary Blended Cementitious System Composed of Fly Ash, Slag, and Recycled Micro-Powder
by Rongfang Song, Qingnian Yang and Hang Song
Buildings 2025, 15(15), 2780; https://doi.org/10.3390/buildings15152780 - 6 Aug 2025
Abstract
The blended system of solid waste micro-powders is of great significance for the efficient utilization of recycled micro-powder. In this study, a ternary blended cementitious system composed of fly ash, slag, and recycled micro-powder was constructed, and its effects on the workability, mechanical [...] Read more.
The blended system of solid waste micro-powders is of great significance for the efficient utilization of recycled micro-powder. In this study, a ternary blended cementitious system composed of fly ash, slag, and recycled micro-powder was constructed, and its effects on the workability, mechanical properties, shrinkage performance, and microstructure of recycled mortar were systematically investigated. The experimental results show that with the increasing dosage of slag and recycled micro-powder (partially replacing cement and fly ash), the standard consistency water demand of the cementitious system decreases and the setting time is prolonged. When the replacement levels of recycled micro-powder and slag are both 10%, the 3-day, 7-day, and 28-day mechanical strengths of the mortar specimens are comparable to those of the reference group, with an increased flexural-to-compressive strength ratio and improved brittleness. SEM and mercury intrusion porosimetry (MIP) analyses revealed that systems incorporating low addition levels of recycled micro powder and slag powder exhibit calcium silicate hydrate (C-S-H) gel, acicular ettringite crystals, and a denser pore structure. However, at higher dosages (>10%), the porosity increases significantly and the pore structure deteriorates, resulting in reduced shrinkage performance. Overall, when the replacement rate of cement–fly ash by recycled micro-powder and slag is 10%, the ternary blended system exhibits optimal macroscopic performance and microstructure, providing a scientific basis for the resource utilization of solid waste. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 2171 KiB  
Article
Upstream Microplastic Removal in Industrial Wastewater: A Pilot Study on Agglomeration-Fixation-Reaction Based Treatment for Water Reuse and Waste Recovery
by Anika Korzin, Michael Toni Sturm, Erika Myers, Dennis Schober, Pieter Ronsse and Katrin Schuhen
Clean Technol. 2025, 7(3), 67; https://doi.org/10.3390/cleantechnol7030067 - 6 Aug 2025
Abstract
This pilot study investigated an automated pilot plant for removing microplastics (MPs) from industrial wastewater that are generated during packaging production. MP removal is based on organosilane-induced agglomeration-fixation (clump & skim technology) followed by separation. The wastewater had high MP loads (1725 ± [...] Read more.
This pilot study investigated an automated pilot plant for removing microplastics (MPs) from industrial wastewater that are generated during packaging production. MP removal is based on organosilane-induced agglomeration-fixation (clump & skim technology) followed by separation. The wastewater had high MP loads (1725 ± 377 mg/L; 673 ± 183 million particles/L) and an average COD of 7570 ± 1339 mg/L. Over 25 continuous test runs, the system achieved consistent performance, removing an average of 97.4% of MPs by mass and 99.1% by particle count, while reducing the COD by 78.8%. Projected over a year, this equates to preventing 1.7 tons of MPs and 6 tons of COD from entering the sewage system. Turbidity and photometric TSS measurements proved useful for process control. The approach supports water reuse—with water savings up to 80%—and allows recovery of agglomerates for recycling and reuse. Targeting pollutant removal upstream at the source provides multiple financial and environmental benefits, including lower overall energy demands, higher removal efficiencies, and process water reuse. This provides financial and environmental incentives for industries to implement sustainable solutions for pollutants and microplastic removal. Full article
14 pages, 4979 KiB  
Article
Oxygen Vacancy-Engineered Ni:Co3O4/Attapulgite Photothermal Catalyst from Recycled Spent Lithium-Ion Batteries for Efficient CO2 Reduction
by Jian Shi, Yao Xiao, Menghan Yu and Xiazhang Li
Catalysts 2025, 15(8), 732; https://doi.org/10.3390/catal15080732 - 1 Aug 2025
Viewed by 245
Abstract
Accelerated industrialization and surging energy demands have led to continuously rising atmospheric CO2 concentrations. Developing sustainable methods to reduce atmospheric CO2 levels is crucial for achieving carbon neutrality. Concurrently, the rapid development of new energy vehicles has driven a significant increase [...] Read more.
Accelerated industrialization and surging energy demands have led to continuously rising atmospheric CO2 concentrations. Developing sustainable methods to reduce atmospheric CO2 levels is crucial for achieving carbon neutrality. Concurrently, the rapid development of new energy vehicles has driven a significant increase in demand for lithium-ion batteries (LIBs), which are now approaching an end-of-life peak. Efficient recycling of valuable metals from spent LIBs represents a critical challenge. This study employs conventional hydrometallurgical processing to recover valuable metals from spent LIBs. Subsequently, Ni-doped Co3O4 (Ni:Co3O4) supported on the natural mineral attapulgite (ATP) was synthesized via a sol–gel method. The incorporation of a small amount of Ni into the Co3O4 lattice generates oxygen vacancies, inducing a localized surface plasmon resonance (LSPR) effect, which significantly enhances charge carrier transport and separation efficiency. During the photocatalytic reduction of CO2, the primary product CO generated by the Ni:Co3O4/ATP composite achieved a high production rate of 30.1 μmol·g−1·h−1. Furthermore, the composite maintains robust catalytic activity even after five consecutive reaction cycles. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in Air Pollution Control)
Show Figures

Figure 1

26 pages, 11239 KiB  
Review
Microbial Mineral Gel Network for Enhancing the Performance of Recycled Concrete: A Review
by Yuanxun Zheng, Liwei Wang, Hongyin Xu, Tianhang Zhang, Peng Zhang and Menglong Qi
Gels 2025, 11(8), 581; https://doi.org/10.3390/gels11080581 - 27 Jul 2025
Viewed by 225
Abstract
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent [...] Read more.
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent old mortar layers, lead to significant performance degradation of the resulting RC, limiting its widespread application. Traditional methods for enhancing RA often suffer from limitations, including high energy consumption, increased costs, or the introduction of new pollutants. MICP offers an innovative approach for enhancing RC performance. This technique employs the metabolic activity of specific microorganisms to induce the formation of a three-dimensionally interwoven calcium carbonate gel network within the pores and on the surface of RA. This gel network can improve the inherent defects of RA, thereby enhancing the performance of RC. Compared to conventional techniques, this approach demonstrates significant environmental benefits and enhances concrete compressive strength by 5–30%. Furthermore, embedding mineralizing microbial spores within the pores of RA enables the production of self-healing RC. This review systematically explores recent research advances in microbial mineral gel network for improving RC performance. It begins by delineating the fundamental mechanisms underlying microbial mineralization, detailing the key biochemical reactions driving the formation of calcium carbonate (CaCO3) gel, and introducing the common types of microorganisms involved. Subsequently, it critically discusses the key environmental factors influencing the effectiveness of MICP treatment on RA and strategies for their optimization. The analysis focuses on the enhancement of critical mechanical properties of RC achieved through MICP treatment, elucidating the underlying strengthening mechanisms at the microscale. Furthermore, the review synthesizes findings on the self-healing efficiency of MICP-based RC, including such metrics as crack width healing ratio, permeability recovery, and restoration of mechanical properties. Key factors influencing self-healing effectiveness are also discussed. Finally, building upon the current research landscape, the review provides perspectives on future research directions for advancing microbial mineralization gel techniques to enhance RC performance, offering a theoretical reference for translating this technology into practical engineering applications. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

28 pages, 6625 KiB  
Article
Short- and Long-Term Mechanical and Durability Performance of Concrete with Copper Slag and Recycled Coarse Aggregate Under Magnesium Sulfate Attack
by Yimmy Fernando Silva, Claudia Burbano-Garcia, Eduardo J. Rueda, Arturo Reyes-Román and Gerardo Araya-Letelier
Appl. Sci. 2025, 15(15), 8329; https://doi.org/10.3390/app15158329 - 26 Jul 2025
Viewed by 254
Abstract
Sustainability in the construction sector has become a fundamental objective for mitigating escalating environmental challenges; given that concrete is the most widely used man-made material, extending its service life is therefore critical. Among durability concerns, magnesium sulfate (MgSO4) attack is particularly [...] Read more.
Sustainability in the construction sector has become a fundamental objective for mitigating escalating environmental challenges; given that concrete is the most widely used man-made material, extending its service life is therefore critical. Among durability concerns, magnesium sulfate (MgSO4) attack is particularly deleterious to concrete structures. Therefore, this study investigates the short- and long-term performance of concrete produced with copper slag (CS)—a massive waste generated by copper mining activities worldwide—employed as a supplementary cementitious material (SCM), together with recycled coarse aggregate (RCA), obtained from concrete construction and demolition waste, when exposed to MgSO4. CS was used as a 15 vol% cement replacement, while RCA was incorporated at 0%, 20%, 50%, and 100 vol%. Compressive strength, bulk density, water absorption, and porosity were measured after water curing (7–388 days) and following immersion in a 5 wt.% MgSO4 solution for 180 and 360 days. Microstructural characteristics were assessed using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis with its differential thermogravimetric derivative (TG-DTG), and Fourier transform infrared spectroscopy (FTIR) techniques. The results indicated that replacing 15% cement with CS reduced 7-day strength by ≤10%, yet parity with the reference mix was reached at 90 days. Strength losses increased monotonically with RCA content. Under MgSO4 exposure, all mixtures experienced an initial compressive strength gain during the short-term exposures (28–100 days), attributed to the pore-filling effect of expansive sulfate phases. However, at long-term exposure (180–360 days), a clear strength decline was observed, mainly due to internal cracking, brucite formation, and the transformation of C–S–H into non-cementitious M–S–H gel. Based on these findings, the combined use of CS and RCA at low replacement levels shows potential for producing environmentally friendly concrete with mechanical and durability performance comparable to those of concrete made entirely with virgin materials. Full article
Show Figures

Figure 1

18 pages, 4996 KiB  
Article
Mechanical Properties and Microstructures of Solid Waste Composite-Modified Lateritic Clay via NaOH/Na2CO3 Activation: A Sustainable Recycling Solution of Steel Slag, Fly Ash, and Granulated Blast Furnace Slag
by Wei Qiao, Bing Yue, Zhihua Luo, Shengli Zhu, Lei Li, Heng Yang and Biao Luo
Materials 2025, 18(14), 3307; https://doi.org/10.3390/ma18143307 - 14 Jul 2025
Viewed by 307
Abstract
The utilization of steel slag (SS), fly ash (FA), and ground granulated blast furnace slag (GGBFS) as soil additives in construction represents a critical approach to achieving resource recycling of these industrial by-products. This study aims to activate the SS-FA-GGBFS composite with a [...] Read more.
The utilization of steel slag (SS), fly ash (FA), and ground granulated blast furnace slag (GGBFS) as soil additives in construction represents a critical approach to achieving resource recycling of these industrial by-products. This study aims to activate the SS-FA-GGBFS composite with a NaOH solution and Na2CO3 and employ the activated solid waste blend as an admixture for lateritic clay modification. By varying the concentration of the NaOH solution and the dosage of Na2CO3 relative to the SS-FA-GGBFS composite, the effects of these parameters on the activation efficiency of the composite as a lateritic clay additive were investigated. Results indicate that the NaOH solution activates the SS-FA-GGBFS composite more effectively than Na2CO3. The NaOH solution significantly promotes the depolymerization of aluminosilicates in the solid waste materials and the generation of Calcium-Silicate-Hydrate and Calcium-Aluminate-Hydrate gels. In contrast, Na2CO3 relies on its carbonate ions to react with calcium ions in the materials, forming calcium carbonate precipitates. As a rigid cementing phase, calcium carbonate exhibits a weaker cementing effect on soil compared to Calcium-Silicate-Hydrate and Calcium-Aluminate-Hydrate gels. However, excessive NaOH leads to inefficient dissolution of the solid waste and induces a transformation of hydration products in the modified lateritic clay from Calcium-Silicate-Hydrate and Calcium-Aluminate-Hydrate to Sodium-Silicate-Hydrate and Sodium-Aluminate-Hydrate, which negatively impacts the strength and microstructural compactness of the alkali-activated solid waste composite-modified lateritic clay. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 4856 KiB  
Article
Mechanical Properties of Recycled Concrete with Carbide Slag Slurry Pre-Immersed and Carbonated Recycled Aggregate
by Xiangfei Wang, Guoliang Guo, Jinglei Liu, Chun Lv and Mingyan Bi
Materials 2025, 18(14), 3281; https://doi.org/10.3390/ma18143281 - 11 Jul 2025
Viewed by 266
Abstract
This research focuses on improving the characteristics of recycled concrete and utilizing solid waste resources through the combination of industrial waste pre-impregnation and the carbonation process. A novel pre-impregnation–carbonation aggregate method is proposed to increase the content of carbonatable components in the surface-bonded [...] Read more.
This research focuses on improving the characteristics of recycled concrete and utilizing solid waste resources through the combination of industrial waste pre-impregnation and the carbonation process. A novel pre-impregnation–carbonation aggregate method is proposed to increase the content of carbonatable components in the surface-bonded mortar of recycled coarse aggregate by pre-impregnating it with carbide slag slurry (CSS). This approach enhances the subsequent carbonation effect and thus the properties of recycled aggregates. The experimental results showed that the method significantly improved the water absorption, crushing value, and apparent density of the recycled aggregate. Additionally, it enhanced the compressive strength, split tensile strength, and flexural strength of the recycled concrete produced using the aggregate improved by this method. Microanalysis revealed that CO2 reacts with calcium hydroxide and hydrated calcium silicate (C-S-H) to produce calcite-type calcium carbonate and amorphous silica gel. These reaction products fill microcracks and pores on the aggregate and densify the aggregate–paste interfacial transition zone (ITZ), thereby improving the properties of recycled concrete. This study presents a practical approach for the high-value utilization of construction waste and the production of low-carbon building materials by enhancing the quality of recycled concrete. Additionally, carbon sequestration demonstrates broad promise for engineering applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

15 pages, 6309 KiB  
Article
Study on the Sustainability of Carbon Emission Reduction in China’s Cement Industry
by Kui Zhao, Congling Bao and Bingxin Zhang
Sustainability 2025, 17(14), 6349; https://doi.org/10.3390/su17146349 - 10 Jul 2025
Viewed by 446
Abstract
Recycled concrete fines (RCFs) have the potential to serve as a supplementary cementitious material (SCM) after carbonation. Traditionally, carbonation of RCFs results in calcium carbonate primarily in the form of calcite, which significantly limits the development of RCFs as an SCM. In this [...] Read more.
Recycled concrete fines (RCFs) have the potential to serve as a supplementary cementitious material (SCM) after carbonation. Traditionally, carbonation of RCFs results in calcium carbonate primarily in the form of calcite, which significantly limits the development of RCFs as an SCM. In this research, a wet grinding carbonation (WGC) technique was introduced to enhance the reactivity of RCFs. The research indicates that RCFs after WGC exhibit a finer particle size and a larger specific surface area. The carbonation products include calcite with smaller grains, metastable calcium carbonate, and nanoscale silica gel and Al-Si gel. When RCF-WGC is used as an SCM in ordinary Portland cement (OPC), it significantly promotes the hydration of the cement paste, as evidenced by the advancement and increased intensity of the exothermic peaks of aluminates and silicates. RCF-WGC can significantly enhance the compressive strength of hydrated samples, particularly at early ages. Specifically, at a curing age of 1 day, the compressive strength of WGC5, WGC10, and WGC20 samples increased by 9.9%, 22.5%, and 7.7%, respectively, compared to the Ref sample (0% RCF-WGC). At a curing age of 3 days, the compressive strength of the WGC5, WGC10, and WGC20 samples showed even more significant improvements, increasing by 20.8%, 21.9%, and 11.8%, respectively. The performance enhancement of the WGC samples is attributed to the chemical reactions involving nanoscale silica gel, Al-Si gel, and calcium carbonate in the RCFs. When RCF-WGC is used as an SCM to replace 5%, 10%, and 20% of cement, it can reduce carbon emissions by 27.5 kg/t, 55 kg/t, and 110 kg/t, respectively. Large-scale application of RCFs as a high-value SCM can significantly reduce the life-cycle carbon emissions of the cement industry, contributing to the achievement of carbon peaking in China’s cement sector. Full article
Show Figures

Figure 1

18 pages, 2909 KiB  
Article
Recycling Particleboard by Acid Hydrolysis: Effects on the Physical, Thermal, and Chemical Characteristics of Recycled Wood Particles
by Gustavo E. Rodríguez, Rosilei Garcia and Alain Cloutier
Fibers 2025, 13(7), 90; https://doi.org/10.3390/fib13070090 - 2 Jul 2025
Viewed by 371
Abstract
Acid hydrolysis can be more efficient than water hydrolysis, particularly in breaking down cured adhesives found in waste panels within a shorter reaction time, which could benefit large-scale industrial processes. This study evaluates the effects of various acid hydrolysis conditions on the thermal, [...] Read more.
Acid hydrolysis can be more efficient than water hydrolysis, particularly in breaking down cured adhesives found in waste panels within a shorter reaction time, which could benefit large-scale industrial processes. This study evaluates the effects of various acid hydrolysis conditions on the thermal, physical, and chemical properties of recycled particles intended for particleboard production. Particleboards were recycled using oxalic acid and ammonium chloride at different concentrations and reaction times at 122 °C. The thermal stability of the particles was determined by thermogravimetric analysis. Particle size distribution, particle morphology, nitrogen content, pH and acid/base buffer capacity were analyzed. The effect of the recycled particles on the urea-formaldehyde (UF) curing was assessed using differential scanning calorimetry and the gel time method. The recycled particles exhibited a higher thermal degradation beyond 200 °C, indicating their thermal stability for manufacturing new panels. The acid treatments did not damage the anatomical structure of the particles, preserving the prosenchymatous elements. The nitrogen content of recycled particles decreased by up to 90% when oxalic acid was used, compared to raw board particles. Recycled particles exhibited a lower pH, with a maximum reduction of 44%. They also showed a decreased acid buffer capacity and an increased base buffer capacity compared to raw board particles. This effect was particularly pronounced in treatments that included ammonium chloride. The recycled particles did not significantly affect the peak polymerization temperature of the UF adhesive. However, some treatments affected the gel time of the adhesive, particularly those using 30% ammonium chloride. The results indicate that particleboards can be effectively recycled through acid hydrolysis, mainly with oxalic acid, which provides better results than hydrolysis using water alone. Oxalic acid showed increased selectivity in eliminating the cured UF adhesive, resulting in recycled particles suitable for manufacturing new panels. Full article
Show Figures

Graphical abstract

30 pages, 3996 KiB  
Article
Investigating the Impact of Seasonal Input Stream Fluctuations on Post-Consumer High-Density Polyethylene Composition and Processing
by Pia Fischer, Elena Berg, Christian Hopmann and Rainer Dahlmann
Polymers 2025, 17(13), 1828; https://doi.org/10.3390/polym17131828 - 30 Jun 2025
Viewed by 424
Abstract
The recycling of plastics collected from household waste to produce post-consumer recycled (PCR) materials is a critical step of sustainable waste management. However, the processing of PCR materials presents unique challenges, particularly in the context of seasonal input stream fluctuations and resulting PCR [...] Read more.
The recycling of plastics collected from household waste to produce post-consumer recycled (PCR) materials is a critical step of sustainable waste management. However, the processing of PCR materials presents unique challenges, particularly in the context of seasonal input stream fluctuations and resulting PCR material composition variations. Within this paper, the influence of batch-to-batch fluctuations on the processing stability and product properties of high-density polyethylene (HDPE) PCR from the German municipal waste system is analysed. It examines how variations in batch composition affect key parameters such as processing data (injection pressure, torque), mechanical properties (tensile strength, E-modulus, impact strength), and product quality (gel formation, part dimensions, part weight). Therefore, six consecutive household HDPE PCR material batches are analysed regarding their composition, contaminations, and rheological characteristics through ashing, differential scanning calorimetry, high-temperature gel permeation chromatography, and high-pressure capillary rheometry. The batches are then processed using blown- and cast-film extrusion as well as injection moulding, and the resulting process stability and product quality are analysed. The results show a strong correlation between thermal properties, such as crystallisation enthalpy, molecular weight, polypropylene (PP) content, varying batch viscosities, and changes in processing data as well as the resulting product properties. Full article
(This article belongs to the Special Issue Polymers for Circular Packaging Materials)
Show Figures

Figure 1

14 pages, 1109 KiB  
Article
Optimization of the Green Conventional Extraction Method of Sericin from Silkworm
by Daniel Stiven Burgos Gomez, Maite Rada-Mendoza and Diana M. Chito-Trujillo
Polymers 2025, 17(13), 1823; https://doi.org/10.3390/polym17131823 - 30 Jun 2025
Viewed by 308
Abstract
In the silk production process, cocoons from Bombyx mori worm are degummed and separated from their components. This step generates large residual quantities of an aqueous solution containing various chemical substances, including sericin—a protein that, when discarded improperly, negatively impacts the environment. Sodium [...] Read more.
In the silk production process, cocoons from Bombyx mori worm are degummed and separated from their components. This step generates large residual quantities of an aqueous solution containing various chemical substances, including sericin—a protein that, when discarded improperly, negatively impacts the environment. Sodium bicarbonate and coconut soap are commonly used in the degumming process. The phosphates in the soap and the sodium bicarbonate increase the biological oxygen demand (BOD) and chemical oxygen demand (COD), leading to water contamination. In this study, a Box–Behnken experimental design was used to maximize the extraction of sericin through a conventional extraction under chemical-free conditions. From a total of 45 experiments, the optimal extraction conditions were identified as a solid-to-liquid ratio of 1:20 w/v, a temperature of 120 °C, and 90 min of extraction time. Sericin yields ranged from 9% to 18%. Infrared spectroscopic characterization of the extracted sericin confirmed the presence of protein-specific functional groups and common interactions associated with β-sheet structures. Fractions of high molecular weight (50 kDa to 200 kDa), identified by means of Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis, demonstrate the potential functionality of extracted sericin for the development of biopolymer films useful in biomedical and food industry applications. The optimized methodology is a good alternative to recycle the waste of sericulture chain for obtaining extracts enriched in sericin, as well as to promote the mechanization of artisanal production processes. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

17 pages, 2398 KiB  
Article
Mesoporous SBA-15-Supported Ceria–Cadmium Composites for Fast Degradation of Methylene Blue in Aqueous Systems
by Dănuţa Matei, Abubakar Usman Katsina, Diana-Luciana Cursaru and Sonia Mihai
Water 2025, 17(12), 1834; https://doi.org/10.3390/w17121834 - 19 Jun 2025
Viewed by 481
Abstract
A composite photocatalyst of ceria–cadmium supported on mesoporous SBA-15 silica was synthesized and employed for the aqueous methylene blue (MB) degradation. The composites were prepared using an incipient wetness impregnation technique and a conventional sol–gel approach with triblock copolymer P123 as a structure-directing [...] Read more.
A composite photocatalyst of ceria–cadmium supported on mesoporous SBA-15 silica was synthesized and employed for the aqueous methylene blue (MB) degradation. The composites were prepared using an incipient wetness impregnation technique and a conventional sol–gel approach with triblock copolymer P123 as a structure-directing agent for SBA-15 preparation, enabling the uniform dispersion of CeO2 and Cd species within the SBA-15 framework. The physicochemical properties of both CeO2/SBA-15 and Cd-CeO2/SBA-15 composites were analyzed using small-angle and wide-angle XRD, FT-IR spectroscopy, SEM, TEM, EDX spectroscopy, N2 physisorption at 77 K, and UV-Vis spectroscopy. The findings revealed that the SBA-15 support retained its well-ordered hexagonal mesostructure in both the ceria–SBA-15 and SBA-15-supported cadmium–ceria (Cd-CeO2) composites. The highest degradation efficiency of 96.40% was achieved under optimal conditions, and kinetic analysis using the Langmuir–Hinshelwood model indicated that the MB degradation process followed pseudo-first-order kinetics, with a strong correlation coefficient (R2 = 0.9925) and a rate constant (k) of 0.02532 min−1. Under irradiation, the Cd-CeO2/SBA-15 composites exhibited superior photocatalytic activity compared to the pristine components, owing to the synergistic interaction between ceria and cadmium, enhanced light absorption, and improved charge carrier separation. The recyclability test demonstrated that the degradation efficiency decreased slightly from 96.40% to 94.86% after three cycles, confirming the stability and reusability of Cd-CeO2/SBA-15 composites. The photocatalytic process demonstrated a favorable electrical energy per order (EE/O) value of 281.8 kWh m−3, indicating promising energy efficiency for practical wastewater treatment. These results highlight the excellent photocatalytic performance and durability of the synthesized Cd-CeO2/SBA-15 composites, making them promising candidates for facilitating the photocatalytic decomposition of MB and other dye molecules in water treatment applications. Full article
Show Figures

Figure 1

22 pages, 4653 KiB  
Article
Recycled Clay Brick Powder as a Dual-Function Additive: Mitigating the Alkali–Silica Reaction (ASR) and Enhancing Strength in Eco-Friendly Mortar with Hybrid Waste Glass and Clay Brick Aggregates
by Xue-Fei Chen, Xiu-Cheng Zhang and Ying Peng
Materials 2025, 18(12), 2838; https://doi.org/10.3390/ma18122838 - 16 Jun 2025
Viewed by 461
Abstract
The construction industry’s escalating environmental footprint, coupled with the underutilization of construction waste streams, necessitates innovative approaches to sustainable material design. This study investigates the dual functionality of recycled clay brick powder (RCBP) as both a supplementary cementitious material (SCM) and an alkali–silica [...] Read more.
The construction industry’s escalating environmental footprint, coupled with the underutilization of construction waste streams, necessitates innovative approaches to sustainable material design. This study investigates the dual functionality of recycled clay brick powder (RCBP) as both a supplementary cementitious material (SCM) and an alkali–silica reaction (ASR) inhibitor in hybrid mortar systems incorporating recycled glass (RG) and recycled clay brick (RCB) aggregates. Leveraging the pozzolanic activity of RCBP’s residual aluminosilicate phases, the research quantifies its influence on mortar durability and mechanical performance under varying substitution scenarios. Experimental findings reveal a nonlinear relationship between RCBP dosage and mortar properties. A 30% cement replacement with RCBP yields a 28-day activity index of 96.95%, confirming significant pozzolanic contributions. Critically, RCBP substitution ≥20% effectively mitigates ASRs induced by RG aggregates, with optimal suppression observed at 25% replacement. This threshold aligns with microstructural analyses showing RCBP’s Al3+ ions preferentially reacting with alkali hydroxides to form non-expansive gels, reducing pore solution pH and silica dissolution rates. Mechanical characterization reveals trade-offs between workability and strength development. Increasing RCBP substitution decreases mortar consistency and fluidity, which is more pronounced in RG-RCBS blends due to glass aggregates’ smooth texture. Compressively, both SS-RCBS and RG-RCBS mortars exhibit strength reduction with higher RCBP content, yet all specimens show accelerated compressive strength gain relative to flexural strength over curing time. Notably, 28-day water absorption increases with RCBP substitution, correlating with microstructural porosity modifications. These findings position recycled construction wastes and glass as valuable resources in circular economy frameworks, offering municipalities a pathway to meet recycled content mandates without sacrificing structural integrity. The study underscores the importance of waste synergy in advancing sustainable mortar technology, with implications for net-zero building practices and industrial waste valorization. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

14 pages, 3406 KiB  
Article
A Recyclable, Adhesive, and Self-Healing Ionogel Based on Zinc–Halogen Coordination Anion Crosslinked Poly(ionic Liquid)/Ionic Liquid Networks for High-Performance Microwave Absorption
by Lei Wang, Jie Liu, Meng Zong, Yi Liu and Jianfeng Zhu
Gels 2025, 11(6), 436; https://doi.org/10.3390/gels11060436 - 5 Jun 2025
Viewed by 808
Abstract
In the past, powder-like microwave absorbers have made notable breakthroughs in performance enhancements, but complicated processes and undesirable properties have limited their practical application. Herein, a novel poly(ionic liquid) (PIL)-based ionic gel with excellent microwave absorption properties was prepared via a facile UV-initiated [...] Read more.
In the past, powder-like microwave absorbers have made notable breakthroughs in performance enhancements, but complicated processes and undesirable properties have limited their practical application. Herein, a novel poly(ionic liquid) (PIL)-based ionic gel with excellent microwave absorption properties was prepared via a facile UV-initiated polymerization method. By simply adjusting the mole ratio of the polymerizable ionic liquid (IL)monomer and the IL dispersion medium, the microwave absorption properties of the obtained ionic gels can be tuned. A maximum reflection loss (RLmax) of −45.7 dB and an effective absorption bandwidth (EAB) of 8.08 GHz were achieved, which was mainly ascribed to high ionic conduction loss induced by the high content of the dispersion medium. Furthermore, it displayed recyclable, adhesive, and self-healing properties, thus providing a new candidate for developing efficient microwave absorbers for practical applications. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

13 pages, 3473 KiB  
Article
CuO-NiO-Embedded Guar Gum Hydrogel as an Efficient Catalyst for Dyes Removal
by Nujud Maslamani
Polymers 2025, 17(11), 1577; https://doi.org/10.3390/polym17111577 - 5 Jun 2025
Viewed by 423
Abstract
In this work, Guar gum and copper oxide-nickel oxide (GG-CuO-NiO) hydrogel were produced with the help of formaldehyde solution to display an efficient catalytic performance toward the catalytic degradation of selected dyes (Methylene Blue (MB), Methyl Orange (MO), and Eosin Yellow (EY)) in [...] Read more.
In this work, Guar gum and copper oxide-nickel oxide (GG-CuO-NiO) hydrogel were produced with the help of formaldehyde solution to display an efficient catalytic performance toward the catalytic degradation of selected dyes (Methylene Blue (MB), Methyl Orange (MO), and Eosin Yellow (EY)) in the presence of NaBH4. The morphological and structural properties of the prepared hydrogel were thoroughly analyzed using SEM, EDX, XRD, and FT-IR techniques. According to the results, the GG-CuO-NiO hydrogel was able to reduce MB by 95% in one minute, 90.0% in four minutes, and 80.0% in 10 min for MO and EY, respectively. The catalytic efficiency of the hydrogel for MB was studied by adjusting its concentrations, varying reducing agent concentrations, and altering the amount of gel used. Using the recyclability method, which involved testing the GG-CuO-NiO hydrogel multiple times for the reduction of MB, the stability, reusability, and loss of catalytic activity of the hydrogel were examined. As a result, the designed GG-CuO-NiO hydrogel was stable for up to four times toward the reduction of MB. Lastly, the efficiency of the GG-CuO-NiO hydrogel was evaluated for MB removal in real samples and displayed exceptional reduction capabilities. Full article
(This article belongs to the Special Issue Advances in Natural Fiber-Polymer Composites)
Show Figures

Figure 1

Back to TopTop