Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,825)

Search Parameters:
Keywords = receptor protein kinase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1551 KiB  
Article
Genome-Wide Association Study Reveals Key Genetic Loci Controlling Oil Content in Soybean Seeds
by Xueyang Wang, Min Zhang, Fuxin Li, Xiulin Liu, Chunlei Zhang, Fengyi Zhang, Kezhen Zhao, Rongqiang Yuan, Sobhi F. Lamlom, Honglei Ren, Hongmei Qiu and Bixian Zhang
Agronomy 2025, 15(8), 1889; https://doi.org/10.3390/agronomy15081889 - 5 Aug 2025
Abstract
Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean [...] Read more.
Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean accessions, primarily sourced from Northeast China, was assessed for seed oil content at Heilongjiang Province in three replications over two growing seasons (2021 and 2023) and underwent genotyping via whole-genome resequencing, resulting in 1,048,576 high-quality SNP markers. Phenotypic analysis indicated notable variation in oil content, ranging from 11.00% to 21.77%, with an average increase of 1.73% to 2.28% across all growing regions between 2021 and 2023. A genome-wide association study (GWAS) analysis revealed 119 significant single-nucleotide polymorphism (SNP) loci associated with oil content, with a prominent cluster of 77 SNPs located on chromosome 8. Candidate gene analysis identified four key genes potentially implicated in oil content regulation, selected based on proximity to significant SNPs (≤10 kb) and functional annotation related to lipid metabolism and signal transduction. Notably, Glyma.08G123500, encoding a receptor-like kinase involved in signal transduction, contained multiple significant SNPs with PROVEAN scores ranging from deleterious (−1.633) to neutral (0.933), indicating complex functional impacts on protein function. Additional candidate genes include Glyma.08G110000 (hydroxycinnamoyl-CoA transferase), Glyma.08G117400 (PPR repeat protein), and Glyma.08G117600 (WD40 repeat protein), each showing distinct expression patterns and functional roles. Some SNP clusters were associated with increased oil content, while others correlated with decreased oil content, indicating complex genetic regulation of this trait. The findings provide molecular markers with potential for marker-assisted selection (MAS) in breeding programs aimed at increasing soybean oil content and enhancing our understanding of the genetic architecture governing this critical agricultural trait. Full article
Show Figures

Figure 1

25 pages, 3642 KiB  
Article
A Novel Steroidogenic Action of Anti-Müllerian Hormone in Teleosts: Evidence from the European Sea Bass Male (Dicentrarchus labrax)
by Alessia Mascoli, Cinta Zapater, Soledad Ibañez, Mateus Contar Adolfi, Manfred Schartl and Ana Gómez
Int. J. Mol. Sci. 2025, 26(15), 7554; https://doi.org/10.3390/ijms26157554 - 5 Aug 2025
Abstract
The Anti-Müllerian hormone (AMH) is widely recognized for promoting Müllerian duct regression in higher vertebrates and regulating key reproductive functions like steroidogenesis, folliculogenesis, and Leydig cell development. In teleost fish, which lack Müllerian ducts, Amh primarily influences male reproductive functions, including sex determination, [...] Read more.
The Anti-Müllerian hormone (AMH) is widely recognized for promoting Müllerian duct regression in higher vertebrates and regulating key reproductive functions like steroidogenesis, folliculogenesis, and Leydig cell development. In teleost fish, which lack Müllerian ducts, Amh primarily influences male reproductive functions, including sex determination, testis differentiation, and germ cell proliferation. In adult fish, Amh supports gonad development and spermatogenesis, but its role in teleost gonadal physiology remains largely underexplored. This study reveals a novel steroidogenic function in the European sea bass (Dicentrarchus labrax) using in vitro testis culture, in vivo plasmid injection, and cell-based transactivation assays. The Amh-induced significant increase in androgen levels was also confirmed in Japanese medaka (Oryzias latipes) treated with recombinant sea bass Amh. Beyond activating the canonical Smad pathway, Amh also triggered the cAMP/PKA signalling pathway via its cognate type II receptor, Amhr2. Inhibitors of these pathways independently and synergistically counteracted Amh-induced CRE-Luc activity, indicating pathway crosstalk. Moreover, inhibition of the cAMP pathway suppressed Amh-induced androgen production in testis cultures, emphasizing the crucial role of protein kinase A in mediating Amh steroidogenic action. These findings uncover a novel steroidogenic function of Amh in teleosts and highlight its broader role in male reproductive physiology. Full article
(This article belongs to the Special Issue Molecular Research in Animal Reproduction)
Show Figures

Figure 1

30 pages, 9213 KiB  
Article
Resveratrol Impairs Insulin Signaling in Hepatic Cells via Activation of PKC and PTP1B Pathways
by Karla D. Hernández-González, Monica A. Vinchira-Lamprea, Judith Hernandez-Aranda and J. Alberto Olivares-Reyes
Int. J. Mol. Sci. 2025, 26(15), 7434; https://doi.org/10.3390/ijms26157434 - 1 Aug 2025
Viewed by 412
Abstract
Resveratrol (RSV), a polyphenol found in a variety of berries and wines, is known for its anti-inflammatory, anticancer, and antioxidant properties. It has been suggested that RSV may play a role in the regulation of metabolic disorders, including diabetes and insulin resistance. However, [...] Read more.
Resveratrol (RSV), a polyphenol found in a variety of berries and wines, is known for its anti-inflammatory, anticancer, and antioxidant properties. It has been suggested that RSV may play a role in the regulation of metabolic disorders, including diabetes and insulin resistance. However, in recent years, it has been reported to completely inhibit Akt kinase function in liver cells. Akt is a central protein involved in the metabolic function of insulin and is regulated by the phosphatidylinositol-3-kinase (PI3K) pathway. In this study, we examined the effect of RSV on insulin-induced insulin receptor (IR) phosphorylation and proteins involved in the PI3K/Akt pathway in a hepatic cell model, clone 9 (C9), and in hepatoma cells, Hepa 1-6 (H1-6). In both cell lines, RSV inhibited tyrosine phosphorylation of IR and insulin-induced activation of Akt. We also evaluated the effect of RSV on the activation of protein tyrosine phosphatase 1B (PTP1B), which is associated with IR dephosphorylation, and found that RSV increased PTP1B-Tyr152 phosphorylation in a time- and concentration-dependent manner. Furthermore, we found that the protein kinase C (PKC) inhibitors BIM and Gö6976 prevented the inhibition of Akt phosphorylation by RSV and increased the phosphorylation of Ser/Thr residues in IR, suggesting that PKC is involved in the inhibition of the insulin pathway by RSV. Thus, classical PKC isoforms impair the PI3K/Akt pathway at the IR and GSK3 and GS downstream levels; however, IRS-Tyr632 phosphorylation remains unaffected. These results suggest that RSV can lead to insulin resistance by activating PTP1B and PKC, consequently affecting glucose homeostasis in hepatic cells. Full article
(This article belongs to the Special Issue The Molecular and Cellular Aspects of Insulin Resistance)
Show Figures

Figure 1

18 pages, 2207 KiB  
Article
CSF1R-Dependent Microglial Repopulation and Contact-Dependent Inhibition of Proliferation In Vitro
by Rie Nakai, Kuniko Kohyama, Yasumasa Nishito and Hiroshi Sakuma
Brain Sci. 2025, 15(8), 825; https://doi.org/10.3390/brainsci15080825 - 31 Jul 2025
Viewed by 189
Abstract
Murine microglia exhibit rapid self-renewal upon removal from the postnatal brain. However, the signaling pathways that regulate microglial repopulation remain largely unclear. To address this knowledge gap, we depleted microglia from mixed glial cultures using anti-CD11b magnetic particles and cultured them for 4 [...] Read more.
Murine microglia exhibit rapid self-renewal upon removal from the postnatal brain. However, the signaling pathways that regulate microglial repopulation remain largely unclear. To address this knowledge gap, we depleted microglia from mixed glial cultures using anti-CD11b magnetic particles and cultured them for 4 weeks to monitor their repopulation ability in vitro. Flow cytometry and immunocytochemistry revealed that anti-CD11b bead treatment effectively eliminated >95% of microglia in mixed glial cultures. Following removal, the number of CX3CR1-positive microglia gradually increased; when a specific threshold was reached, repopulation ceased without any discernable rise in cell death. Cell cycle and 5-ethynyl-2′-deoxyuridine incorporation assays suggested the active proliferation of repopulating microglia at d7. Time-lapse imaging demonstrated post-removal division of microglia. Colony-stimulating factor 1 receptor-phosphoinositide 3-kinase-protein kinase B signaling was identified as crucial for microglial repopulation, as pharmacological inhibition or neutralization of the pathway significantly abrogated repopulation. Transwell cocultures revealed that resident microglia competitively inhibited microglial proliferation probably through contact inhibition. This in vitro microglial removal system provides valuable insights into the mechanisms underlying microglial proliferation. Full article
(This article belongs to the Section Neuroglia)
Show Figures

Graphical abstract

21 pages, 537 KiB  
Review
Quercetin as an Anti-Diabetic Agent in Rodents—Is It Worth Testing in Humans?
by Tomasz Szkudelski, Katarzyna Szkudelska and Aleksandra Łangowska
Int. J. Mol. Sci. 2025, 26(15), 7391; https://doi.org/10.3390/ijms26157391 - 31 Jul 2025
Viewed by 277
Abstract
Quercetin is a biologically active flavonoid compound that exerts numerous beneficial effects in humans and animals, including anti-diabetic activity. Its action has been explored in rodent models of type 1 and type 2 diabetes. It was revealed that quercetin mitigated diabetes-related hormonal and [...] Read more.
Quercetin is a biologically active flavonoid compound that exerts numerous beneficial effects in humans and animals, including anti-diabetic activity. Its action has been explored in rodent models of type 1 and type 2 diabetes. It was revealed that quercetin mitigated diabetes-related hormonal and metabolic disorders and reduced oxidative and inflammatory stress. Its anti-diabetic effects were associated with advantageous changes in the relevant enzymes and signaling molecules. Quercetin positively affected, among others, superoxide dismutase, catalase, glutathione peroxidase, glucose transporter-2, glucokinase, glucose-6-phosphatase, glycogen phosphorylase, glycogen synthase, glycogen synthase kinase-3β, phosphoenolpyruvate carboxykinase, silent information regulator-1, sterol regulatory element-binding protein-1, insulin receptor substrate 1, phosphoinositide 3-kinase, and protein kinase B. The available data support the conclusion that the action of quercetin was pleiotropic since it alleviates a wide range of diabetes-related disorders. Moreover, no side effects were observed during treatment with quercetin in rodents. Given that human diabetes affects a large part of the population worldwide, the results of animal studies encourage clinical trials to evaluate the potential of quercetin as an adjunct to pharmacological therapies. Full article
Show Figures

Figure 1

19 pages, 2509 KiB  
Article
Semi-Synthesis, Anti-Leukemia Activity, and Docking Study of Derivatives from 3α,24-Dihydroxylup-20(29)-en-28-Oic Acid
by Mario J. Noh-Burgos, Sergio García-Sánchez, Fernando J. Tun-Rosado, Antonieta Chávez-González, Sergio R. Peraza-Sánchez and Rosa E. Moo-Puc
Molecules 2025, 30(15), 3193; https://doi.org/10.3390/molecules30153193 - 30 Jul 2025
Viewed by 370
Abstract
Current treatments against leukemia present several limitations, prompting the search for new therapeutic agents, particularly those derived from natural products. In this context, structural modifications were performed on the triterpene 3α,24-dihydroxylup-20(29)-en-28-oic acid (T1), isolated from Phoradendron wattii. Among [...] Read more.
Current treatments against leukemia present several limitations, prompting the search for new therapeutic agents, particularly those derived from natural products. In this context, structural modifications were performed on the triterpene 3α,24-dihydroxylup-20(29)-en-28-oic acid (T1), isolated from Phoradendron wattii. Among the five derivatives obtained, 3α,24-dihydroxy-30-oxolup-20(29)-en-28-oic acid (T1c) exhibited the highest activity, with an IC50 value of 12.90 ± 0.1 µM against THP-1 cells. T1c significantly reduced cell viability in both acute lymphoblastic leukemia (CCRF-CEM, REH, JURKAT, and MOLT-4) and acute myeloid leukemia (THP-1) cell lines, inducing apoptosis after 48 h of treatment, while showing minimal cytotoxicity toward normal mononuclear cells (MNCs). In silico molecular docking studies were conducted against three key protein targets: BCL-2 (B-cell lymphoma 2), EGFR (epidermal growth factor receptor, tyrosine kinase domain), and FLT3 (FMS-like tyrosine kinase 3). The lowest binding energies (kcal/mol) observed were as follows: T1–BCL-2: −10.12, EGFR: −12.75, FLT3: −14.05; T1c–BCL-2: −10.23, EGFR: −14.50, FLT3: −14.07; T2–BCL-2: −11.59, EGFR: −15.00, FLT3: −14.03. These findings highlight T1c as a promising candidate in the search for anti-leukemic drugs which deserves further study. Full article
(This article belongs to the Special Issue Synthesis and Derivatization of Heterocyclic Compounds)
Show Figures

Graphical abstract

16 pages, 2701 KiB  
Article
The Lysine at Position 177 Is Essential to Limit the Inhibitory Capacities of Sprouty4 Protein in Normal and Cancer-Derived Cells
by Maximilian Schiwek, Kathrin Ruhdorfer, Christoph Pfurner and Hedwig Sutterlüty
Int. J. Mol. Sci. 2025, 26(15), 7353; https://doi.org/10.3390/ijms26157353 - 30 Jul 2025
Viewed by 241
Abstract
The Sprouty (Spry) proteins modulate signalling and regulate processes like cellular migration and proliferation. Here, we investigated a Spry4 alteration substituting a lysine at position 177 to an arginine, based on a mutation found in Kallmann syndrome, a genetically heterogeneous disease connected to [...] Read more.
The Sprouty (Spry) proteins modulate signalling and regulate processes like cellular migration and proliferation. Here, we investigated a Spry4 alteration substituting a lysine at position 177 to an arginine, based on a mutation found in Kallmann syndrome, a genetically heterogeneous disease connected to reduced fibroblast growth factor receptor1 (FGFR) signalling. Using growth curves to evaluate proliferative and scratch assays to determine migrative capacities of the cells, in normal fibroblasts as well as in osteosarcoma-derived cells, we demonstrate that the modified Spry4K177R version hinders both processes, which the unaltered protein cannot do under the same conditions. The inhibition of these processes was accompanied by lower relative phospho-extracellular-signal-regulated kinases (pERK) levels in response to serum induction, indicating that activation of MAPK was less efficient. In contrast to the situation in these cells of mesenchymal origin, in lung cancer-derived cell lines both variants of Spry4 were able to interfere with proliferation of tested cells, and in the cells with elevated FGFR1 expression the Spry4 proteins with an alteration at codon 177 were even more effective. In summary, these data indicate that the lysine at position 177 restricts the ability of Spry4 to inhibit signal transduction at least in cells with high FGFR1 levels. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Sprouty Proteins in Cancer)
Show Figures

Figure 1

20 pages, 17080 KiB  
Article
Exercise Ameliorates Dopaminergic Neurodegeneration in Parkinson’s Disease Mice by Suppressing Microglia-Regulated Neuroinflammation Through Irisin/AMPK/Sirt1 Pathway
by Bin Wang, Nan Li, Yuanxin Wang, Xin Tian, Junjie Lin, Xin Zhang, Haocheng Xu, Yu Sun and Renqing Zhao
Biology 2025, 14(8), 955; https://doi.org/10.3390/biology14080955 - 29 Jul 2025
Viewed by 343
Abstract
Although exercise is known to exert anti-inflammatory effects in neurodegenerative diseases, its specific impact and underlying mechanisms in Parkinson’s disease (PD) remain poorly understood. This study explores the effects of exercise on microglia-mediated neuroinflammation and apoptosis in a PD model, focusing on the [...] Read more.
Although exercise is known to exert anti-inflammatory effects in neurodegenerative diseases, its specific impact and underlying mechanisms in Parkinson’s disease (PD) remain poorly understood. This study explores the effects of exercise on microglia-mediated neuroinflammation and apoptosis in a PD model, focusing on the role of irisin signaling in mediating these effects. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model, we found that a 10-week treadmill exercise regimen significantly enhanced motor function, reduced dopaminergic neuron loss, attenuated neuronal apoptosis, and alleviated neuroinflammation. Exercise also shifted microglia from a pro-inflammatory to an anti-inflammatory phenotype. Notably, levels of irisin, phosphorylated AMP-activated protein kinase (p-AMPK), and sirtuin 1 (Sirt1), which were decreased in the PD brain, were significantly increased following exercise. These beneficial effects were abolished by blocking the irisin receptor with cyclic arginine–glycine–aspartic acid–tyrosine–lysine (cycloRGDyk). Our results indicate that exercise promotes neuroprotection in PD by modulating microglial activation and the AMPK/Sirt1 pathway through irisin signaling, offering new insights into exercise-based therapeutic approaches for PD. Full article
Show Figures

Figure 1

14 pages, 1241 KiB  
Review
CD4/CD8–p56lck Induced T-Cell Receptor Signaling and Its Implications for Immunotherapy
by Andres Oroya and Christopher E. Rudd
Biomolecules 2025, 15(8), 1096; https://doi.org/10.3390/biom15081096 - 29 Jul 2025
Viewed by 388
Abstract
T-cells constitute an essential component of the adaptive immune response, mount a protective response against foreign pathogens and are important regulators of anti-tumor immunotherapy. In this context, the activation of T-cells and chimeric antigen receptor (CAR)-expressing T-cells is orchestrated by various signaling pathways, [...] Read more.
T-cells constitute an essential component of the adaptive immune response, mount a protective response against foreign pathogens and are important regulators of anti-tumor immunotherapy. In this context, the activation of T-cells and chimeric antigen receptor (CAR)-expressing T-cells is orchestrated by various signaling pathways, involving the initiation of a protein tyrosine phosphorylation cascade. For T-cells, this involves initiation of the phosphorylation cascade via src-related protein-tyrosine kinase p56lck, which we show to associate with the co-receptors CD4 and CD8 for the induction of a phosphorylation cascade needed for the activation of T-cells. Likewise, p56lck phosphorylation of the antigen receptor immunoreceptor tyrosine-based activation motifs (ITAMs) and key CD28 tyrosine motifs ensures the functionality and the survival of CARs, while their phospho-targets are also inhibited by PD-1, a key component of the immune checkpoint blockade. This review covers historic and current elements of our knowledge of CD4/CD8–p56lck-induced activation events and their importance to the development of CAR T-cell immunotherapies. Full article
(This article belongs to the Special Issue Molecular Signalling Pathways in Tumorigenesis and Tumor Suppression)
Show Figures

Figure 1

39 pages, 1806 KiB  
Review
Microglia-Mediated Neuroinflammation Through Phosphatidylinositol 3-Kinase Signaling Causes Cognitive Dysfunction
by Mohammad Nazmul Hasan Maziz, Srikumar Chakravarthi, Thidar Aung, Phone Myint Htoo, Wana Hla Shwe, Sergey Gupalo, Manglesh Waran Udayah, Hardev Singh, Mohammed Shahjahan Kabir, Rajesh Thangarajan and Maheedhar Kodali
Int. J. Mol. Sci. 2025, 26(15), 7212; https://doi.org/10.3390/ijms26157212 - 25 Jul 2025
Viewed by 413
Abstract
Microglia, as the immune guardians of the central nervous system (CNS), have the ability to maintain neural homeostasis, respond to environmental changes, and remodel the synaptic landscape. However, persistent microglial activation can lead to chronic neuroinflammation, which can alter neuronal signaling pathways, resulting [...] Read more.
Microglia, as the immune guardians of the central nervous system (CNS), have the ability to maintain neural homeostasis, respond to environmental changes, and remodel the synaptic landscape. However, persistent microglial activation can lead to chronic neuroinflammation, which can alter neuronal signaling pathways, resulting in accelerated cognitive decline. Phosphoinositol 3-kinase (PI3K) has emerged as a critical driver, connecting inflammation to neurodegeneration, serving as the nexus of numerous intracellular processes that govern microglial activation. This review focuses on the relationship between PI3K signaling and microglial activation, which might lead to cognitive impairment, inflammation, or even neurodegeneration. The review delves into the components of the PI3K signaling cascade, isoforms, and receptors of PI3K, as well as the downstream effects of PI3K signaling, including its effectors such as protein kinase B (Akt) and mammalian target of rapamycin (mTOR) and the negative regulator phosphatase and tensin homolog (PTEN). Experiments have shown that the overproduction of certain cytokines, coupled with abnormal oxidative stress, is a consequence of poor PI3K regulation, resulting in excessive synapse pruning and, consequently, impacting learning and memory functions. The review also highlights the implications of autonomously activated microglia exhibiting M1/M2 polarization driven by PI3K on hippocampal, cortical, and subcortical circuits. Conclusions from behavioral studies, electrophysiology, and neuroimaging linking cognitive performance and PI3K activity were evaluated, along with new approaches to therapy using selective inhibitors or gene editing. The review concludes by highlighting important knowledge gaps, including the specific effects of different isoforms, the risks associated with long-term pathway modulation, and the limitations of translational potential, underscoring the crucial role of PI3K in mitigating cognitive impairment driven by neuroinflammation. Full article
(This article belongs to the Special Issue Therapeutics and Pathophysiology of Cognitive Dysfunction)
Show Figures

Figure 1

18 pages, 2449 KiB  
Article
Functional Divergence for N-Linked Glycosylation Sites in Equine Lutropin/Choriogonadotropin Receptors
by Munkhzaya Byambaragchaa, Han-Ju Kang, Sei Hyen Park, Min Gyu Shin, Kyong-Mi Won, Myung-Hwa Kang and Kwan-Sik Min
Curr. Issues Mol. Biol. 2025, 47(8), 590; https://doi.org/10.3390/cimb47080590 - 25 Jul 2025
Viewed by 309
Abstract
Equine lutropin hormone/choriogonadotropin receptor (LH/CGR) is a G protein-coupled receptor that binds to both luteinizing hormone and choriogonadotropin, with multiple potential N-linked glycosylation sites in the long extracellular domain region. The roles of these glycosylation sites in hormone binding have been widely studied; [...] Read more.
Equine lutropin hormone/choriogonadotropin receptor (LH/CGR) is a G protein-coupled receptor that binds to both luteinizing hormone and choriogonadotropin, with multiple potential N-linked glycosylation sites in the long extracellular domain region. The roles of these glycosylation sites in hormone binding have been widely studied; however, their relationships with cyclic adenosine monophosphate (cAMP) activation, loss of cell surface receptors, and phosphorylated extracellular signal-regulated kinases1/2 (pERK1/2) expression are unknown. We used site-directed mutagenesis with the substitution of Asn for Gln to alter the consensus sequences for N-linked glycosylation, and cAMP signaling was analyzed in the mutants. Specifically, the N174Q and N195Q mutants exhibited markedly reduced expression levels, reaching approximately 15.3% and 2.5%, respectively, of that observed for wild-type equine LH/CGR. Correspondingly, the cAMP EC50 values were decreased by 7.6-fold and 5.6-fold, respectively. Notably, the N195Q mutant displayed an almost complete loss of cAMP activity, even at high concentrations of recombinant eCG, suggesting a critical role for this glycosylation site in receptor function. Despite these alterations, Western blot analysis revealed that pERK1/2 phosphorylation peaked at 5 min following agonist stimulation across all mutants, indicating that the ERK1/2 signaling pathway remains functionally intact. This study demonstrates that the specific N-linked glycosylation site, N195, in equine LH/CGR is indispensable for cAMP activity but is normally processed in pERK1/2 signaling. Thus, we suggest that in equine LH/CGR, agonist treatment induces biased signaling, differentially activating cAMP signaling and the pERK1/2 pathway. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

31 pages, 4221 KiB  
Article
Estradiol Downregulates MicroRNA-193a to Mediate Its Angiogenic Actions
by Lisa Rigassi, Mirel Adrian Popa, Ruth Stiller, Brigitte Leeners, Marinella Rosselli and Raghvendra Krishna Dubey
Cells 2025, 14(15), 1134; https://doi.org/10.3390/cells14151134 - 23 Jul 2025
Cited by 1 | Viewed by 342
Abstract
Estrogens regulate many physiological processes in the human body, including the cardiovascular system. Importantly, Estradiol (E2) exerts its vascular protective actions, in part, by promoting endothelial repair via induction of endothelial cell (EC) proliferation, migration and angiogenesis. Recent evidence that microRNAs (miRNAs) play [...] Read more.
Estrogens regulate many physiological processes in the human body, including the cardiovascular system. Importantly, Estradiol (E2) exerts its vascular protective actions, in part, by promoting endothelial repair via induction of endothelial cell (EC) proliferation, migration and angiogenesis. Recent evidence that microRNAs (miRNAs) play an important role in vascular health and disease as well as in regulating Estrogen actions in many cell types. We hypothesize that E2 may mediate its vascular protective actions via the regulation of miRNAs. Following initial screening, we found that E2 downregulates the levels of miR-193a-3p in ECs. Moreover, miR-193a-3p downregulation by miR-193a-3p-antimir mimicked the effects as E2 on EC growth, migration, and capillary formation. Restoring miR-193a-3p levels with mimics after E2 treatment abrogated the vasculogenic actions of E2, suggesting a key role of miR-193a-3p in E2-mediated EC-growth-promoting effects. We further investigated the cellular mechanisms involved and found that miR-193a-3p inhibits angiogenesis by blocking phosphoinositide-3-kinase (PI3K)/Akt-vascular endothelial growth factor (VEGF) and Activin receptor-like kinase 1 (ALK1)/SMAD1/5/8 signaling in ECs, both pathways that are important in E2-mediated vascular protection. Additionally, using reverse transcription polymerase chain reaction (RT-PCR), we demonstrate that E2 downregulates miR-193a-3p in ECs via Estrogen Receptor (ER)α, but not ERβ or G protein-coupled estrogen receptor (GPER). Moreover, these actions occur post-transcriptionally, as the expression of pri-miR-193a-3p was not affected. The anti-angiogenic actions of miR-193a-3p were also observed in in vivo Matrigel implant-based capillary formation studies in ovariectomized mice where E2 induced capillary formation, and these effects were abrogated in the presence of miR-193a-3p, but not in the control mimic. Assessment of miR-193a-3p levels in plasma collected from in vitro fertilization (IVF) subjects with low and high E2 levels showed significantly lower miR-193a-3p levels in responders during the high E2 period. Hence, our findings provide the first evidence that miR-193a-3p mimic inhibits angiogenesis whereas its antimir is angiogenic. Importantly, E2 mediates its regenerative actions on ECs/capillary formation by downregulating endogenous miR-193a-3p expression. Both miR-193a-3p mimic or antimir may represent important therapeutic molecules to prevent or to induce endothelial function in treating pathophysiologies associated with capillary growth. Full article
Show Figures

Graphical abstract

32 pages, 10235 KiB  
Article
Estradiol Downregulates MicroRNA-193a to Mediate Its Anti-Mitogenic Actions on Human Coronary Artery Smooth Muscle Cell Growth
by Lisa Rigassi, Marinella Rosselli, Brigitte Leeners, Mirel Adrian Popa and Raghvendra Krishna Dubey
Cells 2025, 14(15), 1132; https://doi.org/10.3390/cells14151132 - 23 Jul 2025
Viewed by 303
Abstract
The abnormal growth of smooth muscle cells (SMCs) contributes to the vascular remodeling associated with coronary artery disease, a leading cause of death in women. Estradiol (E2) mediates cardiovascular protective actions, in part, by inhibiting the abnormal growth (proliferation and migration) of SMCs [...] Read more.
The abnormal growth of smooth muscle cells (SMCs) contributes to the vascular remodeling associated with coronary artery disease, a leading cause of death in women. Estradiol (E2) mediates cardiovascular protective actions, in part, by inhibiting the abnormal growth (proliferation and migration) of SMCs through various mechanism. Since microRNAs (miRNAs) play a major role in regulating cell growth and vascular remodeling, we hypothesize that miRNAs may mediate the protective actions of E2. Following preliminary leads from E2-regulated miRNAs, we found that platelet-derived growth factor (PDGF)-BB-induced miR-193a in SMCs is downregulated by E2 via estrogen receptor (ER)α, but not the ERβ or G-protein-coupled estrogen receptor (GPER). Importantly, miR-193a is actively involved in regulating SMC functions. The ectopic expression of miR-193a induced vascular SMC proliferation and migration, while its suppression with antimir abrogated PDGF-BB-induced growth, effects that were similar to E2. Importantly, the restoration of miR-193a abrogated the anti-mitogenic actions of E2 on PDGF-BB-induced growth, suggesting a key role of miR-193a in mediating the growth inhibitory actions of E2 in vascular SMCs. E2-abrogated PDGF-BB, but not miR-193a, induced SMC growth, suggesting that E2 blocks the PDGF-BB-induced miR-193a formation to mediate its anti-mitogenic actions. Interestingly, the PDGF-BB-induced miR-193a formation in SMCs was also abrogated by 2-methoxyestradiol (2ME), an endogenous E2 metabolite that inhibits SMC growth via an ER-independent mechanism. Furthermore, we found that miR-193a induces SMC growth by activating the phosphatidylinositol 3-kinases (PI3K)/Akt signaling pathway and promoting the G1 to S phase progression of the cell cycle, by inducing Cyclin D1, Cyclin Dependent Kinase 4 (CDK4), Cyclin E, and proliferating-cell-nuclear-antigen (PCNA) expression and Retinoblastoma-protein (RB) phosphorylation. Importantly, in mice, treatment with miR-193a antimir, but not its control, prevented cuff-induced vascular remodeling and significantly reducing the vessel-wall-to-lumen ratio in animal models. Taken together, our findings provide the first evidence that miR-193a promotes SMC proliferation and migration and may play a key role in PDGF-BB-induced vascular remodeling/occlusion. Importantly, E2 prevents PDGF-BB-induced SMC growth by downregulating miR-193a formation in SMCs. Since, miR-193a antimir prevents SMC growth as well as cuff-induced vascular remodeling, it may represent a promising therapeutic molecule against cardiovascular disease. Full article
Show Figures

Graphical abstract

27 pages, 2123 KiB  
Article
Exploring Cloned Disease Resistance Gene Homologues and Resistance Gene Analogues in Brassica nigra, Sinapis arvensis, and Sinapis alba: Identification, Characterisation, Distribution, and Evolution
by Aria Dolatabadian, Junrey C. Amas, William J. W. Thomas, Mohammad Sayari, Hawlader Abdullah Al-Mamun, David Edwards and Jacqueline Batley
Genes 2025, 16(8), 849; https://doi.org/10.3390/genes16080849 - 22 Jul 2025
Viewed by 260
Abstract
This study identifies and classifies resistance gene analogues (RGAs) in the genomes of Brassica nigra, Sinapis arvensis and Sinapis alba using the RGAugury pipeline. RGAs were categorised into four main classes: receptor-like kinases (RLKs), receptor-like proteins (RLPs), nucleotide-binding leucine-rich repeat (NLR) proteins [...] Read more.
This study identifies and classifies resistance gene analogues (RGAs) in the genomes of Brassica nigra, Sinapis arvensis and Sinapis alba using the RGAugury pipeline. RGAs were categorised into four main classes: receptor-like kinases (RLKs), receptor-like proteins (RLPs), nucleotide-binding leucine-rich repeat (NLR) proteins and transmembrane-coiled-coil (TM-CC) genes. A total of 4499 candidate RGAs were detected, with species-specific proportions. RLKs were the most abundant across all genomes, followed by TM-CCs and RLPs. The sub-classification of RLKs and RLPs identified LRR-RLKs, LRR-RLPs, LysM-RLKs, and LysM-RLPs. Atypical NLRs were more frequent than typical ones in all species. Atypical NLRs were more frequent than typical ones in all species. We explored the relationship between chromosome size and RGA count using regression analysis. In B. nigra and S. arvensis, larger chromosomes generally harboured more RGAs, while S. alba displayed the opposite trend. Exceptions were observed in all species, where some larger chromosomes contained fewer RGAs in B. nigra and S. arvensis, or more RGAs in S. alba. The distribution and density of RGAs across chromosomes were examined. RGA distribution was skewed towards chromosomal ends, with patterns differing across RGA types. Sequence hierarchical pairwise similarity analysis revealed distinct gene clusters, suggesting evolutionary relationships. The study also identified homologous genes among RGAs and non-RGAs in each species, providing insights into disease resistance mechanisms. Finally, RLKs and RLPs were co-localised with reported disease resistance loci in Brassica, indicating significant associations. Phylogenetic analysis of cloned RGAs and QTL-mapped RLKs and RLPs identified distinct clusters, enhancing our understanding of their evolutionary trajectories. These findings provide a comprehensive view of RGA diversity and genomics in these Brassicaceae species, providing valuable insights for future research in plant disease resistance and crop improvement. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

16 pages, 2512 KiB  
Article
Optimizing PH Domain-Based Biosensors for Improved Plasma Membrane PIP3 Measurements in Mammalian Cells
by Amir Damouni, Dániel J. Tóth, Aletta Schönek, Alexander Kasbary, Adél P. Boros and Péter Várnai
Cells 2025, 14(14), 1125; https://doi.org/10.3390/cells14141125 - 21 Jul 2025
Viewed by 382
Abstract
Phosphoinositide-binding pleckstrin homology (PH) domains interact with both phospholipids and proteins, often complicating their use as specific lipid biosensors. In this study, we introduced specific mutations into the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-specific PH domains of protein kinase B (Akt) and general receptor [...] Read more.
Phosphoinositide-binding pleckstrin homology (PH) domains interact with both phospholipids and proteins, often complicating their use as specific lipid biosensors. In this study, we introduced specific mutations into the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-specific PH domains of protein kinase B (Akt) and general receptor for phosphoinositides 1 (GRP1) that disrupt protein-mediated interactions while preserving lipid binding, in order to enhance biosensor specificity for PIP3, and evaluated their impact on plasma membrane (PM) localization and lipid-tracking ability. Using bioluminescence resonance energy transfer (BRET) and confocal microscopy, we assessed the localization of PH domains in HEK293A cells under different conditions. While Akt-PH mutants showed minimal deviations from the wild type, GRP1-PH mutants exhibited significantly reduced PM localization both at baseline and after stimulation with epidermal growth factor (EGF), insulin, or vanadate. We further developed tandem mutant GRP1-PH domain constructs to enhance PM PIP3 avidity. Additionally, our investigation into the influence of ADP ribosylation factor 6 (Arf6) activity on GRP1-PH-based biosensors revealed that while the wild-type sensors were Arf6- dependent, the mutants operated independently of Arf6 activity level. These optimized GRP1-PH constructs provide a refined biosensor system for accurate and selective detection of dynamic PIP3 signaling, expanding the toolkit for dissecting phosphoinositide-mediated pathways. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

Back to TopTop