Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (386)

Search Parameters:
Keywords = real-time energy markets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3996 KiB  
Article
Incentive-Compatible Mechanism Design for Medium- and Long-Term/Spot Market Coordination in High-Penetration Renewable Energy Systems
by Sicong Wang, Weiqing Wang, Sizhe Yan and Qiuying Li
Processes 2025, 13(8), 2478; https://doi.org/10.3390/pr13082478 - 6 Aug 2025
Abstract
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems [...] Read more.
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems with high renewable energy penetration. A three-stage joint operation framework is proposed. First, a medium- and long-term trading game model is established, considering multiple energy types to optimize the benefits of market participants. Second, machine learning algorithms are employed to predict renewable energy output, and a contract decomposition mechanism is developed to ensure a smooth transition from medium- and long-term contracts to real-time market operations. Finally, a day-ahead market-clearing strategy and an incentive-compatible settlement mechanism, incorporating the constraints from contract decomposition, are proposed to link the two markets effectively. Simulation results demonstrate that the proposed mechanism effectively enhances resource allocation and stabilizes market operations, leading to significant revenue improvements across various generation units and increased renewable energy utilization. Specifically, thermal power units achieve a 19.12% increase in revenue, while wind and photovoltaic units show more substantial gains of 38.76% and 47.52%, respectively. Concurrently, the mechanism drives a 10.61% increase in renewable energy absorption capacity and yields a 13.47% improvement in Tradable Green Certificate (TGC) utilization efficiency, confirming its overall effectiveness. This research shows that coordinated optimization between medium- and long-term/spot markets, combined with a well-designed settlement mechanism, significantly strengthens the market competitiveness of renewable energy, providing theoretical support for the market-based operation of the new power system. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 4441 KiB  
Article
Simulation of Trip Chains in a Metropolitan Area to Evaluate the Energy Needs of Electric Vehicles and Charging Demand
by Pietro Antonio Centrone, Giuseppe Brancaccio and Francesco Deflorio
World Electr. Veh. J. 2025, 16(8), 435; https://doi.org/10.3390/wevj16080435 - 4 Aug 2025
Viewed by 48
Abstract
The typical ranges available for electric vehicles (EVs) may be considered by users to be inadequate when compared to long, real-life trips, and charging operations may need to be planned along journeys. To evaluate the compatibility between vehicle features and charging options for [...] Read more.
The typical ranges available for electric vehicles (EVs) may be considered by users to be inadequate when compared to long, real-life trips, and charging operations may need to be planned along journeys. To evaluate the compatibility between vehicle features and charging options for realistic journeys performed by car, a simulation approach is proposed here, using travel data collected from real vehicles to obtain trip chains for multiple consecutive days. Car travel activities, including stops with the option of charging, were simulated by applying an agent-based approach. Charging operations can be integrated into trip chains for user activities, assuming that they remain unchanged in the event that vehicles switch to electric. The energy consumption of the analyzed trips, disaggregated by vehicle type, was estimated using the average travel speed, which is useful for capturing the main route features (ranging from urban to motorways). Data were recorded for approximately 25,000 vehicles in the Turin Metropolitan Area for six consecutive days. Market segmentation of the vehicles was introduced to take into consideration different energy consumption rates and charging times, given that the electric power, battery size, and consumption rate can be related to the vehicle category. Charging activities carried out using public infrastructure during idle time between consecutive trips, as well as those carried out at home or work, were identified in order to model different needs. Full article
Show Figures

Figure 1

40 pages, 4775 KiB  
Article
Optimal Sizing of Battery Energy Storage System for Implicit Flexibility in Multi-Energy Microgrids
by Andrea Scrocca, Maurizio Delfanti and Filippo Bovera
Appl. Sci. 2025, 15(15), 8529; https://doi.org/10.3390/app15158529 (registering DOI) - 31 Jul 2025
Viewed by 155
Abstract
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular [...] Read more.
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular focus on accurately modeling the structure of electricity and natural gas bills. The objective is to assess the added economic value of integrating a battery energy storage system (BESS) under the assumption it is employed to provide implicit flexibility—namely, bill management, energy arbitrage, and peak shaving. Results show that under assumed market conditions, tariff schemes, and BESS costs, none of the analyzed BESS configurations achieve a positive net present value. However, a 2 MW/4 MWh BESS yields a 3.8% reduction in annual operating costs compared to the base case without storage, driven by increased self-consumption (+2.8%), reduced thermal energy waste (–6.4%), and a substantial decrease in power-based electricity charges (–77.9%). The performed sensitivity analyses indicate that even with a significantly higher day-ahead market price spread, the BESS is not sufficiently incentivized to perform pure energy arbitrage and that the effectiveness of a time-of-use power-based tariff depends not only on the level of price differentiation but also on the BESS size. Overall, this study provides insights into the role of BESS in MEMGs and highlights the need for electricity bill designs that better reward the provision of implicit flexibility by storage systems. Full article
(This article belongs to the Special Issue Innovative Approaches to Optimize Future Multi-Energy Systems)
Show Figures

Figure 1

19 pages, 6937 KiB  
Article
Optimal Placement of Distributed Solar PV Adapting to Electricity Real-Time Market Operation
by Xi Chen and Hai Long
Sustainability 2025, 17(15), 6879; https://doi.org/10.3390/su17156879 - 29 Jul 2025
Viewed by 274
Abstract
Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning [...] Read more.
Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning and economic assessment model for building-integrated PV (BIPV) systems, incorporating hourly electricity real-time market prices, solar geometry, and submeter building spatial data. Wuhan (30.60° N, 114.05° E) serves as the case study to evaluate optimal PV placement and tilt angles on rooftops and façades, focusing on maximizing economic returns rather than energy production alone. The results indicate that adjusting rooftop PV tilt from a maximum generation angle (30°) to a maximum revenue angle (15°) slightly lowers generation but increases revenue, with west-facing orientations further improving returns by aligning output with peak electricity prices. For façades, south-facing panels yielded the highest output, while north-facing panels with tilt angles above 20° also showed significant potential. Façade PV systems demonstrated substantially higher generation potential—about 5 to 15 times that of rooftop PV systems under certain conditions. This model provides a spatially detailed, market-responsive framework supporting sustainable urban energy planning, quantifying economic and environmental benefits, and aligning with integrated approaches to urban sustainability. Full article
(This article belongs to the Special Issue Sustainable Energy Planning and Environmental Assessment)
Show Figures

Figure 1

38 pages, 2182 KiB  
Article
Smart Grid Strategies for Tackling the Duck Curve: A Qualitative Assessment of Digitalization, Battery Energy Storage, and Managed Rebound Effects Benefits
by Joseph Nyangon
Energies 2025, 18(15), 3988; https://doi.org/10.3390/en18153988 - 25 Jul 2025
Viewed by 381
Abstract
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the [...] Read more.
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the U.S. electricity market, triggering significant changes in electricity production, transmission, and consumption. Utilities are embracing digital twins and repurposed Utility 2.0 concepts—distributed energy resources, microgrids, innovative electricity market designs, real-time automated monitoring, smart meters, machine learning, artificial intelligence, and advanced data and predictive analytics—to foster operational flexibility and market efficiency. This analysis qualitatively evaluates how digitalization, Battery Energy Storage Systems (BESSs), and adaptive strategies to mitigate rebound effects collectively advance smart duck curve management. By leveraging digital platforms for real-time monitoring and predictive analytics, utilities can optimize energy flows and make data-driven decisions. BESS technologies capture surplus renewable energy during off-peak periods and discharge it when demand spikes, thereby smoothing grid fluctuations. This review explores the benefits of targeted digital transformation, BESSs, and managed rebound effects in mitigating the duck curve problem, ensuring that energy efficiency gains translate into actual savings. Furthermore, this integrated approach not only reduces energy wastage and lowers operational costs but also enhances grid resilience, establishing a robust framework for sustainable energy management in an evolving market landscape. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
Show Figures

Figure 1

53 pages, 1950 KiB  
Article
Redefining Energy Management for Carbon-Neutral Supply Chains in Energy-Intensive Industries: An EU Perspective
by Tadeusz Skoczkowski, Sławomir Bielecki, Marcin Wołowicz and Arkadiusz Węglarz
Energies 2025, 18(15), 3932; https://doi.org/10.3390/en18153932 - 23 Jul 2025
Viewed by 313
Abstract
Energy-intensive industries (EIIs) face mounting pressure to reduce greenhouse gas emissions while maintaining international competitiveness—a balance that is central to achieving the EU’s 2030 and 2050 climate objectives. In this context, energy management (EM) emerges as a strategic instrument to decouple industrial growth [...] Read more.
Energy-intensive industries (EIIs) face mounting pressure to reduce greenhouse gas emissions while maintaining international competitiveness—a balance that is central to achieving the EU’s 2030 and 2050 climate objectives. In this context, energy management (EM) emerges as a strategic instrument to decouple industrial growth from fossil energy consumption. This study proposes a redefinition of EM to support carbon-neutral supply chains within the European Union’s EIIs, addressing critical limitations of conventional EM frameworks under increasingly stringent carbon regulations. Using a modified systematic literature review based on PRISMA methodology, complemented by expert insights from EU Member States, this research identifies structural gaps in current EM practices and highlights opportunities for integrating sustainable innovations across the whole industrial value chain. The proposed EM concept is validated through an analysis of 24 EM definitions, over 170 scientific publications, and over 80 EU legal and strategic documents. The framework incorporates advanced digital technologies—including artificial intelligence (AI), the Internet of Things (IoT), and big data analytics—to enable real-time optimisation, predictive control, and greater system adaptability. Going beyond traditional energy efficiency, the redefined EM encompasses the entire energy lifecycle, including use, transformation, storage, and generation. It also incorporates social dimensions, such as corporate social responsibility (CSR) and stakeholder engagement, to cultivate a culture of environmental stewardship within EIIs. This holistic approach provides a strategic management tool for optimising energy use, reducing emissions, and strengthening resilience to regulatory, environmental, and market pressures, thereby promoting more sustainable, inclusive, and transparent supply chain operations. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

21 pages, 10456 KiB  
Article
Experimental Validation of a Modular Skid for Hydrogen Production in a Hybrid Microgrid
by Gustavo Teodoro Bustamante, Jamil Haddad, Bruno Pinto Braga Guimaraes, Ronny Francis Ribeiro Junior, Frederico de Oliveira Assuncao, Erik Leandro Bonaldi, Luiz Eduardo Borges-da-Silva, Fabio Monteiro Steiner, Jaime Jose de Oliveira Junior and Claudio Inacio de Almeida Costa
Energies 2025, 18(15), 3910; https://doi.org/10.3390/en18153910 - 22 Jul 2025
Viewed by 272
Abstract
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered [...] Read more.
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered on a six-compartment skid, it integrates photovoltaic generation, battery storage, and a liquefied petroleum gas generator to emulate typical cogeneration conditions, together with a high-purity proton exchange membrane electrolyzer. A supervisory control module ensures real-time monitoring and energy flow management, following international safety standards. The study also explores the incorporation of blockchain technology to certify the renewable origin of hydrogen, enhancing traceability and transparency in the green hydrogen market. The experimental results confirm the system’s technical feasibility, demonstrating stable hydrogen production, efficient energy management, and islanded-mode operation with preserved grid stability. These findings highlight the strategic role of hydrogen as an energy vector in the transition to a cleaner energy matrix and support the proposed architecture as a replicable model for industrial facilities seeking to combine hydrogen production with advanced microgrid technologies. Future work will address large-scale validation and performance optimization, including advanced energy management algorithms to ensure economic viability and sustainability in diverse industrial contexts. Full article
Show Figures

Figure 1

32 pages, 3289 KiB  
Article
Optimal Spot Market Participation of PV + BESS: Impact of BESS Sizing in Utility-Scale and Distributed Configurations
by Andrea Scrocca, Roberto Pisani, Diego Andreotti, Giuliano Rancilio, Maurizio Delfanti and Filippo Bovera
Energies 2025, 18(14), 3791; https://doi.org/10.3390/en18143791 - 17 Jul 2025
Viewed by 342
Abstract
Recent European regulations promote distributed energy resources as alternatives to centralized generation. This study compares utility-scale and distributed photovoltaic (PV) systems coupled with Battery Energy-Storage Systems (BESSs) in the Italian electricity market, analyzing different battery sizes. A multistage stochastic mixed-integer linear programming model, [...] Read more.
Recent European regulations promote distributed energy resources as alternatives to centralized generation. This study compares utility-scale and distributed photovoltaic (PV) systems coupled with Battery Energy-Storage Systems (BESSs) in the Italian electricity market, analyzing different battery sizes. A multistage stochastic mixed-integer linear programming model, using Monte Carlo PV production scenarios, optimizes day-ahead and intra-day market offers while incorporating PV forecast updates. In real time, battery flexibility reduces imbalances. Here we show that, to ensure dispatchability—defined as keeping annual imbalances below 5% of PV output—a 1 MW PV system requires 220 kWh of storage for utility-scale and 50 kWh for distributed systems, increasing the levelized cost of electricity by +13.1% and +1.94%, respectively. Net present value is negative for BESSs performing imbalance netting only. Therefore, a multiple service strategy, including imbalance netting and energy arbitrage, is introduced. Performing arbitrage while keeping dispatchability reaches an economic optimum with a 1.7 MWh BESS for utility-scale systems and 1.1 MWh BESS for distributed systems. These results show lower PV firming costs than previous studies, and highlight that under a multiple-service strategy, better economic outcomes are obtained with larger storage capacities. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

24 pages, 26672 KiB  
Article
Short-Term Electric Load Forecasting Using Deep Learning: A Case Study in Greece with RNN, LSTM, and GRU Networks
by Vasileios Zelios, Paris Mastorocostas, George Kandilogiannakis, Anastasios Kesidis, Panagiota Tselenti and Athanasios Voulodimos
Electronics 2025, 14(14), 2820; https://doi.org/10.3390/electronics14142820 - 14 Jul 2025
Viewed by 590
Abstract
The increasing volatility in energy markets, particularly in Greece where electricity costs reached a peak of 236 EUR/MWh in 2022, underscores the urgent need for accurate short-term load forecasting models. In this study, the application of deep learning techniques, specifically Recurrent Neural Network [...] Read more.
The increasing volatility in energy markets, particularly in Greece where electricity costs reached a peak of 236 EUR/MWh in 2022, underscores the urgent need for accurate short-term load forecasting models. In this study, the application of deep learning techniques, specifically Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), to forecast hourly electricity demand is investigated. The proposed models were trained on historical load data from the Greek power system spanning the years 2013 to 2016. Various deep learning architectures were implemented and their forecasting performances using statistical metrics such as Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) were evaluated. The experiments utilized multiple time horizons (1 h, 2 h, 24 h) and input sequence lengths (6 h to 168 h) to assess model accuracy and robustness. The best performing GRU model achieved an RMSE of 83.2 MWh and a MAPE of 1.17% for 1 h ahead forecasting, outperforming both LSTM and RNN in terms of both accuracy and computational efficiency. The predicted values were integrated into a dynamic Power BI dashboard, to enable real-time visualization and decision support. These findings demonstrate the potential of deep learning architectures, particularly GRUs, for operational load forecasting and their applicability to intelligent energy systems in a market-strained environment. Full article
Show Figures

Figure 1

27 pages, 3082 KiB  
Article
Analyzing Systemic Risk Spillover Networks Through a Time-Frequency Approach
by Liping Zheng, Ziwei Liang, Jiaoting Yi and Yuhan Zhu
Mathematics 2025, 13(13), 2070; https://doi.org/10.3390/math13132070 - 22 Jun 2025
Viewed by 512
Abstract
This paper investigates the spillover effects and transmission networks of systemic risk within China’s national economic sectors under extreme conditions from both time and frequency domain perspectives, building upon the spillover index methodology and calculating the ∆CoVaR index for Chinese industries. The findings [...] Read more.
This paper investigates the spillover effects and transmission networks of systemic risk within China’s national economic sectors under extreme conditions from both time and frequency domain perspectives, building upon the spillover index methodology and calculating the ∆CoVaR index for Chinese industries. The findings indicate the following: (1) Extreme-risk spillovers synchronize across industries but exhibit pronounced time-varying peaks during the 2008 Global Financial Crisis, the 2015 crash, and the COVID-19 pandemic. (2) Long-term spillovers dominate overall connectedness, highlighting the lasting impact of fundamentals and structural linkages. (3) In terms of risk volatility, Energy, Materials, Consumer Discretionary, and Financials are most sensitive to systemic market shocks. (4) On the risk spillover effect, Consumer Discretionary, Industrials, Healthcare, and Information Technology consistently act as net transmitters of extreme risk, while Energy, Materials, Consumer Staples, Financials, Telecom Services, Utilities, and Real Estate primarily serve as net receivers. Based on these findings, the paper suggests deepening the regulatory mechanisms for systemic risk, strengthening the synergistic effect of systemic risk measurement and early warning indicators, and coordinating risk monitoring, early warning, and risk prevention and mitigation. It further emphasizes the importance of avoiding fragmented regulation by establishing a joint risk prevention mechanism across sectors and departments, strengthening the supervision of inter-industry capital flows. Finally, it highlights the need to closely monitor the formation mechanisms and transmission paths of new financial risks under the influence of the pandemic to prevent the accumulation and eruption of risks in the post-pandemic era. Authorities must conduct annual “Industry Transmission Reviews” to map emerging risk nodes and supply-chain vulnerabilities, refine policy tools, and stabilize market expectations so as to forestall the build-up and sudden release of new systemic shocks. Full article
Show Figures

Figure 1

28 pages, 840 KiB  
Perspective
Decarbonizing the Industry Sector: Current Status and Future Opportunities of Energy-Aware Production Scheduling
by Georgios P. Georgiadis, Christos N. Dimitriadis and Michael C. Georgiadis
Processes 2025, 13(6), 1941; https://doi.org/10.3390/pr13061941 - 19 Jun 2025
Viewed by 602
Abstract
As industries come under growing pressure to minimize carbon emissions without compromising the efficiency of operations, the integration of energy-aware production scheduling with emerging energy markets, renewable energy, and policy mechanisms is critical. This paper identifies critical shortcomings in current academic and industrial [...] Read more.
As industries come under growing pressure to minimize carbon emissions without compromising the efficiency of operations, the integration of energy-aware production scheduling with emerging energy markets, renewable energy, and policy mechanisms is critical. This paper identifies critical shortcomings in current academic and industrial approaches—namely, an excessive reliance on deterministic assumptions, a limited focus on dynamic operational realities, and the underutilization of regulatory mechanisms such as carbon trading. We advocate for a paradigm shift to more robust, adaptable, and policy-compliant scheduling systems that provide space for on-site renewable generation, battery energy storage systems (BESSs), demand-response measures, and real-time electricity pricing schemes like time-of-use (TOU) and real-time pricing (RTP). By integrating recent advances and their critical analysis of limitations, we map out a future research agenda for the integration of uncertainty modeling, machine learning, and multi-level optimization with policy compliance. In this paper, we propose the need for joint efforts from researchers, industries, and policymakers to collectively develop industrial scheduling systems that are both technically efficient and adherent to sustainability and regulatory requirements. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

32 pages, 2390 KiB  
Systematic Review
A Bibliometric Assessment of AI, IoT, Blockchain, and Big Data in Renewable Energy-Oriented Power Systems
by Manuel Jaramillo, Diego Carrión, Jorge Muñoz and Luis Tipán
Energies 2025, 18(12), 3067; https://doi.org/10.3390/en18123067 - 10 Jun 2025
Viewed by 790
Abstract
This study presents a systematic bibliometric review of digital innovations in renewable energy-oriented power systems, with a focus on Blockchain, Artificial Intelligence (AI), the Internet of Things (IoT), and Data Analytics. The objective is to evaluate the research landscape, trends, and integration potential [...] Read more.
This study presents a systematic bibliometric review of digital innovations in renewable energy-oriented power systems, with a focus on Blockchain, Artificial Intelligence (AI), the Internet of Things (IoT), and Data Analytics. The objective is to evaluate the research landscape, trends, and integration potential of these technologies within sustainable energy infrastructures. Peer-reviewed journal articles published between 2020 and 2025 were retrieved from Scopus using a structured search strategy. A total of 23,074 records were initially identified and filtered according to inclusion criteria based on relevance, peer-review status, and citation impact. No risk of bias assessment was applicable due to the nature of the study. The analysis employed bibliometric and keyword clustering techniques using VOSviewer and MATLAB to identify publication trends, citation patterns, and technology-specific application areas. AI emerged as the most studied domain, peaking with 1209 papers and 15,667 citations in 2024. IoT and Data Analytics followed in relevance, contributing to real-time system optimization and monitoring. Blockchain, while less frequent, is gaining traction in secure decentralized energy markets. Limitations include possible indexing delays affecting 2025 trends and the exclusion of gray literature. This study offers actionable insights for researchers and policymakers by identifying converging research fronts and recommending areas for regulatory, infrastructural, and collaborative focus. This review was not pre-registered. Funding was provided by the Universidad Politécnica Salesiana under project code 005-01-2025-02-07. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 4th Edition)
Show Figures

Figure 1

17 pages, 1594 KiB  
Article
Research on Path Planning for Mobile Charging Robots Based on Improved A* and DWA Algorithms
by Wenliang Zhu and Zhufan Chen
Electronics 2025, 14(12), 2318; https://doi.org/10.3390/electronics14122318 - 6 Jun 2025
Viewed by 385
Abstract
Driven by rapid growth in the new-energy vehicle (NEV) market and advances in automation, mobile charging robots are increasingly deployed in parking facilities. In complex environments featuring both static and dynamic obstacles, conventional trajectory plans often exhibit insufficient safety margins and poor smoothness. [...] Read more.
Driven by rapid growth in the new-energy vehicle (NEV) market and advances in automation, mobile charging robots are increasingly deployed in parking facilities. In complex environments featuring both static and dynamic obstacles, conventional trajectory plans often exhibit insufficient safety margins and poor smoothness. This paper proposes a hybrid path-planning strategy that combines an improved A* algorithm with an enhanced dynamic window approach (DWA). The enhanced A* algorithm incorporates obstacle influence factors and adaptive weighting during global search, enabling proactive avoidance of obstacle-dense regions and employing segmented Bezier curves for path smoothing. In local planning, the modified DWA integrates a global guidance term and distance-dependent heading weights to mitigate issues of local minima and target loss. Simulation results indicate that the proposed method substantially improves path safety, continuity, and adaptability to complex scenarios while maintaining computational efficiency. Specifically, under high-obstacle-density conditions (e.g., a 20 × 20 grid map), the collision rate is reduced by 66.7% compared to the standard A* algorithm (from 30% to 10%), and the minimum safety distance increases to 0.5 m. Current validation is conducted in simulations; future work will involve real-robot experiments to evaluate real-time performance and robustness in practical environments. Full article
Show Figures

Figure 1

23 pages, 2444 KiB  
Review
A Comprehensive Review on the Integration of Renewable Energy Through Advanced Planning and Optimization Techniques
by Carlos Barrera-Singaña, María Paz Comech and Hugo Arcos
Energies 2025, 18(11), 2961; https://doi.org/10.3390/en18112961 - 4 Jun 2025
Viewed by 918
Abstract
The expanding integration of wind and photovoltaic (PV) energy is disrupting the power system planning processes. Their incorporation poses limitations to forecasting due to their inherent variability. This review compiles a total of ninety studies conducted and published between 2019 and 2025, presenting [...] Read more.
The expanding integration of wind and photovoltaic (PV) energy is disrupting the power system planning processes. Their incorporation poses limitations to forecasting due to their inherent variability. This review compiles a total of ninety studies conducted and published between 2019 and 2025, presenting for the first time an integrated approach that simultaneously optimizes the generation, transmission, storage, and flexibility of resources given high ratios of renewable generation. We present a systematic taxonomy of conflicting optimization approaches—deterministic, stochastic, robust, and AI-enhanced optimization—outlining meaningful mathematical formulations, real-world case studies, and the achieved trade balance between optimality, scale, and runtime. Emerging international cooperation clusters are identified through quantitative bibliometric analysis, and method selection in practice is illustrated using a table with concise snapshots of case study excerpts. Other issues analyzed include long-duration storage, centralized versus decentralized roadmap delineation, and regulatory and market drivers of grid expansion. Finally, we identified gaps in the literature—namely, resilience, sector coupling, and policy uncertainty—that warrant further investigation. This review provides critical insights for researchers and planners by systematically integrating methodological perspectives to tackle real-world, application-oriented problems related to generation and transmission expansion models amid significant uncertainty. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

21 pages, 914 KiB  
Article
Dynamic Spillover Effects Among China’s Energy, Real Estate, and Stock Markets: Evidence from Extreme Events
by Fusheng Xie, Jingbo Wang and Chunzi Wang
Int. J. Financial Stud. 2025, 13(2), 97; https://doi.org/10.3390/ijfs13020097 - 1 Jun 2025
Viewed by 709
Abstract
This paper employs a Time-Varying Parameter Vector Autoregression Directional–Spillover (TVP-VAR-DY) model to investigate the dynamic spillover effects among China’s energy, real estate, and stock markets from 2013 to 2023, with a focus on the impact of extreme events. The findings show that the [...] Read more.
This paper employs a Time-Varying Parameter Vector Autoregression Directional–Spillover (TVP-VAR-DY) model to investigate the dynamic spillover effects among China’s energy, real estate, and stock markets from 2013 to 2023, with a focus on the impact of extreme events. The findings show that the total conditional spillover index (TCI) typically remains below 40% in the absence of extreme events, but significantly increases during such events, reaching 51.09% during the 2015 stock market crisis and nearing 60% during the COVID-19 pandemic in 2020. Specifically, the oil and gas market exhibited a net spillover index of 4.61%, emerging as a major source of risk transmission. In contrast, the real estate market, which had a net spillover index of −9.38%, became a net risk absorber. The net spillover index indicates that the risk transmission role of different markets towards other markets is dynamically changing over time and is closely related to significant global or domestic economic events. These results indicate that extreme events not only directly impact specific markets but also rapidly propagate risks through complex inter-market linkages, exacerbating systemic risks. Therefore, it is recommended to enhance market monitoring, improve transparency, and optimize risk management strategies to cope with uncertainties in the global economy and financial markets. Full article
(This article belongs to the Special Issue Risks and Uncertainties in Financial Markets)
Show Figures

Figure 1

Back to TopTop