Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (205)

Search Parameters:
Keywords = real-time HIL simulator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 10207 KB  
Article
Electromagnetic Modeling Framework of Thermal Systems for Real-Time Hardware-in-the-Loop Simulations
by Giambattista Gruosso and Enrico Spateri
Energies 2025, 18(21), 5752; https://doi.org/10.3390/en18215752 (registering DOI) - 31 Oct 2025
Abstract
This paper presents a methodology for embedding coupled electromagnetic–thermal finite element (FE) models into a hardware-in-the-loop (HIL) platform to enable real-time prototyping of control strategies for advanced heating systems. The framework combines frequency-domain electromagnetic modeling and time-domain thermal simulation within a physics-based digital [...] Read more.
This paper presents a methodology for embedding coupled electromagnetic–thermal finite element (FE) models into a hardware-in-the-loop (HIL) platform to enable real-time prototyping of control strategies for advanced heating systems. The framework combines frequency-domain electromagnetic modeling and time-domain thermal simulation within a physics-based digital twin executed on real-time hardware. Electromagnetic simulations generate impedance maps as functions of coil–workpiece positions, which are parameterized into equivalent lumped circuit models for efficient converter-level simulation. In parallel, the thermal FE solver operates directly on the hardware simulator, accelerating the computation of the heated object’s energy transfer and thermal dynamics. The approach is validated through an induction-heating case study, demonstrating that integrating finite element modeling into a real-time simulator enables the realistic evaluation of energy conversion, control algorithms, and detection logic in complex electrothermal systems. Full article
(This article belongs to the Special Issue Progress in Electromagnetic Analysis and Modeling of Heating Systems)
Show Figures

Figure 1

38 pages, 13235 KB  
Article
Hardware-in-the-Loop Experimental Validation of a Fault-Tolerant Control System for Quadcopter UAV Motor Faults
by Muhammad Abdullah, Adil Zulfiqar, Muhammad Zeeshan Babar, Jamal Hussain Arman, Ghulam Hafeez, Ahmed S. Alsafran and Muhyaddin Rawa
Fractal Fract. 2025, 9(11), 682; https://doi.org/10.3390/fractalfract9110682 - 23 Oct 2025
Viewed by 318
Abstract
In this paper, a hybrid fault-tolerant control (FTC) system for quadcopter unmanned aerial vehicles (UAVs) is proposed to counteract the deterioration of the performance of the quadcopter due to motor faults. A robust and adaptive approach to controlling fault conditions is simulated by [...] Read more.
In this paper, a hybrid fault-tolerant control (FTC) system for quadcopter unmanned aerial vehicles (UAVs) is proposed to counteract the deterioration of the performance of the quadcopter due to motor faults. A robust and adaptive approach to controlling fault conditions is simulated by combining an integral back-stepping controller for translational motion and a nonlinear observer-based sliding-mode controller for rotational motion, and then implemented on an FPGA. Finally, motor faults are treated as disturbances and are successfully compensated by the controller to ensure safe and high-performance flight. Simulations were taken at 0%, 10%, 30%, and 50% motor faults to test how effective the proposed FTC system is. After simulations, the controller’s real-time performance and reliability were validated through hardware-in-the-loop (HIL) experiments. The results validated that the proposed hybrid controller can guarantee stable flight and precision tracking of the desired trajectory when any single motor fails up to the order of 50%. It shows that the controller is of high fault tolerance and robustness, which will be a potential solution for improving the reliability of UAVs in fault-prone conditions. Full article
Show Figures

Figure 1

22 pages, 2464 KB  
Article
Fuzzy Control with Modified Fireworks Algorithm for Fuel Cell Commercial Vehicle Seat Suspension
by Nannan Jiang and Xiaoliang Chen
World Electr. Veh. J. 2025, 16(10), 585; https://doi.org/10.3390/wevj16100585 - 17 Oct 2025
Viewed by 329
Abstract
Enhancing ride comfort and vibration control performance is a critical requirement for fuel cell commercial vehicles (FCCVs). This study develops a semi-active seat suspension control strategy that integrates a fuzzy logic controller with a Modified Fireworks Algorithm (MFWA) to systematically optimize fuzzy parameters. [...] Read more.
Enhancing ride comfort and vibration control performance is a critical requirement for fuel cell commercial vehicles (FCCVs). This study develops a semi-active seat suspension control strategy that integrates a fuzzy logic controller with a Modified Fireworks Algorithm (MFWA) to systematically optimize fuzzy parameters. A seven-degree-of-freedom (7-DOF) half-vehicle model, including the magnetorheological damper (MRD)-based seat suspension system, is established in MATLAB/Simulink to evaluate the methodology under both random and bump road excitations. In addition, a hardware-in-the-loop (HIL) experimental validation was conducted, confirming the real-time feasibility and effectiveness of the proposed controller. Comparative simulations are conducted against passive suspension (comprising elastic and damping elements) and conventional PID control. Results show that the proposed MFWA-FL approach significantly improves ride comfort, reducing vertical acceleration of the human body by up to 49.29% and seat suspension dynamic deflection by 12.50% under C-Class road excitation compared with the passive system. Under bump excitations, vertical acceleration is reduced by 43.03% and suspension deflection by 11.76%. These improvements effectively suppress vertical vibrations, minimize the risk of suspension bottoming, and highlight the potential of intelligent optimization-based control for enhancing FCCV reliability and passenger comfort. Full article
(This article belongs to the Section Propulsion Systems and Components)
Show Figures

Figure 1

22 pages, 4835 KB  
Article
Enhanced Voltage Balancing Algorithm and Implementation of a Single-Phase Modular Multilevel Converter for Power Electronics Applications
by Valentine Obiora, Wenzhi Zhou, Wissam Jamal, Chitta Saha, Soroush Faramehr and Petar Igic
Machines 2025, 13(10), 955; https://doi.org/10.3390/machines13100955 - 16 Oct 2025
Viewed by 268
Abstract
This paper presents an innovative primary control strategy for a modular multilevel converter aimed at enhancing reliability and dynamic performance for power electronics applications. The proposed method utilises interactive modelling tools, including MATLAB Simulink (2022b) for algorithm design and Typhoon HIL (2023.2) for [...] Read more.
This paper presents an innovative primary control strategy for a modular multilevel converter aimed at enhancing reliability and dynamic performance for power electronics applications. The proposed method utilises interactive modelling tools, including MATLAB Simulink (2022b) for algorithm design and Typhoon HIL (2023.2) for real-time validation. The circuit design and component analysis were carried out using Proteus Design Suite (v8.17) and LTSpice (v17) to optimise the hardware implementation. A power hardware-in-the-loop experimental test setup was built to demonstrate the robustness and adaptability of the control algorithm under fixed load conditions. The simulation results were compared and verified against the experimental data. Additionally, the proposed control strategy was successfully validated through experiments, demonstrating its effectiveness in simplifying control development through efficient co-simulation. Full article
(This article belongs to the Special Issue Power Converters: Topology, Control, Reliability, and Applications)
Show Figures

Figure 1

26 pages, 5816 KB  
Article
Disturbance-Free Switching Control Strategy for Grid-Following/Grid-Forming Modes of Energy Storage Converters
by Geling Jiang, Siyu Kan, Yuhang Li and Xiaorong Zhu
Electronics 2025, 14(19), 3963; https://doi.org/10.3390/electronics14193963 - 9 Oct 2025
Viewed by 424
Abstract
To address the problem of transient disturbance arising during the grid-following (GFL) and grid-forming (GFM) mode switching of energy storage converters, this paper proposes a dual-mode seamless switching control strategy. First, we conduct an in-depth analysis of the mechanism behind switching transients, identifying [...] Read more.
To address the problem of transient disturbance arising during the grid-following (GFL) and grid-forming (GFM) mode switching of energy storage converters, this paper proposes a dual-mode seamless switching control strategy. First, we conduct an in-depth analysis of the mechanism behind switching transients, identifying that sudden changes in current commands and angle-control misalignment are the key factors triggering oscillations in system power and voltage frequency. To overcome this, we design a virtual synchronous generator (VSG) control angle-tracking technique based on the construction of triangular functions, which effectively eliminates the influence of periodic phase-angle jumps on tracking accuracy and achieves precise pre-synchronization of the microgrid phase in GFM mode. Additionally, we employ a current-command seamless switching technique involving real-time latching and synchronization of the inner-loop current references between the two modes, ensuring continuity of control commands at the switching instant. The simulation and hardware-in-the-loop (HIL) experimental results show that the proposed strategy does not require retuning of the parameters after switching, greatly suppresses voltage and frequency fluctuations during mode transition, and achieves smooth, rapid, seamless switching between the GFL and GFM modes of the energy storage converter, thereby improving the stability of microgrid operation. Full article
Show Figures

Figure 1

47 pages, 14121 KB  
Article
Systematic Development and Hardware-in-the-Loop Testing of an IEC 61850 Standard-Based Monitoring and Protection System for a Modern Power Grid Point of Common Coupling
by Sinawo Nomandela, Mkhululi E. S. Mnguni and Atanda K. Raji
Energies 2025, 18(19), 5281; https://doi.org/10.3390/en18195281 - 5 Oct 2025
Viewed by 642
Abstract
This paper presents a systematic approach to the development and validation of a monitoring and protection system based on the IEC 61850 standard, evaluated through hardware-in-the-loop (HIL) testing. The study utilized an already existing model of a modern power grid consisting of the [...] Read more.
This paper presents a systematic approach to the development and validation of a monitoring and protection system based on the IEC 61850 standard, evaluated through hardware-in-the-loop (HIL) testing. The study utilized an already existing model of a modern power grid consisting of the IEEE 9-bus power system integrated with a large-scale wind power plant (LSWPP). The SEL-487B Relay was configured to protect the PCC using a low-impedance busbar differential monitoring and protection system equipped with adaptive setting group logic that automatically transitions between Group 1 and Group 2 based on system loading conditions. Significant steps were followed for selecting and configuring instrument transformers and implementing relay logic in compliance with IEEE and IEC standards. Real-time digital simulation using Real-Time Digital Simulator (RTDS) hardware and its software, Real-time Simulation Computer-Aided Design (RSCAD), was used to assess the performance of the overall monitoring and protection system, focusing on the monitoring and publishing of the selected electrical and mechanical measurements from a selected wind turbine generator unit (WTGU) on the LSWPP side through the IEC 61850 standard network, and on the behavior of the monitoring and protection system under initial and increased load conditions through monitoring of differential and restraint currents. The overall monitoring and protection system was tested under both initial and increased load conditions, confirming its capability to reliably publish analog values from WTGU13 for availability on the IEC 61850 standard network while maintaining secure protection operation. Quantitatively, the measured differential (operate) and restraint currents were 0.32 PU and 4.38 PU under initial loading, and 1.96 PU and 6.20 PU under increased loading, while total fault clearance times were 606.667 ms and 706.667 ms for faults under initial load and increased load demand conditions, respectively. These results confirm that the developed framework provides accurate real-time monitoring and reliable operation for faults, while demonstrating a practical and replicable solution for monitoring and protection at transmission-level PCCs within renewable-integrated networks. Full article
(This article belongs to the Special Issue Planning, Operation, and Control of New Power Systems: 2nd Edition)
Show Figures

Figure 1

18 pages, 5140 KB  
Article
Computational Efficiency–Accuracy Trade-Offs in EMT Modeling of ANPC Converters: Comparative Study and Real-Time HIL Validation
by Xinrong Yan, Zhijun Li, Jiajun Ding, Ping Zhang, Jia Huang, Qing Wei and Zhitong Yu
Energies 2025, 18(19), 5173; https://doi.org/10.3390/en18195173 - 29 Sep 2025
Viewed by 386
Abstract
With the increasing demands of the grid on power electronic converters, active neutral-point-clamped (ANPC) converters have been widely adopted due to their flexible modulation strategies and wide-range power regulation capabilities. To address grid-integration testing requirements for ANPC converters, this paper comparatively studies three [...] Read more.
With the increasing demands of the grid on power electronic converters, active neutral-point-clamped (ANPC) converters have been widely adopted due to their flexible modulation strategies and wide-range power regulation capabilities. To address grid-integration testing requirements for ANPC converters, this paper comparatively studies three electromagnetic transient (EMT) modeling approaches: switch-state prediction method (SPM), associated discrete circuit (ADC), and time-averaged method (TAM). Steady-state and transient simulations reveal that the SPM model achieves the highest accuracy (error ≤ 0.018%), while the TAM-based switching function model optimizes the efficiency–accuracy trade-off with 6.4× speedup versus traditional methods and acceptable error (≤2.62%). Consequently, the TAM model is implemented in a real-time hardware-in-the-loop (HIL) platform. Validation under symmetrical/asymmetrical grid faults confirms both the model’s efficacy and the controller’s robust fault ride-through capability. Full article
Show Figures

Figure 1

20 pages, 6622 KB  
Article
A Hardware-in-the-Loop Simulation Case Study of High-Order Sliding Mode Control for a Flexible-Link Robotic Arm
by Aydemir Arisoy and Deniz Kavala Sen
Appl. Sci. 2025, 15(19), 10484; https://doi.org/10.3390/app151910484 - 28 Sep 2025
Viewed by 567
Abstract
This paper presents a hardware-in-the-loop (HIL) simulation case study on the application of High-Order Sliding Mode Control (HOSMC) to a flexible-link robotic arm. The developed HIL platform combines physical hardware components with a simulated plant model, enabling real-time testing of control algorithms under [...] Read more.
This paper presents a hardware-in-the-loop (HIL) simulation case study on the application of High-Order Sliding Mode Control (HOSMC) to a flexible-link robotic arm. The developed HIL platform combines physical hardware components with a simulated plant model, enabling real-time testing of control algorithms under realistic operating conditions without requiring a full-scale prototype. HOSMC, an advanced nonlinear control strategy, mitigates the chattering effects inherent in conventional sliding mode control by driving the system to a reduced-order sliding manifold within a finite time, resulting in smoother actuator commands and reduced mechanical stress. Flexible-link arms, while lightweight and energy-efficient, are inherently nonlinear and prone to vibration, posing significant control challenges. In this case study, the experimental HIL environment is used to evaluate HOSMC performance, demonstrating improved trajectory tracking, reduced overshoot, and minimized steady-state error. The results confirm that HIL simulation offers an effective bridge between theoretical control design and practical implementation for advanced robotic systems. Full article
Show Figures

Figure 1

17 pages, 2866 KB  
Article
Fuzzy Rule-Based Optimal Direct Yaw Moment Allocation for Stability Control of Four-Wheel Steering Mining Trucks
by Feiyu Wang, Jiadian Liu, Jiaqi Li and Xinxin Zhao
Appl. Sci. 2025, 15(18), 10155; https://doi.org/10.3390/app151810155 - 17 Sep 2025
Viewed by 384
Abstract
To address the poor trajectory tracking of mining trucks in narrow, high-curvature paths, this study explores the impact of four-wheel steering (4WS) and direct yaw moment control (DYC) on vehicle stability. A validated two-degree-of-freedom 4WS vehicle model was developed. A fuzzy logic controller [...] Read more.
To address the poor trajectory tracking of mining trucks in narrow, high-curvature paths, this study explores the impact of four-wheel steering (4WS) and direct yaw moment control (DYC) on vehicle stability. A validated two-degree-of-freedom 4WS vehicle model was developed. A fuzzy logic controller with dual inputs (yaw rate and yaw angular acceleration) and a single output (compensatory yaw moment) was designed, alongside an optimal torque distribution controller based on tire friction circle theory to allocate the resultant yaw moment. A co-simulation platform integrating TruckSim and MATLAB/Simulink was established, and experiments were conducted under steady-state and double-lane-change conditions. Comparative analysis with traditional front-wheel steering and alternative control methods reveals that the 4WS mining truck with fuzzy-controlled optimal torque distribution achieves a reduced turning radius, enhancing maneuverability and stability. Hardware-in-the-loop (HIL) testing further validates the controller’s effectiveness in real-time applications. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

19 pages, 1347 KB  
Article
Model Predictive Control of a Parallel Transformerless Static Synchronous Series Compensator for Power Flow Control and Circulating Current Mitigation
by Wei Zuo, Xuejiao Pan and Li Zhang
Energies 2025, 18(18), 4884; https://doi.org/10.3390/en18184884 - 14 Sep 2025
Viewed by 399
Abstract
The paper proposes a parallel transformerless (TL) static synchronous series compensator (SSSC) for the control of power flow along the power distribution lines under balanced or unbalanced voltages. This new SSSC configuration offers the advantages of a fast dynamic response, light weight, and [...] Read more.
The paper proposes a parallel transformerless (TL) static synchronous series compensator (SSSC) for the control of power flow along the power distribution lines under balanced or unbalanced voltages. This new SSSC configuration offers the advantages of a fast dynamic response, light weight, and high efficiency. By connecting multiple SSSCs in parallel, the current rating is increased, which improves the grid power transfer capabilities and flexibility. However, there may be circulating current flowing between the parallel-connected inverters, hence causing losses. A modified model predictive control scheme is thus developed, which ensures that the proposed SSSC accurately tracks the reference currents while effectively mitigating the circulating current. The model and cost function of the controller are derived and analyzed in the paper. A real-time simulation of a power line with the parallel TL SSSC controlled by a hardware-in-loop (HIL) DSP is developed to validate the performance of this device under both balanced and unbalanced line voltages. Full article
Show Figures

Figure 1

32 pages, 5785 KB  
Article
High-Efficiency Partial-Power Converter with Dual-Loop PI-Sliding Mode Control for PV Systems
by Jesús Sergio Artal-Sevil, Alberto Coronado-Mendoza, Nicolás Haro-Falcón and José Antonio Domínguez-Navarro
Electronics 2025, 14(18), 3622; https://doi.org/10.3390/electronics14183622 - 12 Sep 2025
Viewed by 509
Abstract
This paper presents a novel partial-power DC-DC converter architecture specifically designed for Photovoltaic (PV) energy systems. Unlike traditional full-power converters, the proposed topology processes only a fraction of the total power, resulting in improved overall efficiency, reduced component stress, and lower system cost. [...] Read more.
This paper presents a novel partial-power DC-DC converter architecture specifically designed for Photovoltaic (PV) energy systems. Unlike traditional full-power converters, the proposed topology processes only a fraction of the total power, resulting in improved overall efficiency, reduced component stress, and lower system cost. The converter is integrated into a PV-based energy system and regulated by a dual-loop control strategy consisting of a Proportional-Integral (PI) voltage controller and an inner Sliding-Mode Controller (SMC) for current regulation. This control scheme ensures robust tracking performance under dynamic variations in irradiance, load, and reference voltage. The paper provides a comprehensive mathematical model and control formulation, emphasizing the robustness and fast transient response offered by SMC. Simulation results obtained in MATLAB-Simulink, along with real-time implementation on the OPAL-RT hardware-in-the-loop (HIL) platform, confirm the effectiveness of the proposed design. The system achieves stable voltage regulation with low ripple and accurate current tracking. Compared to conventional boost configurations, the proposed converter demonstrates superior performance, particularly under moderate voltage conversion conditions. The system achieves high efficiency levels, validated through both analytical estimation and real-time hardware-in-the-loop (HIL) implementation. Its high efficiency, scalability, and real-time control feasibility make it a promising solution for next-generation PV systems, battery interfacing, and DC-microgrid applications. Full article
(This article belongs to the Special Issue Advanced DC-DC Converter Topology Design, Control, Application)
Show Figures

Figure 1

17 pages, 13792 KB  
Article
Investigating the Vulnerabilities of the Direct Transfer Trip Scheme for Network Protector Units in the Secondary Networks of Electric Power Distribution Grids
by Milan Joshi, Mckayla Snow, Ali Bidram, Matthew J. Reno and Joseph A. Azzolini
Energies 2025, 18(17), 4691; https://doi.org/10.3390/en18174691 - 4 Sep 2025
Viewed by 797
Abstract
Network protector units (NPUs) are crucial parts of the protection of secondary networks to effectively isolate faults occurring on the primary feeders. When a fault occurs on the primary feeder, there is a path of the fault current going through the service transformers [...] Read more.
Network protector units (NPUs) are crucial parts of the protection of secondary networks to effectively isolate faults occurring on the primary feeders. When a fault occurs on the primary feeder, there is a path of the fault current going through the service transformers that causes a negative flow of current on the NPU connected to the faulted feeder. Conventionally, NPUs rely on the direction of current with respect to the voltage to detect faults and make a correct trip decision. However, the conventional NPU logic does not allow the reverse power flow caused by distributed energy resources installed on secondary networks. The communication-assisted direct transfer trip logic for NPUs can be used to address this challenge. However, the communication-assisted scheme is exposed to some vulnerabilities arising from the disruption or corruption of the communicated data that can endanger the reliable operation of NPUs. This paper evaluates the impact of the malfunction of the communication system on the operation of communication-assisted NPU logic. To this end, the impact of packet modification and denial-of-service cyberattacks on the communication-assisted scheme are evaluated. The evaluation was performed using a hardware-in-the-loop (HIL) co-simulation testbed that includes both real-time power system and communication network digital simulators. This paper evaluates the impact of the cyberattacks for different fault scenarios and provides a list of recommendations to improve the reliability of communication-assisted NPU protection. Full article
(This article belongs to the Topic Power System Protection)
Show Figures

Figure 1

20 pages, 2582 KB  
Article
Emulating Real-World EV Charging Profiles with a Real-Time Simulation Environment
by Shrey Verma, Ankush Sharma, Binh Tran and Damminda Alahakoon
Machines 2025, 13(9), 791; https://doi.org/10.3390/machines13090791 - 1 Sep 2025
Viewed by 677
Abstract
Electric vehicle (EV) charging has become a key factor in grid integration, impact analysis, and the development of intelligent charging strategies. However, the rapid rise in EV adoption poses challenges for charging infrastructure and grid stability due to the inherently variable and uncertain [...] Read more.
Electric vehicle (EV) charging has become a key factor in grid integration, impact analysis, and the development of intelligent charging strategies. However, the rapid rise in EV adoption poses challenges for charging infrastructure and grid stability due to the inherently variable and uncertain charging behavior. Limited access to high-resolution, location-specific data further hinders accurate modeling, emphasizing the need for reliable, privacy-preserving tools to forecast EV-related grid impacts. This study introduces a comprehensive methodology to emulate real-world EV charging behavior using a real-time simulation environment. A physics-based EV charger model was developed on the Typhoon HIL platform, incorporating detailed electrical dynamics and control logic representative of commercial chargers. Simulation outputs, including active power consumption and state-of-charge evolution, were validated against field data captured via phasor measurement units, showing strong alignment across all charging phases, including SOC-dependent current transitions. Quantitative validation yielded an MAE of 0.14 and an RMSE of 0.36, confirming the model’s high accuracy. The study also reflects practical BMS strategies, such as early charging termination near 97% SOC to preserve battery health. Overall, the proposed real-time framework provides a high-fidelity platform for analyzing grid-integrated EV behavior, testing smart charging controls, and enabling digital twin development for next-generation electric mobility. Full article
Show Figures

Figure 1

19 pages, 6184 KB  
Article
Research on Hardware-in-the-Loop Test Platform Based on Simulated IED and Man-in-the-Middle Attack
by Ke Liu, Rui Song, Wenqian Zhang, Han Guo, Jun Han and Hongbo Zou
Processes 2025, 13(9), 2735; https://doi.org/10.3390/pr13092735 - 27 Aug 2025
Viewed by 622
Abstract
With the widespread adoption of intelligent electronic devices (IEDs) in smart substations, the real-time data transmission and interoperability features of the IEC 61850 communication standard play a crucial role in ensuring seamless automation system integration. This paper presents a hardware-in-the-loop (HIL) platform experiment [...] Read more.
With the widespread adoption of intelligent electronic devices (IEDs) in smart substations, the real-time data transmission and interoperability features of the IEC 61850 communication standard play a crucial role in ensuring seamless automation system integration. This paper presents a hardware-in-the-loop (HIL) platform experiment analysis based on a simulated IED and man-in-the-middle (MITM) attack, leveraging built-in IEC 61850 protocol software to replicate an existing substation communication architecture in cyber physical systems. This study investigates the framework performance and protocol robustness of this approach. First, the physical network infrastructure of smart grids is analyzed in detail, followed by the development of an HIL testing platform tailored for discrete communication network scenarios. Next, virtual models of intelligent electrical equipment and MITM attacks are created, along with their corresponding communication layer architectures, enabling comprehensive simulation analysis. Finally, in the 24-h stability operation test and the test of three typical fault scenarios, the simulated IED can achieve 100% of the protocol consistency passing rate, which is completely consistent with the protection action decision of the physical IED, the end-to-end delay is less than 4 ms, and the measurement accuracy matches the accuracy level of the physical IED, which verifies that the proposed test platform can effectively guide the commissioning of smart substations. Full article
Show Figures

Figure 1

42 pages, 9118 KB  
Article
ProVANT Simulator: A Virtual Unmanned Aerial Vehicle Platform for Control System Development
by Junio E. Morais, Daniel N. Cardoso, Brenner S. Rego, Richard Andrade, Iuro B. P. Nascimento, Jean C. Pereira, Jonatan M. Campos, Davi F. Santiago, Marcelo A. Santos, Leandro B. Becker, Sergio Esteban and Guilherme V. Raffo
Aerospace 2025, 12(9), 762; https://doi.org/10.3390/aerospace12090762 - 25 Aug 2025
Viewed by 775
Abstract
This paper introduces the ProVANT Simulator, a comprehensive environment for developing and validating control algorithms for Unmanned Aerial Vehicles (UAVs). Built on the Gazebo physics engine and integrated with the Robot Operating System (ROS), it enables reliable Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) testing. [...] Read more.
This paper introduces the ProVANT Simulator, a comprehensive environment for developing and validating control algorithms for Unmanned Aerial Vehicles (UAVs). Built on the Gazebo physics engine and integrated with the Robot Operating System (ROS), it enables reliable Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) testing. Addressing key challenges such as modeling complex multi-body dynamics, simulating disturbances, and supporting real-time implementation, the framework features a modular architecture, an intuitive graphical interface, and versatile capabilities for modeling, control, and hardware validation. Case studies demonstrate its effectiveness across various UAV configurations, including quadrotors, tilt-rotors, and unmanned aerial manipulators, highlighting its applications in aggressive maneuvers, load transportation, and trajectory tracking under disturbances. Serving both academic research and industrial development, the ProVANT Simulator reduces prototyping costs, development time, and associated risks. Full article
Show Figures

Figure 1

Back to TopTop