Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (433)

Search Parameters:
Keywords = reactor safety

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 1294 KiB  
Perspective
Electromagnetic Radiation Shielding Using Carbon Nanotube and Nanoparticle Composites
by Bianca Crank, Brayden Fricker, Andrew Hubbard, Hussain Hitawala, Farhana Islam Muna, Olalekan Samuel Okunlola, Alexandra Doherty, Alex Hulteen, Logan Powers, Gabriel Purtell, Prakash Giri, Henry Spitz and Mark Schulz
Appl. Sci. 2025, 15(15), 8696; https://doi.org/10.3390/app15158696 (registering DOI) - 6 Aug 2025
Abstract
This paper showcases current developments in the use of carbon nanotube (CNT) and nanoparticle-based materials for electromagnetic radiation shielding. Electromagnetic radiation involves different types of radiation covering a wide spectrum of frequencies. Due to their good electrical conductivity, small diameter, and light weight, [...] Read more.
This paper showcases current developments in the use of carbon nanotube (CNT) and nanoparticle-based materials for electromagnetic radiation shielding. Electromagnetic radiation involves different types of radiation covering a wide spectrum of frequencies. Due to their good electrical conductivity, small diameter, and light weight, individual CNTs are good candidates for shielding radio and microwaves. CNTs can be organized into macroscale forms by dispersing them in polymers or by wrapping CNT strands into fabrics or yarn. Magnetic nanoparticles can also be incorporated into the CNT fabric to provide excellent shielding of electromagnetic waves. However, for shielding higher-frequency X-ray and gamma ray radiation, the situation is reversed. Carbon’s low atomic number means that CNTs alone are less effective than metals. Thus, different nanoparticles such as tungsten are added to the CNT materials to provide improved shielding of photons. The goal is to achieve a desired combination of light weight, flexibility, safety, and multifunctionality for use in shielding spacecraft, satellites, nuclear reactors, and medical garments and to support lunar colonization. Future research should investigate the effect of the size, shape, and configuration of nanoparticles on radiation shielding. Developing large-scale low-cost methods for the continuous manufacturing of lightweight multifunctional nanoparticle-based materials is also needed. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Figure 1

21 pages, 3283 KiB  
Article
Atypical Pressure Dependent Structural Phonon and Thermodynamic Characteristics of Zinc Blende BeO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(15), 3671; https://doi.org/10.3390/ma18153671 - 5 Aug 2025
Abstract
Under normal conditions, the novel zinc blende beryllium oxide (zb BeO) exhibits in a metastable crystalline phase, which is less stable than its wurtzite counterpart. Ultrathin zb BeO epifilms have recently gained significant interest to create a wide range of advanced high-resolution, high-frequency, [...] Read more.
Under normal conditions, the novel zinc blende beryllium oxide (zb BeO) exhibits in a metastable crystalline phase, which is less stable than its wurtzite counterpart. Ultrathin zb BeO epifilms have recently gained significant interest to create a wide range of advanced high-resolution, high-frequency, flexible, transparent, nano-electronic and nanophotonic modules. BeO-based ultraviolet photodetectors and biosensors are playing important roles in providing safety and efficiency to nuclear reactors for their optimum operations. In thermal management, BeO epifilms have also been used for many high-tech devices including medical equipment. Phonon characteristics of zb BeO at ambient and high-pressure P ≠ 0 GPa are required in the development of electronics that demand enhanced heat dissipation for improving heat sink performance to lower the operating temperature. Here, we have reported methodical simulations to comprehend P-dependent structural, phonon and thermodynamical properties by using a realistic rigid-ion model (RIM). Unlike zb ZnO, the study of the Grüneisen parameter γ(T) and thermal expansion coefficient α(T) in zb BeO has revealed atypical behavior. Possible reasons for such peculiar trends are attributed to the combined effect of the short bond length and strong localization of electron charge close to the small core size Be atom in BeO. Results of RIM calculations are compared/contrasted against the limited experimental and first-principle data. Full article
(This article belongs to the Special Issue The Heat Equation: The Theoretical Basis for Materials Processing)
Show Figures

Figure 1

23 pages, 2950 KiB  
Article
Thermal Conductivity of UO2 with Defects via DFT+U Calculation and Boltzmann Transport Equation
by Jiantao Qin, Min Zhao, Rongjian Pan, Aitao Tang and Lu Wu
Materials 2025, 18(15), 3584; https://doi.org/10.3390/ma18153584 - 30 Jul 2025
Viewed by 249
Abstract
Accurate evaluation of the thermal conductivity of UO2 with defects is very significant for optimizing fuel performance and enhancing the safety design of reactors. We employed a method that combines the Boltzmann transport equation with DFT+U to calculate the thermal conductivity of [...] Read more.
Accurate evaluation of the thermal conductivity of UO2 with defects is very significant for optimizing fuel performance and enhancing the safety design of reactors. We employed a method that combines the Boltzmann transport equation with DFT+U to calculate the thermal conductivity of UO2 containing fission products and irradiation-induced point defects. Our investigation reveals that the thermal conductivity of UO2 is influenced by defect concentration, defect type, and temperature. Fission products and irradiation defects result in a decrease in thermal conductivity, but they have markedly different impacts on phonon scattering mechanisms. Metal cations tend to scatter low-frequency phonons (less than 5.8 THz), while the fission gas xenon scatters both low-frequency and high-frequency phonons (greater than 5.8 THz), depending on its occupancy at lattice sites. Uranium vacancies scatter low-frequency phonons, while oxygen vacancies scatter high-frequency phonons. When uranium and oxygen vacancies coexist, they scatter phonons across the entire frequency spectrum, which further results in a significant reduction in the thermal conductivity of UO2. Our calculated results align well with experimental data across a wide temperature range and provide fundamental insights into the heat transfer mechanisms in irradiated UO2. These findings are essential for establishing a thermal conductivity database for UO2 under various irradiation conditions and benefit the development of advanced high-performance UO2 fuel. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

32 pages, 1689 KiB  
Review
Photocatalytic Degradation of Microplastics in Aquatic Environments: Materials, Mechanisms, Practical Challenges, and Future Perspectives
by Yelriza Yeszhan, Kalampyr Bexeitova, Samgat Yermekbayev, Zhexenbek Toktarbay, Jechan Lee, Ronny Berndtsson and Seitkhan Azat
Water 2025, 17(14), 2139; https://doi.org/10.3390/w17142139 - 18 Jul 2025
Viewed by 559
Abstract
Due to its persistence and potential negative effects on ecosystems and human health, microplastic pollution in aquatic environments has become a major worldwide concern. Photocatalytic degradation is a sustainable manner to degrade microplastics to non-toxic by-products. In this review, comprehensive discussion focuses on [...] Read more.
Due to its persistence and potential negative effects on ecosystems and human health, microplastic pollution in aquatic environments has become a major worldwide concern. Photocatalytic degradation is a sustainable manner to degrade microplastics to non-toxic by-products. In this review, comprehensive discussion focuses on the synergistic effects of various photocatalytic materials including TiO2, ZnO, WO3, graphene oxide, and metal–organic frameworks for producing heterojunctions and involving multidimensional nanostructures. Such mechanisms can include the generation of reactive oxygen species and polymer chain scission, which can lead to microplastic breakdown and mineralization. The advancements of material modifications in the (nano)structure of photocatalysts, doping, and heterojunction formation methods to promote UV and visible light-driven photocatalytic activity is discussed in this paper. Reactor designs, operational parameters, and scalability for practical applications are also reviewed. Photocatalytic systems have shown a lot of development but are hampered by shortcomings which include a lack of complete mineralization and production of intermediary secondary products; variability in performance due to the fluctuation in the intensity of solar light, limited UV light, and environmental conditions such as weather and the diurnal cycle. Future research involving multifunctional, environmentally benign photocatalytic techniques—e.g., doped composites or composite-based catalysts that involve adsorption, photocatalysis, and magnetic retrieval—are proposed to focus on the mechanism of utilizing light effectively and the environmental safety, which are necessary for successful operational and industrial-scale remediation. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 3158 KiB  
Article
Process Safety Assessment of the Entire Nitration Process of Benzotriazole Ketone
by Yingxia Sheng, Qianjin Xiao, Hui Hu, Tianya Zhang and Guofeng Guan
Processes 2025, 13(7), 2201; https://doi.org/10.3390/pr13072201 - 9 Jul 2025
Viewed by 412
Abstract
To ensure the inherent safety of fine chemical nitration processes, the nitration reaction of benzotriazole ketone was selected as the research object. The thermal decomposition and reaction characteristics of the nitration system were studied using a combination of differential scanning calorimetry (DSC), reaction [...] Read more.
To ensure the inherent safety of fine chemical nitration processes, the nitration reaction of benzotriazole ketone was selected as the research object. The thermal decomposition and reaction characteristics of the nitration system were studied using a combination of differential scanning calorimetry (DSC), reaction calorimetry (RC1), and accelerating rate calorimetry (ARC). The results showed that the nitration product released 455.77 kJ/kg of heat upon decomposition, significantly higher than the 306.86 kJ/kg of the original material, indicating increased thermal risk. Through process hazard analysis based on GB/T 42300-2022, key parameters such as the temperature at which the time to maximum rate is 24 h under adiabatic conditions (TD24), maximum temperature of the synthesis reaction (MTSR), and maximum temperature for technical reason (MTT) were determined, and the reaction was classified as hazard level 5, suggesting a high risk of runaway and secondary explosion. Process intensification strategies were then proposed and verified by dynamic calorimetry: the adiabatic temperature increase (ΔTad) was reduced from 86.70 °C in the semi-batch reactor to 19.95 °C in the optimized continuous process, effectively improving thermal safety. These findings provide a reliable reference for the quantitative risk evaluation and safe design of nitration processes in fine chemical manufacturing. Full article
Show Figures

Figure 1

20 pages, 4328 KiB  
Article
Research on a Small Modular Reactor Fault Diagnosis System Based on the Attention Mechanism
by Sicong Wan and Jichong Lei
Energies 2025, 18(14), 3621; https://doi.org/10.3390/en18143621 - 9 Jul 2025
Viewed by 331
Abstract
Small modular reactors are progressing towards greater levels of automation and intelligence, with intelligent control emerging as a pivotal trend in SMR development. When contrasted with traditional commercial nuclear power plants, SMR display substantial disparities in design parameters and the designs of safety [...] Read more.
Small modular reactors are progressing towards greater levels of automation and intelligence, with intelligent control emerging as a pivotal trend in SMR development. When contrasted with traditional commercial nuclear power plants, SMR display substantial disparities in design parameters and the designs of safety auxiliary systems. As a result, fault diagnosis systems tailored for commercial nuclear power plants are ill-equipped for SMRs. This study utilizes the PCTRAN-SMR V1.0 software to develop an intelligent fault diagnosis system for the SMART small modular reactor based on an attention mechanism. By comparing different network models, it is demonstrated that the CNN–LSTM–Attention model with an attention mechanism significantly outperforms CNN, LSTM, and CNN–LSTM models, achieving up to a 7% improvement in prediction accuracy. These results clearly indicate that incorporating an attention mechanism can effectively enhance the performance of deep learning models in nuclear power plant fault diagnosis. Full article
Show Figures

Figure 1

19 pages, 2227 KiB  
Article
A Comparative Study of Fission Yield Libraries Between ORIGEN2 and ENDF/B-VIII.0 for Molten Salt Reactor Burnup Calculation
by Yunfei Zhang, Guifeng Zhu, Yang Zou, Jian Guo, Bo Zhou, Rui Yan and Ao Zhang
Energies 2025, 18(13), 3562; https://doi.org/10.3390/en18133562 - 6 Jul 2025
Viewed by 340
Abstract
As a promising nuclear technology, molten salt reactors (MSRs) have a bright future in the energy sector due to their unique advantages such as high efficiency, safety, and fuel flexibility. However, the accurate analysis of fission products in MSRs requires reliable fission yield [...] Read more.
As a promising nuclear technology, molten salt reactors (MSRs) have a bright future in the energy sector due to their unique advantages such as high efficiency, safety, and fuel flexibility. However, the accurate analysis of fission products in MSRs requires reliable fission yield data. Current reactor burnup analysis often uses the ORIGEN2 code, whose fission yield libraries mainly originate from the outdated 1970s ENDF/B-VI nuclear database, thus risking data obsolescence. This study evaluates ORIGEN2’s fission yield libraries (THERMAL, PWRU, PWRU50) against the modern ENDF/B-VIII.0 library. Through a comprehensive comparative analysis of Oak Ridge National Laboratory’s Molten Salt Reactor Experiment (MSRE) model, numerical simulations reveal library-dependent differences in MSR burnup characteristics. The PWRU library best matches ENDF/B-VIII.0 for U-235-fueled cases in keff results, while the PWRU50 library has minimal keff deviation in U-233-fueled setups. Moreover, in both fuel cases, the fission yield library was found to significantly affect the activity of key radionuclides, including Kr-85, Kr-85m, I-133m, Cs-136, Sn-123, Sn-125, Sn-127, Sb-124, Sb-125, Cd-115m, Te-125m, Te-129m, etc. Additionally, the fission gas decay heat power calculated via the ORIGEN2 library is over 20% lower than that from the ENDF/B-VIII.0 library tens of days after shutdown, mainly due to differences in long-lived Kr-85 production. These findings highlight the need to update traditional fission yield libraries in burnup codes. For next-generation MSR designs, this is crucial to ensure accurate safety assessments and the effective development of this promising energy technology. Full article
(This article belongs to the Special Issue Molten Salt Reactors: Innovations and Challenges in Nuclear Energy)
Show Figures

Figure 1

18 pages, 2791 KiB  
Article
Deterministic Data Assimilation in Thermal-Hydraulic Analysis: Application to Natural Circulation Loops
by Lanxin Gong, Changhong Peng and Qingyu Huang
J. Nucl. Eng. 2025, 6(3), 23; https://doi.org/10.3390/jne6030023 - 3 Jul 2025
Viewed by 370
Abstract
Recent advances in high-fidelity modeling, numerical computing, and data science have spurred interest in model-data integration for nuclear reactor applications. While machine learning often prioritizes data-driven predictions, this study focuses on data assimilation (DA) to synergize physical models with measured data, aiming to [...] Read more.
Recent advances in high-fidelity modeling, numerical computing, and data science have spurred interest in model-data integration for nuclear reactor applications. While machine learning often prioritizes data-driven predictions, this study focuses on data assimilation (DA) to synergize physical models with measured data, aiming to enhance predictive accuracy and reduce uncertainties. We implemented deterministic DA methods—Kalman filter (KF) and three-dimensional variational (3D-VAR)—in a one-dimensional single-phase natural circulation loop and extended 3D-VAR to RELAP5, a system code for two-phase loop analysis. Unlike surrogate-based or model-reduction strategies, our approach leverages full-model propagation without relying on computationally intensive sampling. The results demonstrate that KF and 3D-VAR exhibit robustness against varied noise types, intensities, and distributions, achieving significant uncertainty reduction in state variables and parameter estimation. The framework’s adaptability is further validated under oceanic conditions, suggesting its potential to augment baseline models beyond conventional extrapolation boundaries. These findings highlight DA’s capacity to improve model calibration, safety margin quantification, and reactor field reconstruction. By integrating high-fidelity simulations with real-world data corrections, the study establishes a scalable pathway to enhance the reliability of nuclear system predictions, emphasizing DA’s role in bridging theoretical models and operational demands without compromising computational efficiency. Full article
(This article belongs to the Special Issue Advances in Thermal Hydraulics of Nuclear Power Plants)
Show Figures

Figure 1

11 pages, 2164 KiB  
Article
Study of Corrosion Characteristics of AlMg3.5 Alloy by Hydrogen-Induced Pressure and Mass Loss Evaluation Under Simulated Cementitious Repository Conditions
by Marvin Schobel, Christian Ekberg, Teodora Retegan Vollmer, Fredrik Wennerlund, Svante Hedström and Anders Puranen
Corros. Mater. Degrad. 2025, 6(3), 27; https://doi.org/10.3390/cmd6030027 - 30 Jun 2025
Viewed by 408
Abstract
The decommissioning and dismantling of nuclear research reactors can lead to a large amount of low- and intermediate-level radioactive waste. For repositories, the materials must be kept confined and safety must be ensured for extended time spans. Waste is encapsulated in concrete, which [...] Read more.
The decommissioning and dismantling of nuclear research reactors can lead to a large amount of low- and intermediate-level radioactive waste. For repositories, the materials must be kept confined and safety must be ensured for extended time spans. Waste is encapsulated in concrete, which leads to alkaline conditions with pH values of 12 and higher. This can be advantageous for some radionuclides due to their precipitation at high pH. For other materials, such as reactive metals, however, it can be disadvantageous because it might foster their corrosion. The Studsvik R2 research reactor contained an AlMg3.5 alloy with a composition close to that of commercial Al5154 for its core internals and the reactor tank. Aluminum corrosion is known to start rapidly due to the formation of an oxidation layer, which later functions as natural protection for the surface. The corrosion can lead to pressure build-up through the accompanied production of hydrogen gas. This can lead to cracks in the concrete, which can be pathways for radioactive nuclides to migrate and must therefore be prevented. In this study, unirradiated rod-shaped samples were cut from the same material as the original reactor tank manufacture. They were embedded in concrete with elevated water–cement ratios of 0.7 compared to regular commercial concrete (ca. 0.45) to ensure water availability throughout all of the experiments. The sample containers were stored in pressure vessels with attached high-definition pressure gauges to read the hydrogen-induced pressure build-up. A second set of samples were exposed in simplified artificial cement–water to study similarities in corrosion characteristics between concrete and cement–water. Additionally, the samples were exposed to concrete and cement–water in free-standing sample containers for deconstructive examinations. In concrete, the corrosion rates started extremely high, with values of more than 10,000 µm/y, and slowed down to less than 500 µm/y after 2000 h, which resulted in visible channels inside the concrete. In the cement–water, the samples showed similar behavior after early fluctuations, most likely caused by the surface coverage of hydrogen bubbles. These trends were further supported by mass loss evaluations. Full article
Show Figures

Figure 1

18 pages, 2029 KiB  
Article
Development of Importance Measures Reflecting the Risk Triplet in Dynamic Probabilistic Risk Assessment: A Case Study Using MELCOR and RAPID
by Xiaoyu Zheng, Hitoshi Tamaki, Yasuteru Sibamoto, Yu Maruyama, Tsuyoshi Takada, Takafumi Narukawa and Takashi Takata
J. Nucl. Eng. 2025, 6(3), 21; https://doi.org/10.3390/jne6030021 - 28 Jun 2025
Viewed by 392
Abstract
While traditional risk importance measures in probabilistic risk assessment are effective for ranking safety-significant components, they often overlook critical aspects such as the timing of accident progression and consequences. Dynamic probabilistic risk assessment offers a framework to quantify such risk information, but standardized [...] Read more.
While traditional risk importance measures in probabilistic risk assessment are effective for ranking safety-significant components, they often overlook critical aspects such as the timing of accident progression and consequences. Dynamic probabilistic risk assessment offers a framework to quantify such risk information, but standardized approaches for estimating risk importance measures remain underdeveloped. This study addresses this gap by: (1) reviewing traditional risk importance measures and their regulatory applications, highlighting their limitations, and introducing newly proposed risk-triplet-based risk importance measures, consisting of timing-based worth, frequency-based worth, and consequence-based worth; (2) conducting a case study of Level 2 dynamic probabilistic risk assessment using the Japan Atomic Energy Agency’s RAPID tool coupled with the severe accident code of MELCOR 2.2 to simulate a station blackout scenario in a boiling water reactor, generating probabilistically sampled sequences with quantified timing, frequency, and consequence of source term release; (3) demonstrating that the new risk importance measures provide differentiated insights into risk significance, enabling multidimensional prioritization of systems and mitigation strategies; for example, the timing-based worth quantifies the delay effect of mitigation systems, and the consequence-based worth evaluates consequence-mitigating potential. This study underscores the potential of dynamic probabilistic risk assessment and risk-triplet-based risk importance measures to support risk-informed and performance-based regulatory decision-making, particularly in contexts where the timing and severity of accident consequences are critical. Full article
(This article belongs to the Special Issue Probabilistic Safety Assessment and Management of Nuclear Facilities)
Show Figures

Figure 1

20 pages, 1200 KiB  
Article
An Assessment of Replacing Aluminum Tubes Hosting Nuclear Fuels with Stainless Steel in a Subcritical Nuclear Reactor
by Diego Medina-Castro, Héctor René Vega-Carrillo, Antonio Baltazar-Raigosa, Tzinnia Gabriela Soto-Bernal, Régulo López-Callejas and Benjamín Gonzalo Rodríguez-Méndez
Energies 2025, 18(12), 3213; https://doi.org/10.3390/en18123213 - 19 Jun 2025
Viewed by 748
Abstract
This computational study using MCNP5 evaluated the feasibility of replacing 6061-T6 aluminum with 316L stainless steel (SS-316L) for the tubes hosting the uranium slugs in the subcritical nuclear reactor Nuclear Chicago model 9000, thereby contributing to its preservation as a key resource for [...] Read more.
This computational study using MCNP5 evaluated the feasibility of replacing 6061-T6 aluminum with 316L stainless steel (SS-316L) for the tubes hosting the uranium slugs in the subcritical nuclear reactor Nuclear Chicago model 9000, thereby contributing to its preservation as a key resource for nuclear research and education in Mexico. Simulations and dosimetric analyses (ICRP/ICRU) confirmed subcriticality in both configurations. Notably, SS-316L demonstrated an effective attenuation of peripheral gamma radiation and a reduction in the ambient neutron dose, indicating a considerable improvement in radiological safety. Although a reduction in thermal and epithermal neutron fluence was observed, the similarity in the gamma spectrum suggests no significant alteration for gamma spectroscopic experiments. In conclusion, SS-316L presents a promising alternative that enhances radiological safety and reactor longevity, making it a worthy consideration as a replacement material. Further experimental investigation is recommended to assess material activation and the gamma dose in the vicinity of the fuel. Full article
(This article belongs to the Special Issue Nuclear Engineering and Nuclear Fuel Safety)
Show Figures

Figure 1

14 pages, 1743 KiB  
Review
Power Start-Up of the IVG.1M Reactor with Low-Enriched Uranium Fuel: Main Results
by Erlan Batyrbekov, Vladimir Vityuk, Viktor Baklanov, Vyacheslav Gnyrya, Almas Azimkhanov, Radmila Sabitova, Irina Prozorova, Yuriy Popov, Ruslan Irkimbekov and Yekaterina Martynenko
Energies 2025, 18(12), 3187; https://doi.org/10.3390/en18123187 - 18 Jun 2025
Viewed by 357
Abstract
In support of global efforts to strengthen the nuclear non-proliferation regime, the IVG.1M research water-cooled thermal reactor at the National Nuclear Center of the Republic of Kazakhstan was successfully converted to low-enriched uranium (LEU, 19.75% 235U) fuel in 2023. The reactor’s operability [...] Read more.
In support of global efforts to strengthen the nuclear non-proliferation regime, the IVG.1M research water-cooled thermal reactor at the National Nuclear Center of the Republic of Kazakhstan was successfully converted to low-enriched uranium (LEU, 19.75% 235U) fuel in 2023. The reactor’s operability with innovative bimetallic, fiber-type, dual-blade LEU fuel rods was experimentally verified during power start-up experiments. The test program included investigations of power distribution in the core, evaluation of temperature, power, and hydrodynamic reactivity effects, and the measurement of fission product release to the coolant. The results were in good agreement with safety calculations, confirming that the enrichment reduction did not degrade reactor performance characteristics. It was shown that the power reactivity effect increased by more than 1.5 times at a power level of 9 MW. The measured temperature reactivity coefficient (≈0.021 βeff/°C) and the level of fission product release remained within acceptable and expected limits. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

14 pages, 2534 KiB  
Article
Dynamic Probabilistic Risk Assessment of Passive Safety Systems for LOCA Analysis Using EMRALD
by Saikat Basak and Lixuan Lu
J. Nucl. Eng. 2025, 6(2), 18; https://doi.org/10.3390/jne6020018 - 13 Jun 2025
Viewed by 511
Abstract
This research explores Dynamic Probabilistic Risk Assessment (DPRA) using EMRALD to evaluate the reliability and safety of passive safety systems in nuclear reactors, with a focus on mitigating Loss of Coolant Accidents (LOCAs). The BWRX-300 Small Modular Reactor (SMR) is used as an [...] Read more.
This research explores Dynamic Probabilistic Risk Assessment (DPRA) using EMRALD to evaluate the reliability and safety of passive safety systems in nuclear reactors, with a focus on mitigating Loss of Coolant Accidents (LOCAs). The BWRX-300 Small Modular Reactor (SMR) is used as an example to illustrate the proposed DPRA methodology, which is broadly applicable for enhancing traditional Probabilistic Safety Assessment (PSA). Unlike static PSA, DPRA incorporates time-dependent interactions and system dynamics, allowing for a more realistic assessment of accident progression. EMRALD enables the modelling of system failures and interactions in real time using dynamic event trees and Monte Carlo simulations. This study identifies critical vulnerabilities in passive safety systems and quantifies the Core Damage Frequency (CDF) under LOCA scenarios. The findings demonstrate the advantages of DPRA over traditional PSA in capturing complex failure mechanisms and providing a more comprehensive and accurate risk assessment. The insights gained from this research contribute to improving passive safety system designs and enhancing nuclear reactor safety strategies for next-generation reactors. Full article
(This article belongs to the Special Issue Probabilistic Safety Assessment and Management of Nuclear Facilities)
Show Figures

Figure 1

24 pages, 2652 KiB  
Article
Influence of Water Regeneration on Chemical and Process Indices in an Energy-Integrated PVC Production Process
by Arelmys Bustamante-Miranda, Eduardo Aguilar-Vásquez, Miguel Ramos-Olmos, Segundo Rojas-Flores and Ángel Darío González-Delgado
Polymers 2025, 17(12), 1639; https://doi.org/10.3390/polym17121639 - 13 Jun 2025
Viewed by 752
Abstract
Water regeneration in PVC production is a key issue to consider, given the high freshwater consumption rate of the process. This research evaluates the inherent safety of poly(vinyl chloride) (PVC) production via suspension polymerization by implementing mass and energy integration strategies in combination [...] Read more.
Water regeneration in PVC production is a key issue to consider, given the high freshwater consumption rate of the process. This research evaluates the inherent safety of poly(vinyl chloride) (PVC) production via suspension polymerization by implementing mass and energy integration strategies in combination with wastewater regeneration under a zero-liquid-discharge (ZLD) approach. The impact of these integrations on process safety was examined by considering the risks associated with the handling of hazardous materials and critical operations, as well as the reduction in waste generation. To this end, the Inherent Safety Index (ISI) methodology was employed, which quantifies hazards based on factors such as toxicity and flammability, enabling the identification of risks arising from system condition changes due to the implementation of sustainable water treatment technologies. Although the ISI methodology has been applied to various chemical processes, there are few documented cases of its specific application in PVC plants that adopt circular production strategies and water resource sustainability. Therefore, in this study, ISI was used to thoroughly evaluate each stage of the process, providing a comprehensive picture of the safety risks associated with the use of sustainable technologies. The assessment was carried out using simulation software, computer-aided process engineering (CAPE) methodologies, and information obtained from safety repositories and expert publications. Specifically, the Chemical Safety Index score was 22 points, with the highest risk associated with flammability, which scored 4 points, followed by toxicity (5 points), explosiveness (2 points), and chemical interactions, with 4 points attributed to vinyl chloride monomer (VCM). In the toxicity sub-index, both VCM and PVC received 5 points, while substances such as sodium hydroxide (NaOH) and sodium chloride (NaCl) scored 4 points. In the heat of reaction sub-index, the main reaction scored 3 points due to its high heat of reaction (−1600 kJ/kg), while the secondary reactions from PVA biodegradation scored 0 points for the anoxic reaction (−156.5 kJ/kg) and 3 points for the aerobic reaction (−2304 kJ/kg), significantly increasing the total index. The Process Safety Index scored 15 points, with the highest risk found in the inventory of hazardous substances within the inside battery limits (ISBL) of the plant, where a flow rate of 3241.75 t/h was reported (5 points). The safe equipment sub-index received 4 points due to the presence of boilers, burners, compressors, and reactors. The process structure scored 3 points, temperature 2, and pressure 1, reflecting the criticality of certain operating conditions. Despite sustainability improvements, the process still presented significant chemical and operational risks. However, the implementation of control strategies and safety measures could optimize the process, balancing sustainability and safety without compromising system viability. Full article
(This article belongs to the Special Issue Biodegradable and Functional Polymers for Food Packaging)
Show Figures

Figure 1

17 pages, 1481 KiB  
Article
Radiolysis of Sub- and Supercritical Water Induced by 10B(n,α)7Li Recoil Nuclei at 300–500 °C and 25 MPa
by Md Shakhawat Hossen Bhuiyan, Jintana Meesungnoen and Jean-Paul Jay-Gerin
J. Nucl. Eng. 2025, 6(2), 17; https://doi.org/10.3390/jne6020017 - 9 Jun 2025
Viewed by 488
Abstract
(1) Background: Generation IV supercritical water-cooled reactors (SCWRs), including small modular reactor (SCW-SMR) variants, are pivotal in nuclear technology. Operating at 300–500 °C and 25 MPa, these reactors require detailed understanding of radiation chemistry and transient species to optimize water chemistry, reduce corrosion, [...] Read more.
(1) Background: Generation IV supercritical water-cooled reactors (SCWRs), including small modular reactor (SCW-SMR) variants, are pivotal in nuclear technology. Operating at 300–500 °C and 25 MPa, these reactors require detailed understanding of radiation chemistry and transient species to optimize water chemistry, reduce corrosion, and enhance safety. Boron, widely used as a neutron absorber, plays a significant role in reactor performance and safety. This study focuses on the yields of radiolytic species in subcritical and supercritical water exposed to 4He and 7Li recoil ions from the 10B(n,α)7Li fission reaction in SCWR/SCW-SMR environments. (2) Methods: We use Monte Carlo track chemistry simulations to calculate yields (G values) of primary radicals (eaq, H, and OH) and molecular species (H2 and H2O2) from water radiolysis by α-particles and Li3⁺ recoils across 1 picosecond to 0.1 millisecond timescales. (3) Results: Simulations show substantially lower radical yields, notably eaq and OH, alongside higher molecular product yields compared to low linear energy transfer (LET) radiation, underscoring the high-LET nature of 10B(n,α)7Li recoil nuclei. Key changes include elevated G(OH) and G(H2), and a decrease in G(H), primarily driven during the homogeneous chemical stage of radiolysis by the reaction H + H2O → OH + H2. This reaction significantly contributes to H2 production, potentially reducing the need for added hydrogen in coolant water to mitigate oxidizing species. In supercritical conditions, low G(H₂O₂) suggests that H2O2 is unlikely to be a major contributor to material oxidation. (4) Conclusions: The 10B(n,α)7Li reaction’s yield estimates could significantly impact coolant chemistry strategies in SCWRs and SCW-SMRs. Understanding radiolytic behavior in these conditions aids in refining reactor models and coolant chemistry to minimize corrosion and radiolytic damage. Future experiments are needed to validate these predictions. Full article
Show Figures

Figure 1

Back to TopTop