Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = rapid repair of bridge deck pavement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3067 KiB  
Article
Preparation and Performance Study of Rapid Repair Epoxy Concrete for Bridge Deck Pavement
by Linhao Sun, Xinling Hao, Jilei He, Yingchun Cai, Pan Guo and Qingwen Ma
Materials 2024, 17(11), 2674; https://doi.org/10.3390/ma17112674 - 1 Jun 2024
Cited by 6 | Viewed by 1212
Abstract
With the rapid development of bridge construction, the service life of bridges and traffic volume continue to increase, leading to the gradual appearance of diseases such as potholes and cracks in bridge deck pavements under repeated external loads. These issues severely impact the [...] Read more.
With the rapid development of bridge construction, the service life of bridges and traffic volume continue to increase, leading to the gradual appearance of diseases such as potholes and cracks in bridge deck pavements under repeated external loads. These issues severely impact the safety and service life of bridges. The repair of bridge deck potholes and cracks is crucial for ensuring the integrity and safety of bridge structures. Rapid repair materials designed for this purpose play a critical role in effectively and efficiently addressing these issues. In order to address the issues of pavement diseases, this study focuses on the rapid repair of epoxy concrete for bridge deck pavements and its performance is studied using experimental methods. Firstly, carbon black, rubber powder, and other materials were used to improve the elastic modulus and aging resistance of the epoxy concrete. Secondly, the addition of solid asphalt particles provided thermal sensitivity to the repair material. Finally, various properties of the rapid repair epoxy concrete for bridge deck pavements were tested through experiments including compressive strength testing, elastic modulus measurement, thermal sensitivity testing, and anti-UV aging testing. The experimental results show that adding carbon black and rubber powder reduces the elastic modulus of epoxy concrete by 25% compared to normal epoxy concrete, while increasing its aging resistance by 1.8%. The inclusion of solid asphalt particles provided thermal sensitivity to the repair material, contributing to better stress coordination between the repair material and the original pavement material under different temperature conditions. The epoxy concrete has early strength, toughness, and anti-aging properties, making it suitable for rapid repair of bridge deck pavement. Full article
(This article belongs to the Special Issue Advance in Sustainable Construction Materials, Second Volume)
Show Figures

Figure 1

18 pages, 6286 KiB  
Article
Preparation of High-Ductility Cement-Calcined Coal-Gangue-Powder-Composite-Based Rapid Repair Material
by Biaokun Ren, Lijuan Chai, Yuanzhen Liu and Yangkai Wang
Materials 2023, 16(17), 6049; https://doi.org/10.3390/ma16176049 - 3 Sep 2023
Cited by 9 | Viewed by 1647
Abstract
Coal gangue is a kind of solid waste. A high-ductility cement-calcined coal-gangue-powder-composite-based rapid repair material (HD-RRM) was prepared by partially replacing cement with calcined coal gangue powder (CCGP) for achieving high ductility and rapid hardening and conforming to the strength requirements of pavement [...] Read more.
Coal gangue is a kind of solid waste. A high-ductility cement-calcined coal-gangue-powder-composite-based rapid repair material (HD-RRM) was prepared by partially replacing cement with calcined coal gangue powder (CCGP) for achieving high ductility and rapid hardening and conforming to the strength requirements of pavement layers. First, the physical and chemical properties and the reactivity of the CCGP were investigated. Second, HD-RRM material was prepared, and its tensile performance characteristic parameters were investigated. Lastly, the hydration products and microstructure of HD-RRM were characterized through tests (e.g., non-evaporable water content, scanning electron microscopy (SEM), X-ray diffraction (XRD), and comprehensive thermogravimetric analysis and differential scanning calorimetry (TG-DSC)). As indicated by the experimental results, the CCGP with a particle size of 1250 mesh exhibited the maximum potential reactivity. The optimal mixing ratio for HD-RRM in the experiments comprised a water–cement ratio of 0.27, a sand–cement ratio of 0.3, a fiber volume fraction of 2%, a cement content of 70%, a CCGP content of 20%, a fly ash (FA) content of 10%, and a superplasticizer content of 0.1%. Using the abovementioned mix design, the prepared HD-RRM was endowed with a 6 h ultimate elongation of 2.75%, an ultimate tensile strength of 7.58 MPa, a compressive strength of 45.4 MPa, and an average crack width of 125.53 μm, which meets the requirements of repair materials and provides a design method for CCGP resource utilization and asphalt concrete road and bridge deck repair. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop