Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (333)

Search Parameters:
Keywords = rank of coal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2902 KiB  
Article
Research on Thermochemical and Gas Emissions Analysis for the Sustainable Co-Combustion of Petroleum Oily Sludge and High-Alkali Lignite
by Yang Guo, Jie Zheng, Demian Wang, Pengtu Zhang, Yixin Zhang, Meng Lin and Shiling Yuan
Sustainability 2025, 17(15), 6703; https://doi.org/10.3390/su17156703 - 23 Jul 2025
Viewed by 294
Abstract
Petroleum oily sludge (OLS), a hazardous by-product of the petroleum industry, and high-alkali lignite (HAL), an underutilized low-rank coal, pose significant challenges to sustainable waste management and resource efficiency. This study systematically investigated the combustion behavior, reaction pathways, and gaseous-pollutant-release mechanisms across varying [...] Read more.
Petroleum oily sludge (OLS), a hazardous by-product of the petroleum industry, and high-alkali lignite (HAL), an underutilized low-rank coal, pose significant challenges to sustainable waste management and resource efficiency. This study systematically investigated the combustion behavior, reaction pathways, and gaseous-pollutant-release mechanisms across varying blend ratios, utilizing integrated thermogravimetric-mass spectrometry analysis (TG-MS), interaction analysis, and kinetic modeling. The key findings reveal that co-combustion significantly enhances the combustion performance compared to individual fuels. This is evidenced by reduced ignition and burnout temperatures, as well as an improved comprehensive combustion index. Notably, an interaction analysis revealed coexisting synergistic and antagonistic effects, with the synergistic effect peaking at a blending ratio of 50% OLS due to the complementary properties of the fuels. The activation energy was found to be at its minimum value of 32.5 kJ/mol at this ratio, indicating lower reaction barriers. Regarding gas emissions, co-combustion at a 50% OLS blending ratio reduces incomplete combustion products while increasing CO2, indicating a more complete reaction. Crucially, sulfur-containing pollutants (SO2, H2S) are suppressed, whereas nitrogen-containing emissions (NH3, NO2) increase but remain controllable. This study provides novel insights into the synergistic mechanisms between OLS and HAL during co-combustion, offering foundational insights for the optimization of OLS-HAL combustion systems toward efficient energy recovery and sustainable industrial waste management. Full article
(This article belongs to the Special Issue Harmless Disposal and Valorisation of Solid Waste)
Show Figures

Figure 1

23 pages, 9204 KiB  
Article
Hydrochemical Characteristics and Genesis Analysis of Closed Coal Mining Areas in Southwestern Shandong Province, China
by Xiaoqing Wang, Jinxian He, Guchun Zhang, Jianguo He, Heng Zhao, Meng Wu, Xuejuan Song and Dongfang Liu
Eng 2025, 6(7), 164; https://doi.org/10.3390/eng6070164 - 18 Jul 2025
Viewed by 272
Abstract
With the large-scale closure of coal mines leading to groundwater pollution, in order to systematically identify the sources of major chemical ions in surface water and groundwater. This study comprehensively applied methods such as Piper’s trilinear diagram, linear fitting, and correlation analysis to [...] Read more.
With the large-scale closure of coal mines leading to groundwater pollution, in order to systematically identify the sources of major chemical ions in surface water and groundwater. This study comprehensively applied methods such as Piper’s trilinear diagram, linear fitting, and correlation analysis to quantitatively analyze the hydrochemical characteristics of closed coal mining areas in southwest Shandong and to clarify the sources of geochemical components in surface water and groundwater, and the PMF model was used to analyze the sources of chemical components in mine water and karst water. The results show that the concentrations of TDS ( Total Dissolved Solids), SO42−, Fe, and Mn in the mine water of the closed coal mine area are higher than in the karst water. Both water bodies are above groundwater quality standards. Ca2+, SO42−, and HCO3 dominate the ionic components in surface water and different types of groundwater. The hydrochemical types of surface, pore, and mine waters are mainly SO4-HCO3-Ca, whereas SO4-HCO3-Ca and HCO3-SO4-Ca dominate karst waters. SO42− is the leading ion in the TDS of water bodies. The mineralization process of surface water is mainly controlled by the weathering of silicate minerals, while that of the groundwater is mainly controlled by the dissolution of carbonate minerals. The impact of mining activities on surface water and groundwater is significant, while the impact of agricultural activities on surface water and groundwater is relatively small. The degree of impact of coal mining activities on SO42− concentrations in surface water, pore water, and karst water, in descending order, is karst water, surface water, and pore water. The PMF (Positive Matrix Factorization) model analysis results indicate that dissolution of carbonate minerals with sulphate and oxidation dissolution of sulfide minerals are the main sources of chemical constituents in mine waters. Carbonate dissolution, oxidation dissolution of sulfide minerals, domestic sewage, and dissolution of carbonate minerals with sulphate are ranked as the main sources of chemical constituents in karst water from highest to lowest. These findings provide a scientific basis for the assessment and control of groundwater pollution in the areas of closed coal mines. Full article
Show Figures

Figure 1

20 pages, 15499 KiB  
Article
Molecular Dynamics Unveiled: Temperature–Pressure–Coal Rank Triaxial Coupling Mechanisms Governing Wettability in Gas–Water–Coal Systems
by Lixin Zhang, Songhang Zhang, Shuheng Tang, Zhaodong Xi, Jianxin Li, Qian Zhang, Ke Zhang and Wenguang Tian
Processes 2025, 13(7), 2209; https://doi.org/10.3390/pr13072209 - 10 Jul 2025
Viewed by 280
Abstract
Water within coal reservoirs exerts dual effects on methane adsorption–desorption by competing for adsorption sites and reducing permeability. The bound water effect, caused by coal wettability, significantly constrains coalbed methane (CBM) production, rendering investigations into coal wettability crucial for efficient CBM development. Compared [...] Read more.
Water within coal reservoirs exerts dual effects on methane adsorption–desorption by competing for adsorption sites and reducing permeability. The bound water effect, caused by coal wettability, significantly constrains coalbed methane (CBM) production, rendering investigations into coal wettability crucial for efficient CBM development. Compared with other geological formations, coals are characterized by a highly developed microporous structure, making the CO2 sequestration mechanism in coal seams closely linked to the microscale interactions among gas, water, and coal matrixes. However, the intrinsic mechanisms remain poorly understood. In this study, molecular dynamics simulations are employed to investigate the wettability behaviors of CO2, CH4, and water on different coal matrix surfaces under varying temperature and pressure conditions, for coal macromolecules representative of four coal ranks. The study reveals the evolution of water wettability in response to CO2 and CH4 injection, identifies wettability differences among coal ranks, and analyzes the microscopic mechanisms governing wettability. The results show the following: (1) The contact angle increases with gas pressure, and the variation in wettability is more pronounced in CO2 environments than in CH4. As pressure increases, the number of hydrogen bonds decreases, while the peak gas density of CH4 and CO2 increases, leading to larger contact angles. (2) Simulations under different temperatures for the four coal ranks indicate that temperature has minimal influence on low-rank Hegu coal, whereas for higher-rank coals, gas adsorption on the coal surface increases, resulting in reduced wettability. Interfacial tension analysis further suggests that higher temperatures reduce water surface tension, cause dispersion of water molecules, and consequently improve wettability. Understanding the wettability variations among different coal ranks under variable pressure–temperature conditions provides a fundamental model and theoretical basis for investigating deep coal seam gas–water interactions and CO2 geological sequestration mechanisms. These findings have significant implications for the advancement of CO2-ECBM technology. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
Show Figures

Figure 1

16 pages, 4663 KiB  
Article
Geological Conditions and Reservoir Formation Models of Low- to Middle-Rank Coalbed Methane in the Northern Part of the Ningxia Autonomous Region
by Dongsheng Wang, Qiang Xu, Shuai Wang, Quanyun Miao, Zhengguang Zhang, Xiaotao Xu and Hongyu Guo
Processes 2025, 13(7), 2079; https://doi.org/10.3390/pr13072079 - 1 Jul 2025
Viewed by 279
Abstract
The mechanism of low- to middle-rank coal seam gas accumulation in the Baode block on the eastern edge of the Ordos Basin is well understood. However, exploration efforts in the Shizuishan area on the western edge started later, and the current understanding of [...] Read more.
The mechanism of low- to middle-rank coal seam gas accumulation in the Baode block on the eastern edge of the Ordos Basin is well understood. However, exploration efforts in the Shizuishan area on the western edge started later, and the current understanding of enrichment and accumulation rules is unclear. It is important to systematically study enrichment and accumulation, which guide the precise exploration and development of coal seam gas resources in the western wing of the basin. The coal seam collected from the Shizuishan area of Ningxia was taken as the target. Based on drilling, logging, seismic, and CBM (coalbed methane) test data, geological conditions were studied, and factors and reservoir formation modes of CBM enrichment were summarized. The results are as follows. The principal coal-bearing seams in the study area are coal seams No. 2 and No. 3 of the Shanxi Formation and No. 5 and No. 6 of the Taiyuan Formation, with thicknesses exceeding 10 m in the southwest and generally stable thickness across the region, providing favorable conditions for CBM enrichment. Spatial variations in burial depth show stability in the east and south, but notable fluctuations are observed near fault F1 in the west and north. These burial depth patterns are closely linked to coal rank, which increases with depth. Although the southeastern region exhibits a lower coal rank than the northwest, its variation is minimal, reflecting a more uniform thermal evolution. Lithologically, the roof of coal seam No. 6 is mainly composed of dense sandstone in the central and southern areas, indicating a strong sealing capacity conducive to gas preservation. This study employs a system that fuses multi-source geological data for analysis, integrating multi-dimensional data such as drilling, logging, seismic, and CBM testing data. It systematically reveals the gas control mechanism of “tectonic–sedimentary–fluid” trinity coupling in low-gentle slope structural belts, providing a new research paradigm for coalbed methane exploration in complex structural areas. It creatively proposes a three-type CBM accumulation model that includes the following: ① a steep flank tectonic fault escape type (tectonics-dominated); ② an axial tectonic hydrodynamic sealing type (water–tectonics composite); and ③ a gentle flank lithology–hydrodynamic sealing type (lithology–water synergy). This classification system breaks through the traditional binary framework, systematically explaining the spatiotemporal matching relationships of the accumulated elements in different structural positions and establishing quantitative criteria for target area selection. It systematically reveals the key controlling roles of low-gentle slope structural belts and slope belts in coalbed methane enrichment, innovatively proposing a new gentle slope accumulation model defined as “slope control storage, low-structure gas reservoir”. These integrated results highlight the mutual control of structural, thermal, and lithological factors on CBM enrichment and provide critical guidance for future exploration in the Ningxia Autonomous Region. Full article
Show Figures

Figure 1

23 pages, 1703 KiB  
Article
Assessing and Projecting Long-Term Trends in Global Environmental Air Quality
by Yongtao Jin
Sustainability 2025, 17(13), 5981; https://doi.org/10.3390/su17135981 - 29 Jun 2025
Viewed by 475
Abstract
Air quality and environmental issues have gained attention from countries and organizations worldwide over the past several decades. In recent years, carbon peak and carbon neutrality have been mentioned at many international conferences and meetings aimed at reducing and controlling environmental challenges. This [...] Read more.
Air quality and environmental issues have gained attention from countries and organizations worldwide over the past several decades. In recent years, carbon peak and carbon neutrality have been mentioned at many international conferences and meetings aimed at reducing and controlling environmental challenges. This study focuses on trend analysis and expectations for the duration of control for environmental air quality (EAQ) indicators, assesses the current EAQ conditions across global countries, and presents reasonable suggestions for environmental control. The study begins by examining the annual, per capita, and per square meter (m2) carbon dioxide (CO2) emission peak and standardizations, where carbon standardization is a replacement for carbon neutrality. A similar quantitative methodology was employed to assess classical air quality factors such as sulfur dioxide (SO2) and nitrogen oxides (NOx). The findings suggest that the average control year length (ACYL) of NOx is longer than that of SO2, and the ACYL of SO2 is, in turn, longer than that of CO2. From an energy structure perspective, regressions results indicate that biofuel and wind power contribute to improvements in EAQ, while coal, oil, and gas power exert negative impacts. Moreover, a long-term EAQ model utilizing an adjusted max–min normalization method is proposed to integrate various EAQ indicators. This study also presents an EAQ ranking for global countries and recommends countries with critical EAQ challenges. The results demonstrate that it is plausible to control EAQ factors at an excellent level with advances in control technologies and effective measures by government, industries, and individuals. Full article
Show Figures

Figure 1

17 pages, 2031 KiB  
Article
Geochemical Characteristics and Paleoenvironmental Significance of the Xishanyao Formation Coal from the Xiheishan Mining Area, Zhundong Coalfield, Xinjiang, China
by Yongjie Hou, Kaixuan Zhang, Xiangcheng Jin, Yongjia Xu, Xiaotao Xu and Xiaoyun Yan
Minerals 2025, 15(7), 686; https://doi.org/10.3390/min15070686 - 27 Jun 2025
Viewed by 261
Abstract
The eastern Junggar Basin in Xinjiang, China is a key coal-bearing region dominated by the Middle Jurassic Xishanyao Formation. Despite its significance as a major coal resource base, detailed paleoenvironmental reconstructions of its coal seams remain limited. This study investigates the B1 [...] Read more.
The eastern Junggar Basin in Xinjiang, China is a key coal-bearing region dominated by the Middle Jurassic Xishanyao Formation. Despite its significance as a major coal resource base, detailed paleoenvironmental reconstructions of its coal seams remain limited. This study investigates the B1, B2, B3, and B5 coal seams of the Xishanyao Formation using X-ray fluorescence spectroscopy (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) to assess geochemical indicators of the depositional environment during coal formation. The results show that the coal samples are characterized by high inertinite content and low vitrinite reflectance, indicative of low-rank coal. Slight enrichment of strontium (Sr) was observed in the B1, B2, and B5 seams, while cobalt (Co) showed minor enrichment in B3. Redox-sensitive elemental ratios (Ni/Co, V/Cr, and Mo) suggest that the peat-forming environment ranged from oxidizing to dysoxic conditions, with relatively high oxygen availability and strong hydrodynamic activity. A vertical trend of increasing paleosalinity and a shift from warm–humid to dry–hot paleoclimatic conditions was identified from the lower (B1) to upper (B5) coal seams. Additionally, the estimated atmospheric oxygen concentration during the Middle Jurassic was approximately 28.4%, well above the threshold for wildfire combustion. These findings provide new insights into the paleoenvironmental evolution of the Xishanyao Formation and offer a valuable geochemical framework for coal exploration and the assessment of coal-associated mineral resources in the eastern Junggar Basin. Full article
Show Figures

Figure 1

23 pages, 3609 KiB  
Article
Structural Characterization of Low-Rank Coals in the Ningdong Coalfield Under the Control of the First Coalification Jump
by Xiaoyan Ji, Caifang Wu, Bin Gao, Xuezhong Lu, Bei Wang, Yongping Liang, Xiaowu Zhang and Zhifeng Zhang
Processes 2025, 13(7), 1996; https://doi.org/10.3390/pr13071996 - 24 Jun 2025
Viewed by 325
Abstract
The first coalification jump (FCJ) has a significant effect on changes in the microstructural properties of coal and plays a crucial role in understanding the efficient utilization of low-rank coal. One lignite (QSY-2), two subbituminous (MHJ-10 and YCW-2), and three high-volatile A-grade bituminous [...] Read more.
The first coalification jump (FCJ) has a significant effect on changes in the microstructural properties of coal and plays a crucial role in understanding the efficient utilization of low-rank coal. One lignite (QSY-2), two subbituminous (MHJ-10 and YCW-2), and three high-volatile A-grade bituminous coals (YX-12, JF-18, and HY-5) from the Ningdong coalfield were selected for research, avoiding the influence of regional geology. The evolution characteristics of the microstructures before and after the FCJ were investigated via spectroscopic experiments. The complex and unstable molecular structure of low-rank coal gradually decomposes and polymerizes at 350 °C. The aliphatic structure shows a V-shaped change trend as metamorphism increases. The inflection point is around an Ro of 0.6%. Demethylation and polymerization occur simultaneously during the FCJ. The reconnection of benzene substances with the aromatic ring increases the density of aromatic rings in the YCW-2 sample, significantly enhancing its aromaticity. The removal of oxygen-containing functional groups, especially methoxy and carbonyl groups, provides the possibility for the formation of CH4 and CO2 during the metamorphosis of lignite to subbituminous coal. Furthermore, high temperatures result in a loss of moisture content during the FCJ, which is the primary factor leading to a reduction in the hydroxyl content in coal. The selected samples are primarily composed of organic matter, with low levels of heteroatoms in the coal. It is preliminarily determined that coalification is not significantly affected. This study provides a theoretical foundation for investigating the molecular structure evolution of low-rank coal during the FCJ. Full article
Show Figures

Figure 1

14 pages, 3054 KiB  
Article
Occurrence Modes of Arsenic in Coal: A Case Study from the Hanshuiquan Coal Mine, Santanghu Coalfield, Xinjiang Province, China
by Bo Zhu, Wenfeng Wang, Jijun Tian, Wenlong Wang, Shuo Feng and Meng Wang
Appl. Sci. 2025, 15(13), 7092; https://doi.org/10.3390/app15137092 - 24 Jun 2025
Viewed by 306
Abstract
The high concentration of arsenic in coal does great harm to the environment. It is important to research the occurrence mode of As in coal to promote the removal of As in coal and understand the migration and transformation of As in coal. [...] Read more.
The high concentration of arsenic in coal does great harm to the environment. It is important to research the occurrence mode of As in coal to promote the removal of As in coal and understand the migration and transformation of As in coal. In this work, eleven samples from the Hanshuiquan coal mine, in the Santanghu Coalfield, were tested by X-ray diffraction (XRD) and Scanning Electron Microscopy with an Energy Dispersive Spectrometer (SEM-EDS). The results show that maximum arsenic content in the coal seam was 108.37 μg/g, which was 13 times more than that of the world coal, and 28 times more than that of the Chinese coal. Through X-ray diffraction (XRD) experiments, ojuelaite and scorodite were found in the samples. Scanning Electron Microscopy (SEM) and an Energy Dispersive Spectrometer (EDS) were used to determine the occurrence location of the arsenic elements. In combination with geochemistry and mineralogy theory, the occurrence modes of the arsenic were studied in detail. The occurrence modes of arsenic in coal from the study area are dominated by sulfide-bound arsenic. At the same time, it was found that arsenic in the study area might occur in the form of arsenate containing zinc and organic bound arsenic. Previous studies and this work have shown that (1) arsenic in coal is predominantly in the form of pyrite, and (2) arsenic in coal is associated with organic matter in low-rank coal and to a lesser extent in high-rank coal. Understanding the occurrence modes of arsenic in coal is of great significance because it has significant impacts on coal mining, preparation, combustion, and utilization, and has adverse effects on the environment and human health. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

31 pages, 2695 KiB  
Article
Multidimensional Risk Assessment in Sustainable Coal Supply Chains for China’s Low-Carbon Transition: An AHP-FCE Framework
by Yang Zhou, Ming Guo, Junfang Hao, Wanqiang Xu and Yuping Wu
Sustainability 2025, 17(13), 5689; https://doi.org/10.3390/su17135689 - 20 Jun 2025
Viewed by 582
Abstract
Driven by the global energy transition and the pursuit of “dual carbon” goals, sustainability risks within the coal supply chain have emerged as a central obstacle impeding the low-carbon transformation of high-carbon industries. To address the critical gap in systematic and multidimensional risk [...] Read more.
Driven by the global energy transition and the pursuit of “dual carbon” goals, sustainability risks within the coal supply chain have emerged as a central obstacle impeding the low-carbon transformation of high-carbon industries. To address the critical gap in systematic and multidimensional risk assessments for coal supply chains, this study proposes a hybrid framework that integrates the analytic hierarchy process (AHP) with the fuzzy comprehensive evaluation (FCE) method. Utilizing the Delphi method and the coefficient of variation technique, this study develops a risk assessment system encompassing eight primary criteria and forty sub-criteria. These indicators cover economic, operational safety, ecological and environmental, management policy, demand, sustainable supply, information technology, and social risks. An empirical analysis is conducted, using a prominent Chinese coal enterprise as a case study. The findings demonstrate that the overall risk level of the enterprise is “moderate”, with demand risk, information technology risk, and social risk ranking as the top three concerns. This underscores the substantial impact of accelerated energy substitution, digital system vulnerabilities, and stakeholder conflicts on supply chain resilience. Further analysis elucidates the transmission mechanisms of critical risk nodes, including financing constraints, equipment modernization delays, and deficiencies in end-of-pipe governance. Targeted strategies are proposed, such as constructing a diversified financing matrix, developing a blockchain-based data-sharing platform, and establishing a community co-governance mechanism. These measures offer scientific decision-making support for the coal industry’s efforts to balance “ensuring supply” with “reducing carbon emissions”, and provide a replicable risk assessment paradigm for the sustainable transformation of global high-carbon supply chains. Full article
Show Figures

Figure 1

18 pages, 3348 KiB  
Article
Moderate-Temperature Pyrolysis Characteristics of Lump Coal Under Varying Coal Particle Sizes
by Yuanpei Luo, Luxuan Liu, Liangguo Lv, Shengping Zhang, Fei Dai, Hongguang Jin and Jun Sui
Energies 2025, 18(12), 3220; https://doi.org/10.3390/en18123220 - 19 Jun 2025
Viewed by 384
Abstract
Pyrolysis is an important methodology for achieving efficient and clean utilization of coal. Lump coal pyrolysis demonstrates distinct advantages over pulverized coal processing, particularly in enhanced gas yield and superior coke quality. As a critical parameter in lump coal pyrolysis, particle size significantly [...] Read more.
Pyrolysis is an important methodology for achieving efficient and clean utilization of coal. Lump coal pyrolysis demonstrates distinct advantages over pulverized coal processing, particularly in enhanced gas yield and superior coke quality. As a critical parameter in lump coal pyrolysis, particle size significantly influences heat transfer and mass transfer during pyrolysis, yet its governing mechanisms remain insufficiently explored. This research systematically investigates pyrolysis characteristics of the low-rank coal from Ordos, Inner Mongolia, across graded particle sizes (2–5 mm, 5–10 mm, 10–20 mm, and 20–30 mm) through pyrolysis experiments. Real-time central temperature monitoring of coal bed coupled with advanced characterization techniques—including X-ray diffraction (XRD), Raman spectroscopy, Brunauer–Emmett–Teller (BET) analysis, scanning electron microscopy (SEM), gas chromatography (GC), and GC–mass spectrometry (GC-MS)—reveals particle-size-dependent pyrolysis mechanisms. Key findings demonstrate that the larger particles enhance bed-scale convective heat transfer, accelerating temperature propagation from reactor walls to the coal center. However, excessive sizes cause significant intra-particle thermal gradients, impeding core pyrolysis. The 10–20 mm group emerges as optimal—balancing these effects to achieve uniform thermal attainment, evidenced by 20.99 vol% peak hydrogen yield and maximum char graphitization. Tar yield first demonstrates a tendency to rise and then decline, peaking at 14.66 wt.% for 5–10 mm particles. This behavior reflects competing mechanisms: enlarging particle size can improve bed permeability (reducing tar residence time and secondary reactions), but it can also inhibit volatile release and intensify thermal cracking of tar in oversized coal blocks. The BET analysis result reveals elevated specific surface area and pore volume with increasing particle size, except for the 10–20 mm group, showing abrupt porosity reduction—attributed to pore collapse caused by intense polycondensation reactions. Contrasting previous studies predominantly focused on less than 2 mm pulverized coal, this research selects large-size (from 2 mm to 30 mm) lump coal to clarify the effect of particle size on coal pyrolysis, providing critical guidance for industrial-scale lump coal pyrolysis optimization. Full article
Show Figures

Figure 1

21 pages, 2249 KiB  
Article
Multifractal Characterization of Full-Scale Pore Structure in Middle-High-Rank Coal Reservoirs: Implications for Permeability Modeling in Western Guizhou–Eastern Yunnan Basin
by Fangkai Quan, Yanhui Zhang, Wei Lu, Chongtao Wei, Xuguang Dai and Zhengyuan Qin
Processes 2025, 13(6), 1927; https://doi.org/10.3390/pr13061927 - 18 Jun 2025
Viewed by 443
Abstract
This study presents a comprehensive multifractal characterization of full-scale pore structures in middle- to high-rank coal reservoirs from the Western Guizhou–Eastern Yunnan Basin and establishes a permeability prediction model integrating fractal heterogeneity and pore throat parameters. Eight coal samples were analyzed using mercury [...] Read more.
This study presents a comprehensive multifractal characterization of full-scale pore structures in middle- to high-rank coal reservoirs from the Western Guizhou–Eastern Yunnan Basin and establishes a permeability prediction model integrating fractal heterogeneity and pore throat parameters. Eight coal samples were analyzed using mercury intrusion porosimetry (MIP), low-pressure gas adsorption (N2/CO2), and multifractal theory to quantify multiscale pore heterogeneity and its implications for fluid transport. Results reveal weak correlations (R2 < 0.39) between conventional petrophysical parameters (ash yield, volatile matter, porosity) and permeability, underscoring the inadequacy of bulk properties in predicting flow behavior. Full-scale pore characterization identified distinct pore architecture regimes: Laochang block coals exhibit microporous dominance (0.45–0.55 nm) with CO2 adsorption capacities 78% higher than Tucheng samples, while Tucheng coals display enhanced seepage pore development (100–5000 nm), yielding 2.5× greater stage pore volumes. Multifractal analysis demonstrated significant heterogeneity (Δα = 0.98–1.82), with Laochang samples showing superior pore uniformity (D1 = 0.86 vs. 0.82) but inferior connectivity (D2 = 0.69 vs. 0.71). A novel permeability model was developed through multivariate regression, integrating the heterogeneity index (Δα) and effective pore throat diameter (D10), achieving exceptional predictive accuracy. The strong negative correlation between Δα and permeability (R = −0.93) highlights how pore complexity governs flow resistance, while D10’s positive influence (R = 0.72) emphasizes throat size control on fluid migration. This work provides a paradigm shift in coal reservoir evaluation, demonstrating that multiscale fractal heterogeneity, rather than conventional bulk properties, dictates permeability in anisotropic coal systems. The model offers critical insights for optimizing hydraulic fracturing and enhanced coalbed methane recovery in structurally heterogeneous basins. Full article
Show Figures

Figure 1

21 pages, 3888 KiB  
Article
CO2-Rich Industrial Waste Gas as a Storage-Enhanced Gas: Experimental Study on Changes in Pore Structure and Methane Adsorption in Coal and Shale
by Hanxin Jiu, Dexiang Li, Gongming Xin, Yufan Zhang, Huaxue Yan and Tuo Zhou
Molecules 2025, 30(12), 2578; https://doi.org/10.3390/molecules30122578 - 13 Jun 2025
Viewed by 424
Abstract
A technology that directly injects CO2-rich industrial waste gas (CO2-rich IWG) into underground spaces for unconventional natural gas extraction and waste gas storage has received increasing attention. The pore characteristics of coal and shale in a coal-bearing rock series [...] Read more.
A technology that directly injects CO2-rich industrial waste gas (CO2-rich IWG) into underground spaces for unconventional natural gas extraction and waste gas storage has received increasing attention. The pore characteristics of coal and shale in a coal-bearing rock series before and after CO2-rich IWG treatment are closely related to gas recovery and storage. In this study, three coals ranging from low to high rank and one shale sample were collected. The samples were treated with CO2-rich IWG using a high-precision geochemical reactor. The changes in the pore volume (PV), specific surface area (SSA), and pore size distribution of micropores, mesopores, and macropores were analyzed. The correlations between the Langmuir volume and the PV and SSA of the micropores and mesopores were analyzed. It was confirmed that for micropores, SSA was the dominant factor influencing adsorption capacity. The effectively interconnected pore volume was calculated using macropores to characterize changes in the sample’s connectivity. It was found that the PV and SSA of the micropores in the coal samples increased with increasing coal rank. The CO2-rich IWG treatment increased the PV and SSA of the micropores in all of the samples. In addition, for mesopores and macropores, the treatment reduced the SSA in the coal samples but enhanced it in the shale. The results of this study improve the understanding of the mechanisms of the CO2-rich IWG treatment method and emphasize its potential in waste gas storage and natural gas extraction. Full article
Show Figures

Graphical abstract

21 pages, 5124 KiB  
Article
Full-Scale Pore Structure and Gas Adsorption Characteristics of the Medium-Rank Coals from Qinshui Basin, North China
by Yingchun Hu, Shan He, Feng Qiu, Yidong Cai, Haipeng Wei and Bin Li
Processes 2025, 13(6), 1862; https://doi.org/10.3390/pr13061862 - 12 Jun 2025
Viewed by 526
Abstract
To elucidate the gas adsorption characteristics of medium-rank coal, this study collected samples from fresh mining faces in the Qinshui Basin. A series of experiments were conducted, including low-temperature carbon dioxide adsorption, low-temperature liquid nitrogen adsorption, mercury intrusion, and methane isothermal adsorption experiments, [...] Read more.
To elucidate the gas adsorption characteristics of medium-rank coal, this study collected samples from fresh mining faces in the Qinshui Basin. A series of experiments were conducted, including low-temperature carbon dioxide adsorption, low-temperature liquid nitrogen adsorption, mercury intrusion, and methane isothermal adsorption experiments, which clarify the pore structure characteristics of medium-rank coals, reveal the gas adsorption behavior in medium-rank coal, and identify the control mechanism. The results demonstrate that the modified Dubinin–Radushkevich (D-R) isothermal adsorption model accurately describes the gas adsorption in medium-rank coal, with fitting errors remaining below 1%. Comprehensive pore structure analysis reveals that the coal pore volume consists primarily of absorption pores (<2 nm), transitional pores (10–100 nm), and seepage pores (>100 nm), while the specific surface area is predominantly contributed by absorption pores (<2 nm). At low pressures, gas molecules form monolayer adsorption on absorption pore (<2 nm) and adsorption pore (2–10 nm) surfaces. With increasing pressure, multilayer adsorption dominates. As pore filling approaches the maximum capacity, the adsorption rate decreases progressively until reaching an equilibrium, at which point the adsorption capacity attains its saturation limit. The adsorption data of the gas in medium-rank coal can be explained by the improved D-R isothermal adsorption model. The priority of gas filling in pores is different, and the absorption pore is normally better than the adsorption pore. The results provide a new idea and understanding for the further study of the coalbed gas adsorption mechanism. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 2074 KiB  
Article
The Synthesis of Polycarboxylate Dispersants Containing Benzenesulfonic Acid Groups and Their Performance in Promoting Coal Particle Dispersion
by Lin Li, Zhisen Li, Shuo Yang, Chuandong Ma, Wenqi Zhang, Meng He and Xiaofang You
Molecules 2025, 30(12), 2493; https://doi.org/10.3390/molecules30122493 - 6 Jun 2025
Viewed by 408
Abstract
In this study, a polycarboxylate coal–water slurry dispersant (SSPA) containing benzenesulfonic acid groups was synthesized using allyl alcohol polyoxyethylene ether 500, sodium styrenesulfonate, and acrylic acid as raw materials. The effects of SSPA and a commercially available naphthalene-based dispersant (MF) on the slurry [...] Read more.
In this study, a polycarboxylate coal–water slurry dispersant (SSPA) containing benzenesulfonic acid groups was synthesized using allyl alcohol polyoxyethylene ether 500, sodium styrenesulfonate, and acrylic acid as raw materials. The effects of SSPA and a commercially available naphthalene-based dispersant (MF) on the slurry characteristics of low-rank coal were compared, and the maximum solid content of CWS prepared with SSPA reached 65.2%, which was 4% higher than that achieved with MF (61.2%). Unlike the more electronegative MF dispersant, SSPA features long polyether side chains that exert a robust steric hindrance effect, significantly enhancing coal particle dispersion. This results in a decrease in apparent viscosity and an increase in the stability of the CWS formulated with SSPA. Furthermore, adsorption experiments revealed that the adsorption kinetics of both SSPA and MF on coal conformed to the pseudo-second-order kinetic model. SSPA’s adsorption on coal particles followed the Langmuir isothermal adsorption model, and the KL value of 0.0094 for SSPA was greater than that of MF (0.0086). This indicates that SSPA has a stronger affinity for the coal surface. Overall, the superior adsorption efficacy of SSPA is attributed to the benzene ring in its nonpolar group, which facilitates steric hindrance with aromatic structures in coal. Additionally, SSPA improves slurry stability, achieving a penetration rate of 96.7%. Finally, the carboxylic acid groups in SSPA likely engage in electrostatic attraction with cations on the coal surface, enhancing adsorption. Full article
Show Figures

Figure 1

20 pages, 3125 KiB  
Article
Study on the Influence of Multiple Factors on the CH4/CO2 Adsorption Selective Prediction Model in Coal
by Min Yan, Cheng Wang, Haifei Lin, Pengfei Ji, Shugang Li and Huilin Jia
Processes 2025, 13(6), 1757; https://doi.org/10.3390/pr13061757 - 3 Jun 2025
Viewed by 472
Abstract
More accurate prediction of CO2/CH4 adsorption selectivity coefficients in the CO2 Enhanced Coal Bed CH4 Recovery (CO2-ECBM) project can help to judge the CO2 adsorption concentration and the desorption purity of CH4 during the [...] Read more.
More accurate prediction of CO2/CH4 adsorption selectivity coefficients in the CO2 Enhanced Coal Bed CH4 Recovery (CO2-ECBM) project can help to judge the CO2 adsorption concentration and the desorption purity of CH4 during the CO2 injection process, and to achieve the maximization of CO2 sequestration as well as the optimization of the CH4 recovery rate. To this end, a coal molecular slit model with 16 sizes including micro-, meso-, and macropores was constructed in this study, and the competitive adsorption characteristics of CO2 and CH4 gas mixtures in bituminous coal molecules were investigated using molecular dynamics and giant canonical Monte Carlo simulations. The CO2/CH4 adsorption selectivity coefficients (Sc) as a function of gas ratio, gas pressure, pore size, and temperature were analyzed using a large amount of adsorption isotherm data. Based on the simulation results, considering the neglect of pressure and component changes when calculating the adsorption selectivity coefficient using the traditional extended Langmuir (E-L) model, a correction term regarding the pressure of the mixed gas and the mole fraction of CO2 is set, and a modified equation is proposed. The results show that the adsorption potential energy of CO2 is significantly higher than that of CH4, giving it an absolute advantage in the competition. Through multiple regression analysis, the ranking of the influence weights of the four factors on Sc is as follows: pore size > mixed gas pressure > molar fraction of CO2 > temperature. The negative exponential function can describe the variation of Sc with four factors. The fitting degree between the modified prediction model and the Sc data obtained through simulation reaches 0.84, and the model effect is good. The research results provide theoretical guidance for the optimization of gas injection parameters in the CO2-ECBM project. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop