Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (127)

Search Parameters:
Keywords = railway transportation challenges

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2523 KiB  
Article
Application of Machine Learning Algorithms for Predicting the Dynamic Stiffness of Rail Pads Based on Static Stiffness and Operating Conditions
by Isaac Rivas, Jose A. Sainz-Aja, Diego Ferreño, Víctor Calzada, Isidro Carrascal, Jose Casado and Soraya Diego
Appl. Sci. 2025, 15(15), 8310; https://doi.org/10.3390/app15158310 - 25 Jul 2025
Viewed by 203
Abstract
The vertical stiffness of railway tracks is crucial for ensuring safe and efficient rail transport. Rail-pad dynamic stiffness is a key component influencing track performance. Determining the dynamic stiffness of rail pads poses a challenge because it depends not only on the material [...] Read more.
The vertical stiffness of railway tracks is crucial for ensuring safe and efficient rail transport. Rail-pad dynamic stiffness is a key component influencing track performance. Determining the dynamic stiffness of rail pads poses a challenge because it depends not only on the material and geometry of the rail pad but also on the testing conditions, due to the non-linear material response. To address this issue, a methodology is proposed in this paper to estimate dynamic stiffness using static stiffness measurements. This approach enables the prediction of dynamic stiffness for different situations from a single laboratory test. This study further examines whether this correlation remains valid for different types of rail pads, even when their mechanical behavior has been degraded by temperature, wear, or chemical agents. Experiments were conducted under varying temperatures and on rail pads that underwent mechanical and chemical degradation. The analysis assesses the validity of the static-to-dynamic stiffness correlation under degraded conditions and investigates the influence of each testing condition on the ability to estimate dynamic stiffness from static stiffness and operational parameters. The findings provide insights into the reliability of this predictive model and highlight the impact of degradation mechanisms on the dynamic behavior of rail pads. This research enhances the understanding of rail pad performance and offers a practical approach for evaluating dynamic stiffness. By considering all of the variables used in the analysis, the approach achieves R2 values of up to 0.99, which carries significant implications for track design and maintenance. Full article
Show Figures

Figure 1

25 pages, 1084 KiB  
Article
Do China State-Level Economic and Technological Development Zones Have a Positive Effect on Regional Total Factor Productivity? A Perspective Based on the Moderating Effect of Transportation Infrastructure
by Mengshang Liang, Changxin Xu, Mingxian Li and Yang Lu
Systems 2025, 13(8), 620; https://doi.org/10.3390/systems13080620 - 23 Jul 2025
Viewed by 182
Abstract
With the deceleration of China’s economic growth, the crude economic model will progressively diminish in its competitive edge, thereby posing challenges for state-level economic and technological development zones (ETDZs) in terms of transitioning their development model and grappling with low levels of total [...] Read more.
With the deceleration of China’s economic growth, the crude economic model will progressively diminish in its competitive edge, thereby posing challenges for state-level economic and technological development zones (ETDZs) in terms of transitioning their development model and grappling with low levels of total factor productivity (TFP). This study aims to evaluate the TFP of prominent cities in China, examine the influence of the establishment of state-level ETDZs on urban TFP, and investigate the moderating effect of transportation infrastructure on this relationship. The results show that the aggregate TFP of Chinese urban areas declined from 1999 to 2020, a trend linked to structural economic adjustments and persistent underutilization of capital in several regions. The establishment of state-level ETDZs has been found to exert a notable positive influence on regional TFP. The presence of transportation infrastructure plays a moderating role in facilitating state-level ETDZs, thereby enhancing regional TFP. Among various modes of transportation, highways and railways are particularly prominent in this regard. These conclusions provide a theoretical basis and decision-making reference for further unleashing the policy potential of development zones in China. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

20 pages, 4616 KiB  
Article
Temporal Convolutional Network with Attention Mechanisms for Strong Wind Early Warning in High-Speed Railway Systems
by Wei Gu, Guoyuan Yang, Hongyan Xing, Yajing Shi and Tongyuan Liu
Sustainability 2025, 17(14), 6339; https://doi.org/10.3390/su17146339 - 10 Jul 2025
Viewed by 398
Abstract
High-speed railway (HSR) is a key transport mode for achieving carbon reduction targets and promoting sustainable regional economic development due to its fast, efficient, and low-carbon nature. Accurate wind speed forecasting (WSF) is vital for HSR systems, as it provides future wind conditions [...] Read more.
High-speed railway (HSR) is a key transport mode for achieving carbon reduction targets and promoting sustainable regional economic development due to its fast, efficient, and low-carbon nature. Accurate wind speed forecasting (WSF) is vital for HSR systems, as it provides future wind conditions that are critical for ensuring safe train operations. Numerous WSF schemes based on deep learning have been proposed. However, accurately forecasting strong wind events remains challenging due to the complex and dynamic nature of wind. In this study, we propose a novel hybrid network architecture, MHSETCN-LSTM, for forecasting strong wind. The MHSETCN-LSTM integrates temporal convolutional networks (TCNs) and long short-term memory networks (LSTMs) to capture both short-term fluctuations and long-term trends in wind behavior. The multi-head squeeze-and-excitation (MHSE) attention mechanism dynamically recalibrates the importance of different aspects of the input sequence, allowing the model to focus on critical time steps, particularly when abrupt wind events occur. In addition to wind speed, we introduce wind direction (WD) to characterize wind behavior due to its impact on the aerodynamic forces acting on trains. To maintain the periodicity of WD, we employ a triangular transform to predict the sine and cosine values of WD, improving the reliability of predictions. Massive experiments are conducted to evaluate the effectiveness of the proposed method based on real-world wind data collected from sensors along the Beijing–Baotou railway. Experimental results demonstrated that our model outperforms state-of-the-art solutions for WSF, achieving a mean-squared error (MSE) of 0.0393, a root-mean-squared error (RMSE) of 0.1982, and a coefficient of determination (R2) of 99.59%. These experimental results validate the efficacy of our proposed model in enhancing the resilience and sustainability of railway infrastructure.Furthermore, the model can be utilized in other wind-sensitive sectors, such as highways, ports, and offshore wind operations. This will further promote the achievement of Sustainable Development Goal 9. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

35 pages, 3807 KiB  
Article
Concept of an Integrated Urban Public Transport System Linked to a Railway Network Based on the Principles of a Timed-Transfer Timetable in the City of Prievidza
by Zdenka Bulková, Eva Brumerčíková, Bibiána Buková and Tomáš Mihalik
Systems 2025, 13(7), 543; https://doi.org/10.3390/systems13070543 - 4 Jul 2025
Viewed by 299
Abstract
Urban public transport represents a fundamental pillar of a sustainable transport system and a key subsystem within the broader mobility framework in urban environments. This paper focuses on the analysis and optimization of the public transport system in the city of Prievidza and [...] Read more.
Urban public transport represents a fundamental pillar of a sustainable transport system and a key subsystem within the broader mobility framework in urban environments. This paper focuses on the analysis and optimization of the public transport system in the city of Prievidza and the nearby town of Bojnice in Slovakia, which currently face challenges such as low system attractiveness, operational inefficiency, and weak integration with regional railway transport. This study presents the results of a comprehensive analysis of existing public transport services in Prievidza and Bojnice, including an assessment of passenger flows, line network structure, transfer connections, and operational parameters. Based on the identified deficiencies, a new urban public transport network system is proposed, emphasizing direct links to the railway network. This methodology is developed in the context of an integrated timed-transfer timetable, with defined system time slots at the main transfer hub and a newly designed line network with standardized paths and regular intervals. The proposed system ensures significantly improved connectivity between urban transport and rail services, reduces deadhead kilometres, lowers the number of required vehicles, and leads to a reduction in operational costs by up to 20%. The resulting model serves as a transferable example of efficient service planning in medium-sized cities, with a focus on functional integration, operational efficiency, and sustainable urban development. Full article
(This article belongs to the Special Issue Optimization-Based Decision-Making Models in Rail Systems Engineering)
Show Figures

Figure 1

6 pages, 156 KiB  
Editorial
Multi-Level Technological Advancements in Stability and Energy Efficiency of Railway Traction Power Supply Systems
by Mingli Wu, Shaobing Yang, Kejian Song, Mengtong Li and Chi Ma
Energies 2025, 18(13), 3392; https://doi.org/10.3390/en18133392 - 27 Jun 2025
Viewed by 287
Abstract
Under the twin forces of global energy transition and transportation electrification in the 21st century, the railway system, as an efficient backbone transportation mode, has witnessed the optimization of power supply technology and energy efficiency emerging as a central challenge driving industrial innovation [...] Read more.
Under the twin forces of global energy transition and transportation electrification in the 21st century, the railway system, as an efficient backbone transportation mode, has witnessed the optimization of power supply technology and energy efficiency emerging as a central challenge driving industrial innovation [...] Full article
(This article belongs to the Special Issue Studies in the Energy Efficiency and Power Supply for Railway Systems)
21 pages, 955 KiB  
Article
Capacity of Zero-Emission Urban Public Transport
by Mirosław Czerliński and Patryk Pawłowski
Sustainability 2025, 17(13), 5835; https://doi.org/10.3390/su17135835 - 25 Jun 2025
Viewed by 477
Abstract
The article explores the capacity of zero-emission urban public transport (PT) and proposes a standardised method for calculating it across different PT corridors (bus, tram, metro and urban railway). As the European Union (EU) tightens regulations on emissions, targeting also PT, cities are [...] Read more.
The article explores the capacity of zero-emission urban public transport (PT) and proposes a standardised method for calculating it across different PT corridors (bus, tram, metro and urban railway). As the European Union (EU) tightens regulations on emissions, targeting also PT, cities are increasingly shifting to electric and hydrogen-powered vehicles. A significant challenge was the lack of a unified methodology to calculate the capacity of zero-emission vehicles, e.g., battery-powered buses carry fewer passengers than diesel ones due to weight restrictions. The article addresses this gap by creating capacity matrices for various vehicle types based on standardised assumptions. Vehicle capacity is calculated based on seating and standing space, with standing passenger space standardised to 0.2 m2/person (E Level of Service). A detailed rolling stock analysis shows how modern designs and floor layouts impact passenger space. Matrices were developed for each mode of transport, showing the number of transported passengers per hour depending on vehicle type and service frequency. The highest capacity is achieved by metro and urban railway systems (up to 95,000+ passengers/hour/direction), while buses offer the lowest (up to 7800 passengers/hour/direction). The authors recommend standardising calculation methods and integrating matrices into planning tools for urban PT corridors. Full article
(This article belongs to the Collection Transportation Planning and Public Transport)
Show Figures

Figure 1

43 pages, 14882 KiB  
Article
Planning for Cultural Connectivity: Modeling and Strategic Use of Architectural Heritage Corridors in Heilongjiang Province, China
by Lyuhang Feng, Jiawei Sun, Tongtong Zhai, Mingrui Miao and Guanchao Yu
Buildings 2025, 15(12), 1970; https://doi.org/10.3390/buildings15121970 - 6 Jun 2025
Viewed by 551
Abstract
This study focuses on the systematic conservation of historical architectural heritage in Heilongjiang Province, particularly addressing the challenges of point-based protection and spatial fragmentation. It explores the construction of a connected and conductive heritage corridor network, using historical building clusters across the province [...] Read more.
This study focuses on the systematic conservation of historical architectural heritage in Heilongjiang Province, particularly addressing the challenges of point-based protection and spatial fragmentation. It explores the construction of a connected and conductive heritage corridor network, using historical building clusters across the province as empirical cases. A comprehensive analytical framework is established by integrating the nearest neighbor index, kernel density estimation, minimum cumulative resistance (MCR) model, entropy weighting, circuit theory, and network structure metrics. Kernel density analysis reveals a distinct spatial aggregation pattern, characterized by “one core, multiple zones.” Seven resistance factors—including elevation, slope, land use, road networks, and service accessibility—are constructed, with weights assigned through an entropy-based method to generate an integrated resistance surface and suitability map. Circuit theory is employed to simulate cultural “current” flows, identifying 401 potential corridors at the provincial, municipal, and district levels. A hierarchical station system is further developed based on current density, forming a coordinated structure of primary trunks, secondary branches, and complementary nodes. The corridor network’s connectivity is evaluated using graph-theoretic indices (α, β, and γ), which indicate high levels of closure, structural complexity, and accessibility. The results yield the following key findings: (1) Historical architectural resources in Heilongjiang demonstrate significant coupling with the Chinese Eastern Railway and multi-ethnic cultural corridors, forming a “one horizontal, three vertical” spatial configuration. The horizontal axis (Qiqihar–Harbin–Mudanjiang) aligns with the core cultural route of the railway, while the three vertical axes (Qiqihar–Heihe, Harbin–Heihe, and Mudanjiang–Luobei) correspond to ethnic cultural pathways. This forms a framework of “railway as backbone, ethnicity as wings.” (2) Comparative analysis of corridor paths, railways, and highways reveals structural mismatches in certain regions, including absent high-speed connections along northern trunk lines, insufficient feeder lines in secondary corridors, sparse terminal links, and missing ecological stations near regional boundaries. To address these gaps, a three-tier transportation coordination strategy is recommended: it comprises provincial corridors linked to high-speed rail, municipal corridors aligned with conventional rail, and district corridors connected via highway systems. Key enhancement zones include Yichun–Heihe, Youyi–Hulin, and Hegang–Wuying, where targeted infrastructure upgrades and integrated station hubs are proposed. Based on these findings, this study proposes a comprehensive governance paradigm for heritage corridors that balances multi-level coordination (provincial–municipal–district) with ecological planning. A closed-loop strategy of “identification–analysis–optimization” is developed, featuring tiered collaboration, cultural–ecological synergy, and multi-agent dynamic evaluation. The framework provides a replicable methodology for integrated protection and spatial sustainability of historical architecture in Heilongjiang and other cold-region contexts. Full article
Show Figures

Figure 1

32 pages, 1122 KiB  
Article
Expected Challenges and Anticipated Benefits of Implementing Remote Train Control and Automatic Train Operation: A Tramway Case Study
by Xavier Morin, Nils O. E. Olsson and Albert Lau
Future Transp. 2025, 5(2), 73; https://doi.org/10.3390/futuretransp5020073 - 6 Jun 2025
Viewed by 1254
Abstract
The digital transformation of the railway industry is necessary for addressing growing challenges and advancing its sustainable development. Digital technologies include Automatic Train Operation (ATO) and Remote Train Control (RTC), which offer opportunities to potentially optimize operations and enhance safety. Both technologies, however, [...] Read more.
The digital transformation of the railway industry is necessary for addressing growing challenges and advancing its sustainable development. Digital technologies include Automatic Train Operation (ATO) and Remote Train Control (RTC), which offer opportunities to potentially optimize operations and enhance safety. Both technologies, however, could pose significant challenges that need to be addressed in order to capture the anticipated benefits in an urban public street environment. This study thus bridges the gap between theory and practice by exploring the projected benefits and challenges of implementing RTC and ATO through a case study of a European public transport operator deploying these technologies in tramway operations. Employing a case study methodology, the research draws on 44 semi-structured interviews with stakeholders from the operator and its supplier. The findings highlight significant anticipated benefits, including increased productivity, improved safety, and enhanced sustainability. Yet, prospective challenges such as regulatory hurdles, technical complexities, and organizational changes pose barriers to implementation. Key obstacles include ensuring robust connectivity, addressing cybersecurity concerns, and managing workforce transitions. This study underscores the importance of collaborative approaches, stakeholder engagement, and incremental deployment to mitigate risks and maximize the impact of automation technologies. By providing actionable insights into the practical adoption of RTC and ATO, this research supports the development of advanced urban transport systems. Full article
Show Figures

Figure 1

16 pages, 5141 KiB  
Article
Multi-Channel Attention Fusion Algorithm for Railway Image Dehazing
by Haofei Xu, Ziyu Cai, Shanshan Li, Siyang Hu, Junrong Tu, Song Chen, Kai Xie and Wei Zhang
Electronics 2025, 14(11), 2241; https://doi.org/10.3390/electronics14112241 - 30 May 2025
Viewed by 358
Abstract
Railway safety inspections, a critical component of modern transportation systems, face significant challenges from adverse weather conditions, like fog and rain, which degrade image quality and compromise inspection accuracy. To address this limitation, we propose a novel deep learning-based image dehazing algorithm optimized [...] Read more.
Railway safety inspections, a critical component of modern transportation systems, face significant challenges from adverse weather conditions, like fog and rain, which degrade image quality and compromise inspection accuracy. To address this limitation, we propose a novel deep learning-based image dehazing algorithm optimized for outdoor railway environments. Our method integrates adaptive high-pass filtering and bilateral grid processing during the feature extraction phase to enhance detail preservation while maintaining computational efficiency. The framework uniquely combines RGB color channels with atmospheric brightness channels to disentangle environmental interference from critical structural information, ensuring balanced restoration across all spectral components. A dual-attention mechanism (channel and spatial attention modules) is incorporated during feature fusion to dynamically prioritize haze-relevant regions and suppress weather-induced artifacts. Comprehensive evaluations demonstrate the algorithm’s superior performance: On the SOTS-Outdoor benchmark, it achieves state-of-the-art PSNR (35.27) and SSIM (0.9869) scores. When tested on a specialized railway inspection dataset containing 12,840 fog-affected track images, the method attains a PSNR of 30.41 and SSIM of 0.9511, with the SSIM being marginally lower (0.0017) than DeHamer while outperforming other comparative methods in perceptual clarity. Quantitative and qualitative analyses confirm that our approach effectively restores critical infrastructure details obscured by atmospheric particles, improving defect detection accuracy by 18.6 percent compared to non-processed images in simulated inspection scenarios. This work establishes a robust solution for weather-resilient railway monitoring systems, demonstrating practical value for automated transportation safety applications. Full article
(This article belongs to the Special Issue Application of Machine Learning in Graphics and Images, 2nd Edition)
Show Figures

Figure 1

23 pages, 8927 KiB  
Article
Proposed Framework for Sustainable Flood Risk-Based Design, Construction and Rehabilitation of Culverts and Bridges Under Climate Change
by Cem B. Avcı and Muhsin Vanolya
Water 2025, 17(11), 1663; https://doi.org/10.3390/w17111663 - 30 May 2025
Viewed by 810
Abstract
The increasing frequency and intensity of hydrological events driven by climate change, particularly floods, present significant challenges for the design, construction, and maintenance of bridges and culverts. Additionally, the inadequate capacity of existing structures has resulted in substantial financial burdens on governments due [...] Read more.
The increasing frequency and intensity of hydrological events driven by climate change, particularly floods, present significant challenges for the design, construction, and maintenance of bridges and culverts. Additionally, the inadequate capacity of existing structures has resulted in substantial financial burdens on governments due to flood-related damages and the costs of their rehabilitation and replacement. A further concern is the oversight of existing hydraulic design standards, which primarily emphasize structural capacity and flood height, often overlooking broader social and environmental implications as two main pillars of sustainability. This oversight becomes even more critical under changing climatic conditions. This paper proposes a flood risk-based framework for the sustainable design, construction, and modification of bridge and culvert infrastructure in response to climate change. The framework integrates flood risk modeling with environmental and socio-economic considerations to systematically identify and assess vulnerabilities in existing infrastructure. A multi-criteria analysis (MCA) approach is employed to rapidly evaluate and integrate climate change, social, and environmental factors, such as population density, industrial activities, and the ecological impacts of floods following construction, alongside conventional hydrologic and hydraulic design criteria. The study utilizes hydrologic and hydraulic analyses, incorporating transportation networks (including roads, railways, and traffic) with socio-economic data through a GIS-based flood risk classification. Two case studies are presented: the first prioritizes the replacement of existing main bridges and culverts in the Ankara River Basin using the proposed MCA framework, while the second focuses on substructure sizing for a planned high-speed railway section in Mersin–Adana–Osmaniye–Gaziantep, Türkiye, accounting for climate change and upstream reservoirs. The findings highlight the critical importance of adopting a comprehensive and sustainable approach that integrates advanced risk assessment with resilient design strategies to ensure the long-term performance of bridge and culvert infrastructure under climate change. Full article
Show Figures

Figure 1

14 pages, 594 KiB  
Article
The Role of Infrastructural and Psychological Factors in Sustainable Transportation Mode Choices
by Eva Gößwein, Johannes Aertker, Dirk Wittowsky and Magnus Liebherr
Appl. Sci. 2025, 15(11), 5953; https://doi.org/10.3390/app15115953 - 26 May 2025
Viewed by 638
Abstract
Individual mobility behavior continues to pose a challenge to achieving climate goals, as motorized individual transportation is still favored over public transportation. The present study examines five possible drivers of more sustainable transportation mode choices: two infrastructural factors, specifically city center accessibility and [...] Read more.
Individual mobility behavior continues to pose a challenge to achieving climate goals, as motorized individual transportation is still favored over public transportation. The present study examines five possible drivers of more sustainable transportation mode choices: two infrastructural factors, specifically city center accessibility and railway accessibility, and three psychological variables: adaptability, climate change perception, and car orientation. A sample of N = 187 participants was collected in a German city in the Lower Rhine region. Our findings, based on ordinal logistic regression models, indicate that railway accessibility and car orientation are associated with both the use of motorized and public transportation. While center accessibility and adaptability predicted the use of motorized individual transportation, these variables did not significantly relate to the use of public transportation. Also, our results indicate that climate change perception does not relate to transportation use. This surprising finding is discussed in detail. On a more general level, the study’s insights reinforce previous findings and stress the importance of considering not only infrastructural factors in urban spaces but also the characteristics and attitudes of their inhabitants. Full article
(This article belongs to the Special Issue Sustainable Urban Mobility)
Show Figures

Figure 1

16 pages, 5276 KiB  
Article
Measurements and Analysis of Electromagnetic Compatibility of Railway Rolling Stock with Train Detection Systems Using Track Circuits
by Adam Garczarek and Dorota Stachowiak
Energies 2025, 18(11), 2705; https://doi.org/10.3390/en18112705 - 23 May 2025
Cited by 1 | Viewed by 502
Abstract
One of the main challenges in the operation of electric traction vehicles is ensuring safety and operational reliability. To ensure the safety of railway traffic, vehicles must undergo a series of tests related to the investigation of disturbances generated, among others, in the [...] Read more.
One of the main challenges in the operation of electric traction vehicles is ensuring safety and operational reliability. To ensure the safety of railway traffic, vehicles must undergo a series of tests related to the investigation of disturbances generated, among others, in the return current to the mains. This problem is further complicated by the inability to perform such measurements under laboratory conditions. The implementation of tests under real conditions determines the appearance of additional potential interference sources, from power sources to improper interactions between current collectors and the overhead contact system, and it requires strict compliance with regulatory standards and the implementation of standardized testing procedures. This article presents issues related to the investigation and analysis of the electromagnetic compatibility of rolling stock with train detection systems using track circuits. The aim of these tests is to determine the harmonic components in the traction current in relation to the permissible levels specified in the latest editions of the European Railway Agency—ERA/ERTMS/033281 version 5.0 documents and Annex S-02 to the List of the President of the Office of Rail Transport. The measurement methodology and test procedures are presented in detail with respect to current legal requirements. Full article
(This article belongs to the Special Issue Planning, Operation and Control of Microgrids: 2nd Edition)
Show Figures

Figure 1

30 pages, 1228 KiB  
Article
Concept of Efficient Utilization of Railway Station Technical–Hygienic Maintenance Centers—A Case Study from Slovakia
by Zdenka Bulková, Juraj Čamaj and Jozef Gašparík
Vehicles 2025, 7(2), 48; https://doi.org/10.3390/vehicles7020048 - 20 May 2025
Viewed by 720
Abstract
The current technical condition of facilities designated for the technical–hygienic maintenance of railway rolling stock is unsatisfactory, as they are neither technologically nor technically equipped to meet the required quality standards. Maintenance is often carried out in open spaces or directly on the [...] Read more.
The current technical condition of facilities designated for the technical–hygienic maintenance of railway rolling stock is unsatisfactory, as they are neither technologically nor technically equipped to meet the required quality standards. Maintenance is often carried out in open spaces or directly on the tracks of major railway junctions, which prevents year-round execution of these services and causes operational limitations. This article analyses and proposes solutions for the technical–hygienic maintenance center (THU) of railway rolling stock at the Nové Zámky railway station in Slovakia, focusing on improving the efficiency and quality of the provided services. The analysis includes an assessment of technological procedures, identification of operational deficiencies, and a comparison of current maintenance standards with the requirements for contemporary railway systems, such as automated diagnostic platforms, predictive maintenance modules, and modular cleaning infrastructure. The optimization of THU services considers the average time norms for selected technological procedures and the characteristics of train sets passing through the center. The proposed solution involves a more efficient scheduling of operations in line with the valid railway traffic timetable and train set circulation, utilizing a graphical planning method for modelling and optimizing the facility’s service processes. The implementation of optimization measures can lead to increased capacity and efficiency of maintenance, reduced time required for individual procedures, and lower operational costs. The study’s results provide practical recommendations for improving the quality of technical–hygienic maintenance at railway junction stations, contributing to greater railway transport reliability and an overall improvement in passenger comfort. Additionally, the findings offer a transferable framework that may inform the planning and modernization of maintenance facilities at other regional railway stations facing similar infrastructural and operational challenges. Full article
Show Figures

Figure 1

20 pages, 16930 KiB  
Article
Design of Magnetic Concrete for Inductive Power Transfer System in Rail Applications
by Karl Lin, Shen-En Chen, Tiefu Zhao, Nicole L. Braxtan, Xiuhu Sun and Lynn Harris
Appl. Sci. 2025, 15(9), 4987; https://doi.org/10.3390/app15094987 - 30 Apr 2025
Viewed by 609
Abstract
Inductive power transfer (IPT) systems are transforming railway infrastructure by enabling efficient, wireless energy transmission for electric locomotives equipped with Li-ion batteries. This technology eliminates the need for overhead power lines and third rails, offering financial and operational advantages over conventional electric propulsion [...] Read more.
Inductive power transfer (IPT) systems are transforming railway infrastructure by enabling efficient, wireless energy transmission for electric locomotives equipped with Li-ion batteries. This technology eliminates the need for overhead power lines and third rails, offering financial and operational advantages over conventional electric propulsion systems. Despite its potential, IPT deployment in rail applications faces significant challenges, including the fragility of materials (i.e., ferrite and Litz wires), thermal management during high-power transfers, and electromagnetic interference (EMI) on the transmitter side. This study discusses several factors affecting IPT efficiency and introduces magnetic concrete as a durable and cost-effective material solution for IPT systems. Magnetic concrete combines soft ferrite powder with water and coarse aggregates to enhance magnetic functionality while maintaining structural strength comparable to conventional concrete. Its durability and optimized magnetic properties promote consistent power transfer efficiency, making it a viable alternative to traditional ferrite cores. A comparative study has been performed on non-magnetic and magnetic concrete (with 33% ferrite powder) using both permeability tests and finite element analysis (FEA). The FEA includes both thermal and electromagnetic simulations using Ansys Maxwell (v.16), revealing that magnetic concrete can improve temperature management and EMI mitigation, and the findings underscore its potential to revolutionize IPT technology by overcoming the limitations of traditional materials and enhancing durability, cost-efficiency, and power transfer efficiency. By addressing the challenges of fragility, thermal management, and shielding of the unique coil topology design presented, this study lays the groundwork for improving IPT infrastructure in sustainable and efficient rail transport systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

15 pages, 5615 KiB  
Article
Mitigation Measures for Wind Erosion and Sand Deposition in Desert Railways: A Geospatial Analysis of Sand Accumulation Risk
by Mahamat Nour Issa Abdallah, Tan Qulin, Mohamed Ramadan and Providence Habumuremyi
Sustainability 2025, 17(9), 4016; https://doi.org/10.3390/su17094016 - 29 Apr 2025
Viewed by 948
Abstract
Railway transportation is a critical component of global infrastructure which plays a significant role in ensuring the safe movement of goods and people. In desert environments, the effectiveness of railway transportation heavily relies on addressing key challenges such as shifting sand, migrating dunes, [...] Read more.
Railway transportation is a critical component of global infrastructure which plays a significant role in ensuring the safe movement of goods and people. In desert environments, the effectiveness of railway transportation heavily relies on addressing key challenges such as shifting sand, migrating dunes, wind erosion, and sand deposition, which can disrupt operations and increase maintenance costs. To mitigate the significant threats posed by windblown sand to railway safety along the Lanzhou-Xinjiang High-Speed Railway, the technique of double rows of sand fences constructed from concrete columns and plates has been applied to the windward side of the railway. These structures are designed to reduce wind speed and capture moving sand, protecting the rail infrastructure. These fences reduce wind velocity on their leeward sides by 78% and 87% for the first and second rows, respectively. Additionally, due to the large openings in the fences, the sand-trapping efficiencies are 72% for the first row and 63% for the second. The effective shelter distance of the fence is ten times its height. However, advanced technologies like geographic information systems (GIS), geothermal energy solutions, and sustainable infrastructure practices are increasingly integrated into railway transportation to mitigate these risks and enhance safety and reliability. For the Etihad Railway, GIS techniques were utilized to identify areas vulnerable to sand accumulation and validate the substantial benefits of sand fences. Notably, a 40% reduction in wind speed and a significant 74% decrease in sand flux were observed post-installation, underscoring the effectiveness of these structures in disrupting sand mobility. Specifically, wind speed after fence installation was reduced by 40%. The threshold velocity for sand transport was approximately 0.206 m/s. The sand flux before fence installation was 19.95 kg/m2/s, reduced to 5.175 kg/m2/s after fence installation, marking a 74% reduction. The sand deposition behind the sand fence over a 500 m section was around 7387.5 kg/s. This demonstrates the significant role that sand fences play in reducing wind-driven sand transport, thus protecting the Etihad Railway from sand accumulation, and maintaining operational safety. Full article
Show Figures

Figure 1

Back to TopTop