Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = radar emitter signal recognition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2630 KB  
Article
The Research of Intra-Pulse Modulated Signal Recognition of Radar Emitter under Few-Shot Learning Condition Based on Multimodal Fusion
by Yunhao Liu, Sicun Han, Chengjun Guo, Jiangyan Chen and Qing Zhao
Electronics 2024, 13(20), 4045; https://doi.org/10.3390/electronics13204045 - 14 Oct 2024
Cited by 1 | Viewed by 2431
Abstract
Radar radiation source recognition is critical for the reliable operation of radar communication systems. However, in increasingly complex electromagnetic environments, traditional identification methods face significant limitations. These methods often struggle with high noise levels and diverse modulation types, making it difficult to maintain [...] Read more.
Radar radiation source recognition is critical for the reliable operation of radar communication systems. However, in increasingly complex electromagnetic environments, traditional identification methods face significant limitations. These methods often struggle with high noise levels and diverse modulation types, making it difficult to maintain accuracy, especially when the Signal-to-Noise Ratio (SNR) is low or the available training data are limited. These difficulties are further intensified by the necessity to generalize in environments characterized by a substantial quantity of noisy, low-quality signal samples while being constrained by a limited number of desirable high-quality training samples. To more effectively address these issues, this paper proposes a novel approach utilizing Model-Agnostic Meta-Learning (MAML) to enhance model adaptability in few-shot learning scenarios, allowing the model to quickly learn with limited data and optimize parameters effectively. Furthermore, a multimodal fusion neural network, DCFANet, is designed, incorporating residual blocks, squeeze and excitation blocks, and a multi-scale CNN, to fuse I/Q waveform data and time–frequency image data for more comprehensive feature extraction. Our model enables more robust signal recognition, even when the signal quality is severely degraded by noise or when only a few examples of a signal type are available. Testing on 13 intra-pulse modulated signals in an Additive White Gaussian Noise (AWGN) environment across SNRs ranging from −20 to 10 dB demonstrated the approach’s effectiveness. Particularly, under a 5way5shot setting, the model achieves high classification accuracy even at −10dB SNR. Our research underscores the model’s ability to address the key challenges of radar emitter signal recognition in low-SNR and data-scarce conditions, demonstrating its strong adaptability and effectiveness in complex, real-world electromagnetic environments. Full article
(This article belongs to the Special Issue Digital Signal Processing and Wireless Communication)
Show Figures

Figure 1

25 pages, 13951 KB  
Article
1D-CNN-Transformer for Radar Emitter Identification and Implemented on FPGA
by Xiangang Gao, Bin Wu, Peng Li and Zehuan Jing
Remote Sens. 2024, 16(16), 2962; https://doi.org/10.3390/rs16162962 - 12 Aug 2024
Cited by 5 | Viewed by 5579
Abstract
Deep learning has brought great development to radar emitter identification technology. In addition, specific emitter identification (SEI), as a branch of radar emitter identification, has also benefited from it. However, the complexity of most deep learning algorithms makes it difficult to adapt to [...] Read more.
Deep learning has brought great development to radar emitter identification technology. In addition, specific emitter identification (SEI), as a branch of radar emitter identification, has also benefited from it. However, the complexity of most deep learning algorithms makes it difficult to adapt to the requirements of the low power consumption and high-performance processing of SEI on embedded devices, so this article proposes solutions from the aspects of software and hardware. From the software side, we design a Transformer variant network, lightweight convolutional Transformer (LW-CT) that supports parameter sharing. Then, we cascade convolutional neural networks (CNNs) and the LW-CT to construct a one-dimensional-CNN-Transformer(1D-CNN-Transformer) lightweight neural network model that can capture the long-range dependencies of radar emitter signals and extract signal spatial domain features meanwhile. In terms of hardware, we design a low-power neural network accelerator based on an FPGA to complete the real-time recognition of radar emitter signals. The accelerator not only designs high-efficiency computing engines for the network, but also devises a reconfigurable buffer called “Ping-pong CBUF” and two-level pipeline architecture for the convolution layer for alleviating the bottleneck caused by the off-chip storage access bandwidth. Experimental results show that the algorithm can achieve a high recognition performance of SEI with a low calculation overhead. In addition, the hardware acceleration platform not only perfectly meets the requirements of the radar emitter recognition system for low power consumption and high-performance processing, but also outperforms the accelerators in other papers in terms of the energy efficiency ratio of Transformer layer processing. Full article
Show Figures

Figure 1

22 pages, 937 KB  
Article
Radar Emitter Recognition Based on Spiking Neural Networks
by Zhenghao Luo, Xingdong Wang, Shuo Yuan and Zhangmeng Liu
Remote Sens. 2024, 16(14), 2680; https://doi.org/10.3390/rs16142680 - 22 Jul 2024
Cited by 4 | Viewed by 3349
Abstract
Efficient and effective radar emitter recognition is critical for electronic support measurement (ESM) systems. However, in complex electromagnetic environments, intercepted pulse trains generally contain substantial data noise, including spurious and missing pulses. Currently, radar emitter recognition methods utilizing traditional artificial neural networks (ANNs) [...] Read more.
Efficient and effective radar emitter recognition is critical for electronic support measurement (ESM) systems. However, in complex electromagnetic environments, intercepted pulse trains generally contain substantial data noise, including spurious and missing pulses. Currently, radar emitter recognition methods utilizing traditional artificial neural networks (ANNs) like CNNs and RNNs are susceptible to data noise and require intensive computations, posing challenges to meeting the performance demands of modern ESM systems. Spiking neural networks (SNNs) exhibit stronger representational capabilities compared to traditional ANNs due to the temporal dynamics of spiking neurons and richer information encoded in precise spike timing. Furthermore, SNNs achieve higher computational efficiency by performing event-driven sparse addition calculations. In this paper, a lightweight spiking neural network is proposed by combining direct coding, leaky integrate-and-fire (LIF) neurons, and surrogate gradients to recognize radar emitters. Additionally, an improved SNN for radar emitter recognition is proposed, leveraging the local timing structure of pulses to enhance adaptability to data noise. Simulation results demonstrate the superior performance of the proposed method over existing methods. Full article
(This article belongs to the Special Issue Technical Developments in Radar—Processing and Application)
Show Figures

Figure 1

23 pages, 7234 KB  
Article
Attention-Enhanced Dual-Branch Residual Network with Adaptive L-Softmax Loss for Specific Emitter Identification under Low-Signal-to-Noise Ratio Conditions
by Zehuan Jing, Peng Li, Bin Wu, Erxing Yan, Yingchao Chen and Youbing Gao
Remote Sens. 2024, 16(8), 1332; https://doi.org/10.3390/rs16081332 - 10 Apr 2024
Cited by 7 | Viewed by 1929
Abstract
To address the issue associated with poor accuracy rates for specific emitter identification (SEI) under low signal-to-noise ratio (SNR) conditions, where the single-dimension radar signal characteristics are severely affected by noise, we propose an attention-enhanced dual-branch residual network structure based on the adaptive [...] Read more.
To address the issue associated with poor accuracy rates for specific emitter identification (SEI) under low signal-to-noise ratio (SNR) conditions, where the single-dimension radar signal characteristics are severely affected by noise, we propose an attention-enhanced dual-branch residual network structure based on the adaptive large-margin Softmax (ALS). Initially, we designed a dual-branch network structure to extract features from one-dimensional intermediate frequency data and two-dimensional time–frequency images, respectively. By assigning different attention weights according to their importance, these features are fused into an enhanced joint feature for further training. This approach enables the model to extract distinctive features across multiple dimensions and achieve good recognition performance even when the signal is affected by noise. In addition, we have introduced L-Softmax to replace the original Softmax and propose the ALS. This approach adaptively calculates the classification margin decision parameter based on the angle between samples and the classification boundary and adjusts the margin values of the sample classification boundaries; it reduces the intra-class distance for the same class while increasing the inter-class distance between different classes without the need for cumbersome experiments to determine the optimal value of decision parameters. Our experimental findings revealed that, in comparison to alternative methods, our proposed approach markedly enhances the model’s capability to extract features from signals and classify them in low-SNR environments, thereby effectively diminishing the influence of noise. Notably, it achieves the highest recognition rate across a range of low-SNR conditions, registering an average increase in recognition rate of 4.8%. Full article
(This article belongs to the Special Issue Advanced Radar Signal Processing and Applications)
Show Figures

Figure 1

17 pages, 2757 KB  
Article
Research on an Enhanced Multimodal Network for Specific Emitter Identification
by Heli Peng, Kai Xie and Wenxu Zou
Electronics 2024, 13(3), 651; https://doi.org/10.3390/electronics13030651 - 4 Feb 2024
Cited by 5 | Viewed by 1949
Abstract
Specific emitter identification (SEI) refers to the task of distinguishing similar emitters, especially those of the same type and transmission parameters, which is one of the most critical tasks of electronic warfare. However, SEI is still a challenging task when a feature has [...] Read more.
Specific emitter identification (SEI) refers to the task of distinguishing similar emitters, especially those of the same type and transmission parameters, which is one of the most critical tasks of electronic warfare. However, SEI is still a challenging task when a feature has low physical representation. Feature representation largely determines the recognition results. Therefore, this article expects to move toward robust feature representation for SEI. Efficient multimodal strategies have great potential for applications using multimodal data and can further improve the performance of SEI. In this research, we introduce a multimodal emitter identification method that explores the application of multimodal data, time-series radar signals, and feature vector data to an enhanced transformer, which employs a conformer block to embed the raw data and integrates an efficient multimodal feature representation module. Moreover, we employ self-knowledge distillation to mitigate overconfident predictions and reduce intra-class variations. Our study reveals that multimodal data provide sufficient information for specific emitter identification. Simultaneously, we propose the CV-CutMixOut method to augment the time-domain signal. Extensive experiments on real radar datasets indicate that the proposed method achieves more accurate identification results and higher feature discriminability. Full article
Show Figures

Figure 1

20 pages, 8200 KB  
Article
Efficient FPGA Implementation of Convolutional Neural Networks and Long Short-Term Memory for Radar Emitter Signal Recognition
by Bin Wu, Xinyu Wu, Peng Li, Youbing Gao, Jiangbo Si and Naofal Al-Dhahir
Sensors 2024, 24(3), 889; https://doi.org/10.3390/s24030889 - 30 Jan 2024
Cited by 12 | Viewed by 4575
Abstract
In recent years, radar emitter signal recognition has enjoyed a wide range of applications in electronic support measure systems and communication security. More and more deep learning algorithms have been used to improve the recognition accuracy of radar emitter signals. However, complex deep [...] Read more.
In recent years, radar emitter signal recognition has enjoyed a wide range of applications in electronic support measure systems and communication security. More and more deep learning algorithms have been used to improve the recognition accuracy of radar emitter signals. However, complex deep learning algorithms and data preprocessing operations have a huge demand for computing power, which cannot meet the requirements of low power consumption and high real-time processing scenarios. Therefore, many research works have remained in the experimental stage and cannot be actually implemented. To tackle this problem, this paper proposes a resource reuse computing acceleration platform based on field programmable gate arrays (FPGA), and implements a one-dimensional (1D) convolutional neural network (CNN) and long short-term memory (LSTM) neural network (NN) model for radar emitter signal recognition, directly targeting the intermediate frequency (IF) data of radar emitter signal for classification and recognition. The implementation of the 1D-CNN-LSTM neural network on FPGA is realized by multiplexing the same systolic array to accomplish the parallel acceleration of 1D convolution and matrix vector multiplication operations. We implemented our network on Xilinx XCKU040 to evaluate the effectiveness of our proposed solution. Our experiments show that the system can achieve 7.34 giga operations per second (GOPS) data throughput with only 5.022 W power consumption when the radar emitter signal recognition rate is 96.53%, which greatly improves the energy efficiency ratio and real-time performance of the radar emitter recognition system. Full article
(This article belongs to the Special Issue Radar Signal Detection, Recognition and Identification)
Show Figures

Figure 1

25 pages, 29121 KB  
Article
Radar Emitter Signal Intra-Pulse Modulation Open Set Recognition Based on Deep Neural Network
by Shibo Yuan, Peng Li and Bin Wu
Remote Sens. 2024, 16(1), 108; https://doi.org/10.3390/rs16010108 - 26 Dec 2023
Cited by 10 | Viewed by 2545
Abstract
Radar emitter signal intra-pulse modulation recognition is important for modern electronic reconnaissance systems to analyze target radar systems. In the actual environment, the intra-pulse modulations of the sampled radar emitter signals contain not only the known types in the library but also the [...] Read more.
Radar emitter signal intra-pulse modulation recognition is important for modern electronic reconnaissance systems to analyze target radar systems. In the actual environment, the intra-pulse modulations of the sampled radar emitter signals contain not only the known types in the library but also the unknown types. Therefore, the existing recognition methods, which are based on a closed set, cannot recognize the unknown samples. In order to solve this problem, in this paper, we proposed a method for radar emitter signal intra-pulse modulation open set recognition. The proposed method could classify the known modulations and identify the unknown modulation by using an original deep neural network-based recognition model trained on a closed set, estimating the signal-to-noise ratio, and calculating the reconstruction loss by an encoder–decoder model. For a given sample, the original deep neural network-based recognition model will label it as a certain known class temporarily. By estimating the SNR of the sample and calculating the reconstruction loss by inputting the sample to the corresponding encoder–decoder model related to the temporary predicted known class, whether the sample belongs to the predicted temporary known class or the unknown class will be confirmed. Experiments were conducted with five different openness conditions. The experimental results indicate that the proposed method has good performance on radar emitter signal intra-pulse modulation open set recognition. Full article
(This article belongs to the Special Issue Advanced Radar Signal Processing and Applications)
Show Figures

Figure 1

15 pages, 3010 KB  
Article
A Novel Batch Streaming Pipeline for Radar Emitter Classification
by Dong Hyun Park, Dong-Ho Seo, Jee-Hyeon Baek, Won-Jin Lee and Dong Eui Chang
Appl. Sci. 2023, 13(22), 12395; https://doi.org/10.3390/app132212395 - 16 Nov 2023
Cited by 3 | Viewed by 2328
Abstract
In electronic warfare, radar emitter classification plays a crucial role in identifying threats in complex radar signal environments. Traditionally, this has been achieved using heuristic-based methods and handcrafted features. However, these methods struggle to adapt to the complexities of modern combat environments and [...] Read more.
In electronic warfare, radar emitter classification plays a crucial role in identifying threats in complex radar signal environments. Traditionally, this has been achieved using heuristic-based methods and handcrafted features. However, these methods struggle to adapt to the complexities of modern combat environments and varying radar signal characteristics. To address these challenges, this paper introduces a novel batch streaming pipeline for radar emitter classification. Our pipeline consists of two key components: radar deinterleaving and radar pattern recognition. We leveraged the DBSCAN algorithm and an RNN encoder, which are relatively light and simple models, considering the limited hardware resource environment of a military weapon system. Although we chose to utilize lightweight machine learning and deep learning models, we designed our pipeline to perform optimally through hyperparameter optimization of each component. We demonstrate the effectiveness of our proposed model and pipeline through experimental validation and analysis. Overall, this paper provides background knowledge on each model, introduces the proposed pipeline, and presents experimental results. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

23 pages, 1899 KB  
Article
A Specific Emitter Identification System Design for Crossing Signal Modes in the Air Traffic Control Radar Beacon System and Wireless Devices
by Miyi Zeng, Yue Yao, Hong Liu, Youzhang Hu and Hongyu Yang
Sensors 2023, 23(20), 8576; https://doi.org/10.3390/s23208576 - 19 Oct 2023
Cited by 3 | Viewed by 2270
Abstract
To improve communication stability, more wireless devices transmit multi-modal signals while operating. The term ‘modal’ refers to signal waveforms or signal types. This poses challenges to traditional specific emitter identification (SEI) systems, e.g., unknown modal signals require extra open-set mode identification; different modes [...] Read more.
To improve communication stability, more wireless devices transmit multi-modal signals while operating. The term ‘modal’ refers to signal waveforms or signal types. This poses challenges to traditional specific emitter identification (SEI) systems, e.g., unknown modal signals require extra open-set mode identification; different modes require different radio frequency fingerprint (RFF) extractors and SEI classifiers; and it is hard to collect and label all signals. To address these issues, we propose an enhanced SEI system consisting of a universal RFF extractor, denoted as multiple synchrosqueezed wavelet transformation of energy unified (MSWTEu), and a new generative adversarial network for feature transferring (FTGAN). MSWTEu extracts uniform RFF features for different modal signals, FTGAN transfers different modal features to a recognized distribution in an unsupervised manner, and a novel training strategy is proposed to achieve emitter identification across multi-modal signals using a single clustering method. To evaluate the system, we built a hybrid dataset, which consists of multi-modal signals transmitted by various emitters, and built a complete civil air traffic control radar beacon system (ATCRBS) dataset for airplanes. The experiments show that our enhanced SEI system can resolve the SEI problems associated with crossing signal modes. It directly achieves 86% accuracy in cross-modal emitter identification using an unsupervised classifier, and simultaneously obtains 99% accuracy in open-set recognition of signal mode. Full article
(This article belongs to the Special Issue AI-Based Security and Privacy for IoT Applications)
Show Figures

Figure 1

18 pages, 7091 KB  
Article
Radar Spectrum Image Classification Based on Deep Learning
by Zhongsen Sun, Kaizhuang Li, Yu Zheng, Xi Li and Yunlong Mao
Electronics 2023, 12(9), 2110; https://doi.org/10.3390/electronics12092110 - 5 May 2023
Cited by 3 | Viewed by 3543
Abstract
With the continuous development and progress of science and technology, the increasingly complex electromagnetic environment and the research and development of new radar systems have led to the emergence of various radar signals. Traditional methods of radar emitter identification cannot meet the needs [...] Read more.
With the continuous development and progress of science and technology, the increasingly complex electromagnetic environment and the research and development of new radar systems have led to the emergence of various radar signals. Traditional methods of radar emitter identification cannot meet the needs of current practical applications. For the purpose of classification and recognition of radar emitter signals, this paper proposes an improved EfficientNetv2-s classification method based on deep learning for more precise classification and recognition of radar radiation source signals. Using 16 different types of radar signal parameters from the signal parameter setting table, the proposed method generates random data sets consisting of spectrum images with varying amplitude. The proposed method replaces two-dimensional convolution in EfficientNetV2 with one-dimensional convolution. Additionally, the channel attention mechanism of the EfficientNetv2-s is optimized and modified to obtain attention weights without dimensional reduction, resulting in superior accuracy. Compared with other deep-learning image-classification methods, the test results of this method have better classification accuracy on the test set: the top1 accuracy reaches 98.12%, which is 0.17~3.12% higher than other methods. Furthermore, the proposed method has lower complexity compared to most methods. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

11 pages, 1055 KB  
Communication
Few-Shot Radar Emitter Signal Recognition Based on Attention-Balanced Prototypical Network
by Jing Huang, Xiao Li, Bin Wu, Xinyu Wu and Peng Li
Remote Sens. 2022, 14(23), 6101; https://doi.org/10.3390/rs14236101 - 1 Dec 2022
Cited by 11 | Viewed by 2115
Abstract
In recent years, radar emitter signal identification has been greatly developed via the utilization of deep learning and has achieved significant improvements in identification accuracy. However, with the continuous emergence of complex regime radars and the increasing complexity of the electromagnetic environment, some [...] Read more.
In recent years, radar emitter signal identification has been greatly developed via the utilization of deep learning and has achieved significant improvements in identification accuracy. However, with the continuous emergence of complex regime radars and the increasing complexity of the electromagnetic environment, some new kinds of radar emitter signals collected are not in sufficient quantities to satisfy the demand of deep learning. As a result, in this paper, we adopted the prototypical network (PN) belonging to metric-based meta-learning to realize few-shot radar emitter signal recognition with the aim of meeting the needs of modern electronic warfare. Additionally, considering the problems that may arise in the field of few-shot radar emitter signal recognition, such as discriminative location bias caused by a small number of base classes or the large difference between base classes and novel classes, we proposed an attention-balanced strategy to improve meta-learning. Specifically, each channel in the feature map is forced to make the same contribution in the distinguishment of different classes. In addition, for PN, taking into account that the feature vectors of each support sample in the class are different, we set a network to exploit the relation between each support sample in the same classes, and weighted each feature vector of the support samples according to the relation. Large quantities of experiments indicate that our algorithm possesses more advantages than other algorithms. Full article
Show Figures

Figure 1

18 pages, 9277 KB  
Article
Application of Continuous Wavelet Transform and Artificial Naural Network for Automatic Radar Signal Recognition
by Marta Walenczykowska and Adam Kawalec
Sensors 2022, 22(19), 7434; https://doi.org/10.3390/s22197434 - 30 Sep 2022
Cited by 22 | Viewed by 3881
Abstract
This article aims to propose an algorithm for the automatic recognition of selected radar signals. The algorithm can find application in areas such as Electronic Warfare (EW), where automatic recognition of the type of intra-pulse modulation or the type of emitter operation mode [...] Read more.
This article aims to propose an algorithm for the automatic recognition of selected radar signals. The algorithm can find application in areas such as Electronic Warfare (EW), where automatic recognition of the type of intra-pulse modulation or the type of emitter operation mode can aid the decision-making process. The simulations carried out included the analysis of the classification possibilities of linear frequency modulated pulsed waveform (LFMPW), stepped frequency modulated pulsed waveform (SFMPW), phase coded pulsed waveform (PCPW), rectangular pulsed waveforms (RPW), frequency modulated continuous wave (FMCW), continuous wave (CW), Stepped Frequency Continuous Wave SFCW) and Phase Coded Continuous Waveform (PCCW). The algorithm proposed in this paper is based on the use of continuous wavelet transform (CWT) coefficients and higher-order statistics (HOS) in the feature determination of selected signals. The Principal Component Analysis (PCA) method was used for dimensionality reduction. An artificial neural network was then used as a classifier. Simulation studies took into account the presence of noise interference with signal-to-noise ratio (SNR) in the range from −5 to 10 dB. Finally, the obtained classification efficiency is presented in the form of a confusion matrix. The simulation results show a high recognition test accuracy, above 99% with a signal-to-noise ratio greater than 0 dB. The article also deals with the selection of the type and parameters of the wavelet. The authors also point to the problems encountered during the research and examples of how to solve them. Full article
(This article belongs to the Collection Navigation Systems and Sensors)
Show Figures

Figure 1

14 pages, 1747 KB  
Technical Note
Radar Emitter Recognition Based on Parameter Set Clustering and Classification
by Tao Xu, Shuo Yuan, Zhangmeng Liu and Fucheng Guo
Remote Sens. 2022, 14(18), 4468; https://doi.org/10.3390/rs14184468 - 7 Sep 2022
Cited by 17 | Viewed by 3978
Abstract
An important task in the Electronic Support Measures (ESM) field is analyzing and recognizing radar signals. Feature extraction is one of the primary key elements of radar emitter recognition algorithms. Current research mainly finds statistical features such as the mean and variance of [...] Read more.
An important task in the Electronic Support Measures (ESM) field is analyzing and recognizing radar signals. Feature extraction is one of the primary key elements of radar emitter recognition algorithms. Current research mainly finds statistical features such as the mean and variance of parameters from pluses as the input features of the classifier. However, data noise in intercepted pulse signals greatly interferes with the accuracy of the extracted statistical features and seriously affects the recognition rate of radar emitters. In this paper, we proposed a method of radar emitter recognition. We first clustered parameter sets to establish a set of frequent items and their corresponding clustering centers. Next, we concatenated the clustering centers of each frequent item into a feature vector associated with the data volume dimensions. Then, we built a decision tree classification model based on the feature vector, and finally we used the learned model for the recognition of unknown radar pulse trains. The simulation results show that the proposed method has better robustness when applied to a variety of data volumes and data noise scenarios compared with long short-term memory (LSTM) and support vector machine (SVM) methods. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Graphical abstract

13 pages, 2072 KB  
Communication
Embedding Soft Thresholding Function into Deep Learning Models for Noisy Radar Emitter Signal Recognition
by Jifei Pan, Shengli Zhang, Lingsi Xia, Long Tan and Linqing Guo
Electronics 2022, 11(14), 2142; https://doi.org/10.3390/electronics11142142 - 8 Jul 2022
Cited by 9 | Viewed by 2875
Abstract
Radar emitter signal recognition under noisy background is one of the focus areas in research on radar signal processing. In this study, the soft thresholding function is embedded into deep learning network models as a novel nonlinear activation function, achieving advanced radar emitter [...] Read more.
Radar emitter signal recognition under noisy background is one of the focus areas in research on radar signal processing. In this study, the soft thresholding function is embedded into deep learning network models as a novel nonlinear activation function, achieving advanced radar emitter signal recognition results. Specifically, an embedded sub-network is used to learn the threshold of soft thresholding function according to the input feature, which results in each input feature having its own independent nonlinear activation function. Compared with conventional activation functions, the soft thresholding function is characterized by flexible nonlinear conversion and the ability to obtain more discriminative features. By this way, the noise features can be flexibly filtered while retaining signal features, thus improving recognition accuracy. Under the condition of Gaussian and Laplacian noise with signal-to-noise ratio of −8 dB to −2 dB, experimental results show that the overall average accuracy of soft thresholding function reached 88.55%, which was 11.82%, 8.12%, 2.16%, and 1.46% higher than those of Sigmoid, PReLU, ReLU, ELU, and SELU, respectively. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

14 pages, 516 KB  
Article
An End-to-End Deep Learning Approach for State Recognition of Multifunction Radars
by Xinsong Xu, Daping Bi and Jifei Pan
Sensors 2022, 22(13), 4980; https://doi.org/10.3390/s22134980 - 1 Jul 2022
Cited by 7 | Viewed by 2371
Abstract
With the widespread use of multifunction radars (MFRs), it is hard for the traditional radar signal recognition technology to meet the needs of current electronic intelligence systems. For signal recognition of an MFR, it is necessary to identify not only the type or [...] Read more.
With the widespread use of multifunction radars (MFRs), it is hard for the traditional radar signal recognition technology to meet the needs of current electronic intelligence systems. For signal recognition of an MFR, it is necessary to identify not only the type or individual of the emitter but also its current state. Existing methods identify MFR states through hierarchical modeling, but most of them rely heavily on prior information. In the paper, we focus on the MFR state recognition with actual intercepted MFR signals and develop it by introducing recurrent neural networks (RNNs) of deep learning into the modeling of MFR signals. According to the layered MFR signal architecture, we propose a novel end-to-end state recognition approach with two RNNs’ connections. This approach makes full use of RNNs’ ability to directly tackle corrupted data and automatically learn the features from input data. So, it is practical and less dependent on prior information. In addition, the hierarchical modeling method applied to the end-to-end network effectively restricts the scale of the end-to-end model so that the model can be trained with a small amount of data. Simulation results on a real MFR show the excellent recognition performance of our end-to-end approach with little prior information. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

Back to TopTop